SUPPLEMENTARY FILES

Supplementary Table 1 Yeast and human homologous recombination factors

FACTOR	HUMAN	YEAST
BRCA1	DSB resection	NA
	RAD51 loading	
	Conservative HR	
	Non-conservative HR	
BRCA2	RAD51 mediator	NA
	Conservative HR	
RAD51	Strand exchange	Strand exchange
	Conservative HR	Conservative HR
RAD52	Single-strand annealing	Rad51 mediator
	Conservative HR	Single-strand annealing
	Non-conservative HR	Conservative HR
		Non-conservative HR
RAD54	RAD51 mediator	Rad51 mediator
	Conservative HR	Conservative HR

a NA – Not applicable

Supplementary Table 2 Saccharomyces cerevisiae strains used in this study

STRAIN	GENOTYPE ^a
ABX3600	MAT a /α HIS3/his3-11, 15 LEU2/leu2-3, 112 URA3/ura3-1 RAD52/RAD52-FLAG-kanMX ADH1/adh1::HsRAD52-FLAG- kanMX-hygMX-ADH1
ABX3566	MAT a /α HIS3/his3-11, 15 URA3/ura3-1
ABX3568	MAT a /α HIS3/his3-11, 15 URA3/ura3-1 rad52::TRP1/rad52::TRP1
ABX3569	MAT a /α HIS3/his3-11, 15 URA3/ura3-1 adh1::HsRAD52-hygMX- ADH1/adh1::HsRAD52-hygMX-ADH1
ABX3570	MAT a /α HIS3/his3-11, 15 URA3/ura3-1 rad52::TRP1/rad52::TRP1 adh1::HsRAD52-hygMX-ADH1/adh1::HsRAD52-hygMX-ADH1
ABX3666-37B	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX
ABX3678-49B	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad51::hisG-URA3-hisG
ABX3697-82D	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad52::TRP1
ABX3703-36B	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX URA3 adh1::HsRAD52-hygMX-ADH1
ABX3728-11C	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad51::LEU2 rad52::TRP1 adh1::HsRAD52-hygMX-ADH1
ABX3728-14A	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad51::hisG-URA3-hisG rad52::TRP1
ABX3728-28A	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad51::hisG-URA3-hisG adh1::HsRAD52-hygMX-ADH1

Supplementary Table 2 Saccharomyces cerevisiae strains - continued

STRAIN	GENOTYPE
ABM537	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad52::TRP1 adh1::HsRAD52-hygMX-ADH1
ABM562	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad54::LEU2
ABM563	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad52::TRP1 rad54::LEU2 adh1::HsRAD52-hygMX-ADH1
ABM564	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad54::LEU2 adh1::HsRAD52-hygMX-ADH1
ABM568	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad55::LEU2 adh1::HsRAD52-hygMX-ADH1
ABM570	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad52::TRP1 rad55::LEU2 adh1::HsRAD52-hygMX-ADH1
ABM571	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad55::LEU2
ABX3761-10C	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad52::TRP1 adh1::HsRAD52-FLAG-kanMX-hygMX-ADH1
ABX3841-35C	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX adh1::HsRAD52-FLAG-kanMX-hygMX-ADH1
W961-5A	MAT a HIS3
ABM559	MATa::LEU2 his3-∆3'-HOcs trp1::GAL-HO-kanMX RAD52-FLAG- kanMX
ABX3684-12B	MATa LEU2 rad52::TRP1 adh1::HsRAD52-FLAG-kanMX-hygMX- ADH1
ABT821	MAT a HIS3 pLAY836 (adh1::HsRAD51-MYC URA3)
ABT822	MATa::LEU2 his3-∆3'-HOcs trp1::GAL-HO-kanMX RAD52-FLAG- kanMX pLAY836 (adh1::RAD51-MYC URA3)

