Stem Cell Reports, Volume 8

# **Supplemental Information**

# Lineage Specification from Prostate Progenitor Cells Requires Gata3-

## **Dependent Mitotic Spindle Orientation**

Maxwell E.R. Shafer, Alana H.T. Nguyen, Mathieu Tremblay, Sophie Viala, Mélanie Béland, Nicholas R. Bertos, Morag Park, and Maxime Bouchard

**Supplemental Information** 

**Supplemental Figures** 



**Figure S1. Lineage tracing constructs and enrichment of prostate basal cells by FACs.** A)  $Nkx3-I^{Cre}$  was used to activate the  $Rosa26^{tdTomato}$  lineage tracing reporter construct. B) *Gata3* loci used in the study, including a floxed exon 4 which was removed by  $Nkx3-I^{Cre}$ , and an Ires GFP between exons 4 and 5 of *Gata3. Gata3<sup>4</sup>* alleles were used to generate germ-line deletion mice. C) Representative fluorescent-activated cell sorting (FACS) plot of lineage negative (CD31-, Ter119-, Cd45-) cells from 2 week old prostate tissue showing stromal, epithelial and basal enriched cell populations based on CD24 and CD49f expression levels. D) Expression levels of CK5 in populations identified in C as measured by FACS. E) qRT-PCR of basal and luminal markers in FACS sorted populations. Error bars represent standard deviation from 3 technical replicates. FACS plots are representative of experiments from 3 individual prostates. See also Figure 1.



Figure S2. *Gata3*-deficient prostate branching defects are persistent in sexually mature mice. A) Ductal architecture of anterior, dorsal-lateral and ventral lobes from control and  $Nkx3-1^{Cre}$ ;  $Gata3^{flox/flox}$  prostates at 6 weeks old. Scale bar equals 1mm. See also Figure 2.



Figure S3. *Gata3* controls interphase centrosome localization in prostate progenitor cells. A) Localization of centrosomes (arrows) in control and  $Nkx3-1^{Cre}$ ; *Gata3*<sup>flox/flox</sup> double positive progenitor cells by  $\gamma$ -tubulin immunofluorescence. Scale bars equal 5µm. B) Quantification of centrosome location relative to the centre of each cell in control and  $Nkx3-1^{Cre}$ ; *Gata3*<sup>flox/flox</sup> progenitor cells. Location of each centrosome was represented as a percentage of the cell height or width. C) Size and shape of prostate progenitor cells in absence or presence of *Gata3*. Quantification is from 3 control and 3  $Nkx3-1^{Cre}$ ; *Gata3*<sup>flox/flox</sup> prostates. See also Figure 4.



Prostate

Seminal Vesicle

**Figure S4. Germline deletion of** *Gata3* affects prostate and seminal vesicle tissue. A) Urogenital tissue from drug rescued germline *Gata3* knockout and control embryos were grown under the kidney capsule of immunodeficient mice for 14 days. Scale bars are equal to 1mm. Presence of prostate (B) and seminal vesicle (C) after growth under the kidney capsule as detected by Nkx3-1 immunofluorescence staining and epithelial histology. Scale bars are equal to 50µm. D) Expression and localization of Pard3, Pard6b and aPKCz/i in drug rescued prostate tissue of germline *Gata3* knockout embryos grown under the kidney capsule. E) Expression and localization of Pard3, Pard6b and aPKCz in drug rescued germline *Gata3* knockout grafted seminal vesicle tissue. Scale bars are equal to 10 µm. See also Figure 3. Arrows indicate the apical membrane.



**Figure S5. Transcriptional consequences of Gata3 deficiency.** Microarray analysis was performed on epithelial cells obtained by laser capture micro dissection from 3 control and 3  $Nkx3-I^{Cre}$ ;  $Gata3^{flox/flox}$  prostates. A) Volcano plot of transcripts differentially expressed between control and  $Nkx3-I^{Cre}$ ;  $Gata3^{flox/flox}$  prostate tissue. Colours represent transcripts which are log2(Fold Change)>3 (orange) or p-value<0.001 (red) or both (green, text labels). Labelled transcripts are also listed in Supplemental Table 1. B) Analysis of the differentially expressed transcripts for GO term enrichment using functional categories. Analysis was done using the most recent release of DAVID.



