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XPS data on the tribo-films  formation.

Figure 1 shows general photoelectron spectra from the worn area on the rake surface of the tool

with mono- and multilayer TiAlCrSiYN-based coatings after length of cut 15 m (running-in stage of

wear). By comparing these spectra, it is clear that the phase composition of the wear products differ

significantly for the mono- and multilayered coatings. The amount of titanium oxide is significantly lower

on the worn surface of the multilayer coating. In contrast, the amount of silicon and aluminum content in

tribo-ceramics is much higher.

There are two lines of silicon and aluminum at different kinetic energies in these spectra. This

gives us a unique opportunity to determine the thickness of the tribo-oxide film. Tribo-oxides, which form

on the surface of worn tools, have complex phase and chemical composition. The dynamically re-

generating films of simple and complex meta-stable tribo-oxides and spots of un-oxidized initial nitride

phase are appearing on the worn surface. Under these conditions, the precise measurement of film

thickness using the Electron Spectroscopy for Chemical Analysis (ESCA) method is difficult [1].

However, it is possible to make an estimate by measuring the divergence from the standard ratio of

intensities of the photoelectron lines for corresponding mean free passes. A line of silicon and aluminum

2s and 2p appears on the photoelectron spectrum of the wear surface of the multilayer coating after

cutting length of 15 m (Figure 1, a). Standard line intensity ratio of silicon (ISi2s/ISi2p) = 0.988. The



mean free pass for these lines is 30.75 and 31.70 A, respectively. Standard line intensity ratio of

aluminum (IAl2s/IAl2p) = 1.188, experimental - 1.15. The mean free pass for these lines is 27.33 and

28.05 A, respectively. This means the thickness of the oxide film is somewhat less than 27.33-28.05 A.

The experimentally obtained value of the ratio of silicon (ISi2s/ISi2p) = 0.383, which is almost three

times lower than the standard photo-ionization cross sections corresponding to the thickness of the oxide

film of the order of 18.8 A. We can attribute this thickness to the mullite tribo-ceramic films because XPS

indicates strong Al-Si bonds typical for this tribo-ceramic. Low intensity of the silicon Si2s does not

permit calculating the (ISi2s/ISi2p) ratio reliably for a cutting length of 30 m. For this reason, more

intensive aluminum lines could be used to determine the thickness of the tribo-oxide film. The ratio of

intensities of the lines (Al2s/Al2p) = 0.988  is less than 1.19 times the theoretical value (1.18). This leads

to the conclusion that reduction in the intensity of low-energy line Al2s can take place if the oxide film

thickness is of the order of 27.33 A. In both cases, the tribo-oxide films have a very small, atomic-scale

thickness, which increases with cutting time (Figure 3 in the main text).

Figures 2-4 present detailed data on the phase composition of the worn surface of cutting tools

with monolayer and multilayer coatings. Figures 2, a-b  show the components of photoelectron lines

Al2s, corresponding to the different types of chemical bonds of aluminum in simple and complex oxide

films and nitride coatings. Previously, such meta-stable phases have been observed on the worn surface of

the coated ball nose end mills within post-running stage of wear [2]. Chemical shifts of the Al2s

component regulate the phase composition of aluminum-based compounds on the worn surface. Al-Si-O

bonds generate in the composite oxide with the mullite –structure. Al-O bonds are typical of the Al2O3

composite and Al-N bonds correspond to the spots of the initial nitride coating, which have not been

oxidized during cutting. Figure 2, c exhibits the difference in the tribo-chemical behavior of the

multilayer and mono-layer coatings. For the multilayer coating, the content of mullite tribo-phase on the

surface is increased while the amount of sapphire-like oxide and initial nitride is significantly lower

compared to the monolayer. It can be seen by analyzing the chemical shift in O1s line (Figures 3, a-b) that



the products of wear in the multilayer coating contain only mullite, sapphire and chromium tribo-oxides.

In contrast titanium oxide is detected on the worn surface of the monolayer coating.

Figure 4 shows the photoelectron spectra Si2s and Y3d3 / 2 from the worn surface of the

multilayer (a, b) and monolayer (c) coatings. Formation of Y oxides is detected. Small amount of

stoichiometric Y2O3 oxide and non-equilibrium Y 1-x O x oxide are detected on the worn surface. With

wear of the multilayer coating the amount of stoichiometric Y2O3 oxide grows vs.  the non-equilibrium

oxide. Reverse pattern is observed for the monolayer coating. The contents of these oxides are less than a

fracture of at %.  However we have to note Y2O3 has many beneficial properties, especially in conjunction

with alumina, including: high chemical and thermodynamic stability; low thermal conductivity [3-5] as

well  as high temperature lubrication properties [6].

Fine structure analysis of photoelectron Si2s line shown in Figure 4 indicates the mullite tribo-

films formation on the worn surface. Phase analysis  of the tribo-films formed during the running-in stage

(after length of cut of 15 m) is summarized in Figure 3 in the main text.
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Figure captions:

Figure 1 SI: General photoelectron spectra of worn surface of the multilayer

TiAlCrSiYN/TiAlCrN – (a) and monolayer TiAlCrSiYN (b) coatings after length of cut of 15 m.

Figure 2 SI: Al2s photoelectron spectra of the worn surface of multilayer TiAlCrSiYN/TiAlCrN –

(a) and monolayer TiAlCrSiYN (b) coatings within running-in stage of wear (after length of cut of 15 m);

(c) – Differential (с)= (a)-(b) photoelectron spectrum.

Figure 3 SI: O1s photoelectron spectra of the worn surface of the multilayer

TiAlCrSiYN/TiAlCrN – (a) and monolayer TiAlCrSiYN (b) coatings within running-in stage of wear

(after length of cut of 15 m).

Figure 4 SI: Y3d and Si2s photoelectron spectra of worn surface of multilayer

TiAlCrSiYN/TiAlCrN – (a, b) and monolayer TiAlCrSiYN (c) coatings within running-in stage of wear

(after length of cut of 15 m).
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