Supplementary Table 2 Saccharomyces cerevisiae strains - continued

STRAIN	GENOTYPE
ABT823	MAT a HIS3 pLAY837 (adh1::RAD52-MYC URA3)
ABT824	MATa::LEU2 his3-∆3'-HOcs trp1::GAL-HO-kanMX RAD52-FLAG- kanMX pLAY837 (adh1::RAD52-MYC URA3)
ABT836	MATa LEU2 rad52::TRP1 adh1::HsRAD52-FLAG-kanMX-hygMX- ADH1 pLAY836 (adh1::RAD51-MYC URA3)
ABT838	MATα LEU2 rad52::TRP1 adh1::HsRAD52-FLAG-kanMX-hygMX- ADH1 pLAY837 (adh1::RAD52-MYC URA3)
ABT839	MAT a HIS3 pLAY850 (adh1::HsRAD52-MYC URA3)
ABX3834-2D	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I
ABX3844-23D	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX RAD52-FLAG-kanMX
ABX3879-17B	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad51::hisG-URA3-hisG RAD52-FLAG-kanMX
ABX3885-17B	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad52::TRP1 adh1::HsRAD52-FLAG-kanMX-hygMX-ADH1
ABX3885-32C	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad51::hisG-URA3-hisG rad52::TRP1 adh1::HsRAD52- FLAG-kanMX-hygMX-ADH1
ABT875	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad51::LEU2 RAD52-FLAG-kanMX pLAY606 (URA3)
ABT876	MATa::LEU2 his3-∆3'-HOcs LEU2-his3-∆Msc I trp1::GAL-HO- kanMX rad51::LEU2 RAD52-FLAG-kanMX pLAY864 (URA3 adh1- HsRAD52-FLAG)

^a All strains are isogenic and possess the following genotype unless otherwise noted: *ade2-1 can1-100 his3-11,-15 leu2-3,-112 trp1-1 ura3-1*

Supplementary Table 3 Plasmids constructed for this study

PLASMID DESCRIPTION

pLAY606	<i>ADH1</i> promoter and terminator sequences flanking Not I site in a <i>URA3</i> - marked centromere plasmid
pLAY831	Coding sequence of <i>RAD51</i> inserted into the multiple cloning sequence of pGBT9
pLAY832	Coding sequence of <i>RAD51</i> inserted into the multiple cloning sequence of pGAD424
pLAY833	<i>ADH1</i> promoter and terminator sequences flanking Not I site that is in- frame with G8-9MYC epitope tag in the <i>URA3</i> -marked centromere plasmid pLAY606
pLAY836	Coding sequence of RAD51 inserted into pLAY833
pLAY837	Coding sequence of RAD52 inserted into pLAY833
pLAY850	Coding sequence of HsRAD52 inserted into pLAY833
pLAY864	Coding sequence of <i>RAD52-FLAG</i> placed under the control of the <i>ADH1</i> promoter and terminator in pLAY606

Supplementary Table 4 Master Data

Genotype	IRR ^a	DSB-EGC ^b
WT	1.02x10 ² (0.6, 1.41) ^c [1] ^d	1.72x10 ⁻³ (1.37, 2.07) [1]
RAD52-FLAG	n.d. ^e	2.92x10 ⁻³ (1.87, 3.96) [+1.7]
HsRAD52	8.6x10 ¹ (7.4, 17.9) [-1.2]	2.32x10 ⁻³ (1.68, 2.97) [+1.4]
rad51 Δ	n.d.	4.76x10 ⁻⁶ (1.62, 5.13) [-361]
rad51∆ RAD52-FLAG	n.d.	7.58x10 ⁻⁶ (6.28, 8.87) [-227]
rad51∆ RAD52-FLAG/	n.d.	2.17x10 ⁻⁵ (0.49, 3.86) [-79]
pLAY606		
rad51∆ RAD52-FLAG/	n.d.	1.21x10 ⁻⁵ (0.24, 2.18) [-142]
pLAY864		
rad51∆ HsRAD52	n.d.	1.19x10 ⁻⁴ (0.99, 1.39) [-14.5]
rad52 Δ	4.22x10 ⁻¹ (1.9, 8.99) [-242]	9.21x10 ⁻⁷ (6.52, 11.90) [-1868]
rad52∆ HsRAD52	4.6 (3.4, 6.1) [-22]	7.20x10 ⁻⁵ (5.73, 8.68) [-23.9]
rad52∆ HsRAD52-FLAG	n.d.	3.96x10 ⁻⁵ (1.13, 6.79) [-43]
rad54 Δ	n.d.	3.47x10 ⁻⁵ (2.60, 4.30) (-49.6)
rad54∆ HsRAD52	n.d.	4.87x10 ⁻⁵ (3.41, 6.33) [-35.3]
rad55 Δ	n.d.	9.81x10 ⁻⁵ (8.88, 10.75) [-17.5]
rad55∆ HsRAD52	n.d.	9.98x10 ⁻⁵ (6.47, 13.50) [-17.2]
rad51 Δ rad52 Δ	n.d.	6.69x10 ⁻⁸ (4.29, 9.10) [-25710]
rad51 Δ rad52 Δ HsRAD52	n.d.	5.77x10 ⁻⁵ (3.85, 7.68) [-29.8]
rad52 ${\Delta}$ rad54 ${\Delta}$ HsRAD52	n.d.	1.26x10 ⁻⁵ (1.11. 1.41) [-136.5]
rad52 ${\Delta}$ rad55 ${\Delta}$ HsRAD52	n.d.	5.25x10 ⁻⁵ (1.65. 8.86) [-32.8]