Figure S6. Mis-localization of aPKC causes epithelial defects in Caco-2 cysts. A) Effect of ATM on lumen formation in epithelial cysts by light microscopy and immunofluorescence using phalloidin and DAPI staining. Scale bars equal 100 $\mu$ m for bright field and 5 $\mu$ m for IHC. B) Quantification of normal or multi-lumen cysts after treatment with ATM. Error bars represent standard deviation of 3 independently treated samples of Caco-2 cysts. C) Measurement of spindle orientation in control and ATM-treated Caco-2 epithelial cysts. Spindle orientation was measured relative to the basal side of the cyst using DAPI and phalloidin staining. Scale bars are equal to 5 $\mu$ m. N represent the number of cell divisions measured. See also Figure 4.

| Prohe name    | GeneSymbol    | log2(Fold change) | P-value     |
|---------------|---------------|-------------------|-------------|
| A 55 P2078153 | Shn           | 6 535852          | 1 91F-05    |
| A 51 P365516  | Spink1        | 5 525317          | 9.58E-05    |
| A 52 P294663  | Shn           | 5 479108          | 0 000134287 |
| A 55 P1998471 | S100a9        | 4 746343          | 0.000604859 |
| A 55 P2054261 | C2cd4b        | 4 686068          | 8 36E-05    |
| A 51 P505521  | Hist1h4i      | 4.449953          | 3.06E-05    |
| A 55 P2039699 | Camp          | 4.430271          | 8.13E-05    |
| A 55 P1952618 | Ear2          | 4.13247           | 4.19E-05    |
| A 55 P2185832 | Slco1c1       | 4.025487          | 0.000177908 |
| A 55 P2428514 | Retn          | 3.960925          | 0.000922969 |
| A 51 P188281  | Myf5          | 3.960323          | 0.000751629 |
| A 55 P2045642 | Stmn4         | 3.855307          | 0.000973621 |
| A 55 P2164659 | Tlx2          | 3.814866          | 6.87E-05    |
| A 55 P2058201 | Scgb2b20      | 3.780043          | 0.000136517 |
| A 55 P2112459 | Cldn22        | 3.758181          | 0.000215143 |
| A 55 P2040653 | Gm10824       | 3.73503           | 9.36E-05    |
| A 51 P188281  | Myf5          | 3.649437          | 0.000603499 |
| A 51 P257951  | Retnla        | 3.594639          | 9.14E-05    |
| A 55 P1984103 | Gfra3         | 3.592741          | 0.000359646 |
| A 55 P2062078 | Gm7714        | 3.553273          | 0.000504486 |
| A 55 P2350665 | 5033404E19Rik | 3.547267          | 0.000703888 |
| A 55 P2007851 | Micu3         | 3.487156          | 0.000849639 |
| A_55_P2158102 | Camp          | 3.392757          | 0.00018712  |
| A_51_P127320  | Cabs1         | 3.318             | 0.000867584 |
| A_55_P2098067 | Etos1         | -3.151594         | 0.000252018 |
| A_55_P1965574 | BC048546      | -3.169077         | 0.000165391 |
| A_52_P638459  | Ccl5          | -3.174343         | 0.000493041 |
| A_55_P2038217 | Atp13a4       | -3.174746         | 0.00043225  |
| A_51_P445320  | Tas2r116      | -3.232771         | 0.000221261 |
| A_55_P2015687 | Phf11d        | -3.263846         | 0.000571518 |
| A_55_P2132982 | Zfp987        | -3.376576         | 0.000677995 |
| A_55_P2421067 | B630006N21Rik | -3.394777         | 0.000131393 |
| A_55_P1972169 | Vmn1r61       | -3.593272         | 0.000450544 |
| A_55_P1953341 | Wfdc2         | -3.59373          | 9.66E-05    |
| A_55_P2033947 | Fnd3c2        | -3.691144         | 0.000452706 |
| A_66_P130759  | 4631405J19Rik | -3.850394         | 0.000247762 |
| A_51_P110341  | Scgb3a1       | -3.890031         | 0.000299347 |
| A_51_P438853  | Serpinb11     | -4.35963          | 0.000109572 |
| A_51_P269404  | Fmo3          | -4.664987         | 2.15E-05    |
| A 51 P136521  | Lypd2         | -7.07352          | 5.04E-05    |

**Supplemental Table 1.** Top regulated genes by microarray analysis of *Gata3* deficient epithelium ((log<sub>2</sub>(fold change))>3, p-value < 0.001).