 ^a Ionizing Radiation Resistance (% viable cells)
^b Double-strand Break Stimulated Ectopic Gene Conversion Frequency (recombinants/viable) cell)

^c 95% confidence interval
^d Fold difference from wild-type
^e Not Determined

SCRAD52 MN----EIMD MDEKKPVFGN HS------EDIQ TKLDKKLGPE YISKRVGFGT 42 HSRAD52 MSGTEEAILG GRDSHPAAGG GSVLCFGQCQ YTAEEYQAIQ KALRQRLGPE YISSRMAGGG 60 Consensus M*GTEE*I** *****P**G* *SVLCFGQCQ YTAEEY**IQ **L***LGPE YIS*R***G* 80 100 120 SCRAD52 SRIAYIEGWR VINLANQIFG YNGWSTEVKS VVIDFLDERQ GKFSIGCTAI VRVTLTSGTY 102 HSRAD52 QKVCYIEGHR VINLANEMFG YNGWAHSITQ QNVDFVDLNN GKFYVGVCAF VRVQLKDGSY 120 Consensus ****YIEG*R VINLAN**FG YNGW****** ***DF*D*** GKF**G**A* VRV*L**G*Y 140 160 180 SCRAD52 REDIGYGTVE NERRKPAAFE RAKKSAVTDA LKRSLRGFGN ALGNCLYDKD FLAKIDKVKF 162 HSRAD52 HEDVGYGVSE GLKSKALSLE KARKEAVTDG LKRALRSFGN ALGNCILDKD YLRSLNKLPR 180 Consensus *ED*GYG**E ****K****E *A*K*AVTD* LKR*LR*FGN ALGNC**DKD *L****K*** 200 220 240 SCRAD52 DPP-DFDENN LFRPTDEIS- ESSRTNTLHE NQEQQQYPNK RRQLTKVTNT NPDSTKNLVK 220 HSRAD52 QLPLEVDLTK AKRQDLEPSV EEARYNSCRP NMALG-HP-- --QLQQVTS- -PSRPSHAV- 232 Consensus **PL**D*** **R***E*SV E**R*N**** N****Q*PNK RRQL**VT*T NP******VK 260 280 300 SCRAD52 IENTVSRGTP MMAAPAEANS KNSSNKDTDL KSLDASKQDQ DDLLDDSLMF SDDFQDDDLI 280 HsRAD52 ------ - IPADQDCSS RSLSSSAVES EATHQRKLRQ KQL------ QQQFRE---- 270 Consensus IENTVSRGTP M**A*****S ***S****** ******K**Q **LLDDSLMF ***F**DDLI 320 340 SCRAD52 NMGNTNSNVL TTEKDPVVAK QSPTASSNPE AEQITFVTAK AATSVQNERY IGEESIFDPK 340 HSRAD52 RMEKQQVRVS TPS----AE KSEAAPPAPP VTHSTPVTVS -----EPLLEKD 312 Consensus *M*****V* T**KDPVVA* *S**A***P* ****T*VT** AATSVQNERY IGEE***** 380 400 SCRAD52 YQA---QSIR HTVDQTTSKH IPASVLKDKT MTTARDSVYE KFAPKGKQLS MKNNDKELGP 397 HSRAD52 FLAGVTQELI KTLEDNSEKW ---AVTPD-- ---AGDGVVK ---PSSRADP AQTSDTL--- 358 Consensus **AGVTQ*** *T*****K* IPA*V**DKT MTTA*D*V** KFAP****** ****D**LGP 440 460 480 SCRAD52 HMLEGAGNQV PRETTPIKTN ATAFPPAAAP RFAPPSKVVH PNGNGAVPAV P-QQRSTRRE 456 HSRAD52 ----ALNNQM ------VTQN RT---PHSVC HQKPQAK--- -SGSWDLQTY SADQRTTGNW 401 Consensus HMLE***NQ* PRETTP***N *TAFPP**** ***P**KVVH P*G****** *A*QR*T***

ScRAD52 VGRPKINPLH ARK--PT 471 HsRAD52 ESHRKSQDMK KRKYDPS 418 Consensus ****K**** *RKYDP*

<u>Supplementary Figure 1: Alignment of primary amino acid sequences of yeast</u> <u>and human RAD52</u> The amino acid sequences of Rad52 and HsRad52 were aligned using the CLC Sequence Viewer (CLC Bio, Aarhus, Denmark). identical residues are highlighted in blue.

Supplementary Figure 2: Supplementary expression of RAD52-FLAG in a rad51 mutant strain fails to stimulate frequencies of ectopic gene conversion

A.Western blot of strains containing plasmids that do, or do not facilitate expression of RAD52-FLAG

A haploid *rad51 RAD52-FLAG* strain was transformed with either pLAY606 (empty expression vector) or pLAY864 (expressing *RAD52-FLAG*). Aliquots of whole cell extracts were separated on gels, electroblotted, and probed with anti-FLAG or anti-GAPDH antibodies. Signals corresponding to the 55 kDa Rad52-FLAG and 37 kDa GAPDH proteins are denoted on the right side of the figure. Lanes: 1 – ABT875 (*rad51 RAD52-FLAG*/pLAY606); 2 – ABT876 (*rad51 RAD52-FLAG*/pLAY864)

B. <u>EGC assays with strains containing plasmids that do, or do not facilitate expression of</u> <u>RAD52-FLAG</u>

Single colonies of each strain were used to inoculate at least 10 one milliliter SD-Ura Glycerol/Lactate cultures and grown overnight. After inducing HO endonuclease cells were plated onto YPD to determine viability and SD-His to select for recombinants. Frequencies of EGC were determined by dividing the number of recombinants by the number of cells plated. Mean recombination frequencies and 95% confidence levels were plotted. Fold differences below wild-type are indicated in the boxes. Strains used in this analysis: ABT875 (*rad51 RAD52-FLAG*/pLAY606); ABT876 (*rad51 RAD52-FLAG*/pLAY864)

P 1 2 3 4 5 6 7 8 9 10

Supplementary Figure 3: Detailed analysis of the *his3* ectopic gene conversion assay

<u>A. Graphic depiction of the *his3* ectopic gene conversion assay components</u> The *his3*- Δ 3'-*HOcs* substrate (white "*his3* Δ -3" box) at the *HIS3* locus on chromosome XV (dark gray double ended arrow) substitutes a 127 bp DNA fragment containing an HO cut site (black "HO" box) for 238 bp of the 3' end of the *HIS3* coding sequence and flanking DNA. The *his3*- Δ *Msc* I substrate (white "*his3*- Δ *Msc* I" box) at the LEU2 locus on chromosome III (light gray double ended arrow) is comprised of a 1.8 kb genomic clone containing the *HIS3* gene that has been disrupted by the insertion of a 10 bp *Not* I linker into the *Msc* I site in the coding sequence. Repair of an HO-catalyzed DSB at the *his3*- Δ *3'-HOcs* substrate by unidirectional transfer of information from the *his3*- Δ *Msc* I substrate (black arrow) creates an intact *HIS3* gene. The genomic sequence corresponding to the probe used to reveal the *his3* sequences in the genomic Southern blot is indicated by the solid black line above the white *his3* Δ -*3'* box. The positions of the *Ava* I restriction sites flanking the *his3* Δ -*3'* and *his3*- Δ *Msc* I substrates, and their distances from one another in kb are depicted.