| Gene               | Usage      | Forward Primer              | Reverse Primer            |
|--------------------|------------|-----------------------------|---------------------------|
| $Gata3 + f/\Delta$ | Genotyping | GTCAGGGCACTAAGGGTTGTT       | TGGTAGAGTCCGCAGGCATTG     |
|                    |            | TATCAGCGGTTCATCTACAGC       |                           |
| Nkx3-1 Cre/+       | Genotyping | GCG CGG TCT GGC AGT AAA AAC | CAG ATG GCG CGG CAA CAC C |
| <i>R26 LacZ/</i> + | Genotyping | ATACTGTCGTCGTCCCCTCAAACTG   | TTCAACCACCGCACGATAGAGATT  |
| Gata3 (exon 4)     | qRT-PCR    | TTATCAAGCCCAAGCGAAG         | TGGTGGTGGTCTGACAGTTC      |
| p63 (Tpr63)        | qRT-PCR    | TCGATGTGTCCTTCCAGCAGTCAA    | TGTAGACAGGCATGGCACGGATAA  |
| CK5 (Krt5)         | qRT-PCR    | GAGATCGCCACCTACAGGAA        | TCCTCCGTAGCCAGAAGAGA      |
| CK14 (Krt14)       | qRT-PCR    | CCTCTGGCTCTCAGTCATCC        | CCTCTGGCTCTCAGTCATCC      |
| CK18 (Krt18)       | qRT-PCR    | CGAGGCACTCAAGGAAGAAC        | AATCTGGGCTTCCAGACCTT      |

## Supplemental Table 2. Primers used in this study

## Supplemental Table 3. Antibodies used in this study

| Antibody                | Source                | Dilution |
|-------------------------|-----------------------|----------|
| CK5 (Chicken)           | Covance, SIG-3475     | 1:200    |
| CK8 & CK18 (Guinea Pig) | Fitzgerald, 20R-CP004 | 1:200    |
| Gata3 (Rabbit)          | Santa Cruz, sc-9009   | 1:50     |
| E-cadherin (Mouse)      | BD Biosciences        | 1:200    |
| ZO-1 (Rat)              | Chemicon              | 1:200    |
| Phospho-H3 (Rabbit)     | Millipore, 06-570     | 1:100    |
| γ-tubulin (Goat)        | Santa Cruz, sc-7396   | 1:100    |
| Pard3 (Rabbit)          | Millipore, 07-330     | 1:100    |
| Pard6b (Rabbit)         | Santa Cruz, sc-67393  | 1:50     |
| aPKCz/i (Rabbit)        | Santa Cruz, SC-216    | 1:50     |
| Nkx3-1 (Rabbit)         | Santa Cruz, sc-25406  | 1:50     |
| Phalloidin              | Life Technologies     | 1:500    |

# Supplemental Table 4. Spindle orientation chi-squared test results

| Condition 1             | Condition 2                            | Chi-<br>squared p-<br>value | Level of significance | Figure |
|-------------------------|----------------------------------------|-----------------------------|-----------------------|--------|
| All Cells (Control)     | All Cells (Nkx3-1Cre;Gata3f/f)         | < 0.001                     | ****                  | 2E     |
| Basal Cells (Control)   | Basal Cells (Nkx3-1Cre;Gata3f/f)       | < 0.001                     | ****                  | 2E     |
| Luminal Cells (Control) | Luminal Cells (Nkx3-<br>1Cre;Gata3f/f) | < 0.001                     | ****                  | 2E     |
| Double Positive Cells   | Double Positive Cells (Nkx3-           | <0.001                      | ****                  | 26     |
| (Control)               | 1Cre;Gata3f/f)                         | <0.001                      |                       | ZE     |
| Caco2 (Control)         | Caco2 (ATM Treated)                    | < 0.001                     | ****                  | 4A     |
| All Cells (Control)     | All Cells (ATM Treated)                | < 0.001                     | ****                  | 4C     |
| Basal Cells (Control)   | Basal Cells (ATM Treated)              | 0.0278                      | *                     | 4C     |
| Luminal Cells (Control) | Luminal Cells (ATM Treated)            | < 0.001                     | ****                  | 4C     |
| Double Positive Cells   | Double Positive Cells (ATM             | 0.2469                      | na                    | 4C     |
| (Control)               | Treated)                               | 0.2408                      | 115                   |        |

### **Supplemental Materials and Methods**

### Drug rescue and kidney capsule implantation

To generate germline *Gata3* mutant urogenital tissue,  $Gata3^{-/-}$  embryos, which normally die around E11.5, were grown until E18.5 using a modified version of a drug rescue regimen (Kaufman et al., 2003; Lim et al., 2000). E5.5-E7.5, pregnant  $Gata3^{+/-}$  dams were given fresh water daily containing 100 µg/ml isoproterenol, 1 mg/ml DOPA and 2 mg/ml ascorbic acid in a light protected container (Sigma). E18.5 male urogenital systems (including the urethra, seminal vesicles and prostate) were then transferred under the kidney capsule of a male immunodeficient mouse with a sub-cutaneous testosterone plug for 14 days as previously described (Nicholson et al., 2013).

### Laser capture microdissection and microarray analysis

Prostate epithelial cells were isolated by laser capture micro-dissection of cryo-sectioned 2-week old prostates. Epithelial ducts were captured by infrared laser using an ArcturusXT Microdissection System (Applied Biosystems). RNA was extracted and subjected to two rounds of linear amplification before labeling and hybridization to Agilent microarray chips. Microarray chips were scanned on a Microarray Scanner Model G2505B (Agilent Technologies).

Microarray data were normalized, and differential expression was performed using the LIMMA package in FlexArray (Genome Quebec). The volcano plot was generated using R Studio and GO term enrichment was done using the most recent release of DAVID (6.8 Beta) (Huang da et al., 2009a, b).

#### Aurothiomalate administration in vitro

Caco-2 cells were grown in DMEM (10% FBS) (Gibco) with appropriate antibiotics. Cysts were produced by plating Caco-2 cells in matrigel (Corning) and grown for 7-10 days. For inhibition of the aPKC-Par6b interaction, aurothiomalate (ATM) was added to the media for the duration of cyst growth.

#### Image analysis

Proliferation/apoptosis, spindle orientation analysis, cell lineage quantification, basal cell centriole localization, and aPKC fluorescence intensity were all and analyzed using Fiji (ImageJ) software. Proliferation/apoptosis and cell lineage quantification was performed using the Cell Counter plugin from representative fields of view (Fiji). DAPI positive cells were first identified, then each was assigned as CK5+, CK8/18+ or double positive. Counts were standardized for the circumference of the each duct quantified. Centriole localization was performed by first straightening the prostate duct along the basal side using Fiji, followed by calculation of the size, position and shape of both the basal cells and their centrioles.

#### Statistical analysis

For differences in proliferation, apoptosis, number of cells per ductal boundary and centrosome location, statistical significance was determined by student's t-test. Statistical analysis of spindle orientation was determined by chi-squared analysis as previously described (Williams et al., 2014), by separating spindle orientations measurements into 3 bins; 0-20°, 20-70° or 70-90°. Statistical analyses were performed using Prism software (GraphPad).

### **Supplementary References**

Bhatia-Gaur, R., Donjacour, A.A., Sciavolino, P.J., Kim, M., Desai, N., Young, P., Norton, C.R., Gridley, T., Cardiff, R.D., Cunha, G.R., *et al.* (1999). Roles for Nkx3.1 in prostate development and cancer. Genes & development *13*, 966-977.

George, K.M., Leonard, M.W., Roth, M.E., Lieuw, K.H., Kioussis, D., Grosveld, F., and Engel, J.D. (1994). Embryonic expression and cloning of the murine GATA-3 gene. Development *120*, 2673-2686.

Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic acids research *37*, 1-13.

Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols *4*, 44-57.

Kaufman, C.K., Zhou, P., Pasolli, H.A., Rendl, M., Bolotin, D., Lim, K.C., Dai, X., Alegre, M.L., and Fuchs, E. (2003). GATA-3: an unexpected regulator of cell lineage determination in skin. Genes & development *17*, 2108-2122.

Lim, K.C., Lakshmanan, G., Crawford, S.E., Gu, Y., Grosveld, F., and Engel, J.D. (2000). Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nature genetics *25*, 209-212.

Nicholson, T.M., Uchtmann, K.S., Valdez, C.D., Theberge, A.B., Miralem, T., and Ricke, W.A. (2013). Renal capsule xenografting and subcutaneous pellet implantation for the evaluation of prostate carcinogenesis and benign prostatic hyperplasia. Journal of visualized experiments : JoVE.

Williams, S.E., Ratliff, L.A., Postiglione, M.P., Knoblich, J.A., and Fuchs, E. (2014). Par3-mInsc and Galphai3 cooperate to promote oriented epidermal cell divisions through LGN. Nature cell biology *16*, 758-769.