B.Genomic Southern blot of parental and recombinant strains Genomic DNA prepared from

a His⁻ parental strain, and 10 independent His⁺ recombinants was digested with Ava I

restriction endonuclease, run on an agarose gel, electroblotted to nylon, probed with a [¬]Plabeled *HIS3* sequence, and complementary sequences visualized by exposure to X-ray film. Lanes carrying DNA from His[¬] parental (P) and His[¬] recombinant (1-10) strains are

TIM. Lanes carrying DNA from His parental (P) and His recombinant (1-10) strains are marked at the top of the figure. Positions of the 1.4 and 0.4 kb *his3-\Delta3'* substrate bands, 3.0 and 0.4 kb *his3-\DeltaMsc* I bands, and 1.5 and 0.4 *HIS3* recombinant product bands are denoted on the left side of the figure.

Supplementary Figure 4: Yeast two-hybrid studies of interactions between Rad51, and Rad52 or HsRAD52

The yeast strain Y187 was transformed with the plasmids pGBT9 and pGAD424, or their derivatives containing *RAD51*, *RAD52*, or *HsRAD52* sequences and grown on synthetic complete medium lacking leucine and tryptophan from which whole cell extracts prepared. β -galactosidase specific activities, in Miller units were determined in the extracts of a minimum of 10 independent cultures of each transformant. Mean specific activities and 95% confidence are plotted.

Supplementary Figure 5: Co-immunoprecipitation analysis of intermolecular interactions between Rad51, Rad52 and HsRAD52

Whole cell extracts were prepared from haploid yeast strains with or without chromosomal copies of *RAD52-FLAG*, or *adh1::HsRAD52-FLAG*, and with or without plasmid-borne copies of *RAD51-MYC*, *RAD52-MYC*, or *adh1::HsRAD52-FLAG*. Aliquots of extracts were exposed to anti-FLAG antibody, and the immunoprecipitated proteins separated on gels, electroblotted, and probed with anti-MYC antibody. Aliquots of extract 10% of the volume submitted to immunoprecipitation were run directly on gels, electroblotted, and probed with anti-MYC, anti-FLAG or anti-GAPDH antibodies. Proteins were visualized by treating blots with HRP-conjugated secondary antibodies and chemiluminescent detection reagents, and exposure to X-ray film.

A. Yeast Rad52 protein can interact with yeast Rad51 protein but human RAD52 protein cannot Presence of genomic copies of the *RAD52-FLAG* or *HsRAD52-FLAG* fusion genes, and/or a plasmid copy of *RAD51-MYC* in the yeast strains used to make the whole cell extracts are denoted with a (+) at the top of the figure. The top panel depicts proteins immunoprecipitated (IP) by anti-FLAG antibody and immunoblotted (IB) with anti-MYC antibody. The bottom three panels depict the proteins in 10% INPUT. Signals corresponding to the 55 kDa Rad52-FLAG, 49 kDa HsRAD52-FLAG, 44 kDa Rad51-MYC, and 37 kDa GAPDH proteins are denoted on the right side of the figure.

B. <u>Both the yeast Rad52 and human RAD52 proteins self-interact</u> Presence of genomic copies of the *RAD52-FLAG* or *HsRAD52-FLAG* fusion genes, and/or plasmid copies of *RAD52-MYC* or *HsRAD52-MYC* in the yeast strains used to make the whole cell extracts are denoted with a (+) at the top of the figure. The top panel depicts proteins immunoprecipitated (IP) by anti-FLAG antibody and immunoblotted (IB) with anti-MYC antibody. The bottom three panels depict the proteins in 10% INPUT. Signals corresponding to the 55 kDa Rad52-FLAG, 49 kDa HsRAD52-FLAG, 53 kDa Rad52-MYC, 47 kDa HsRAD52-MYC, and 37 kDa GAPDH proteins are denoted on the right side of the figure.