

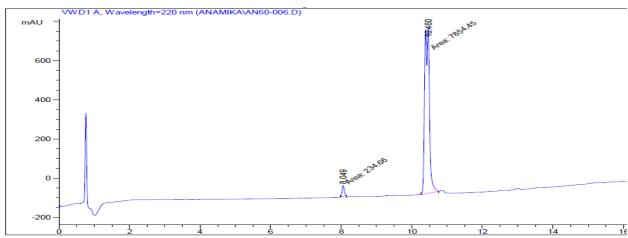
Supporting Information

© 2017 The Authors. Published by Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim

Tetrahydropyranyl: A Non-aromatic, Mild-Acid-Labile Group for Hydroxyl Protection in Solid-Phase Peptide Synthesis

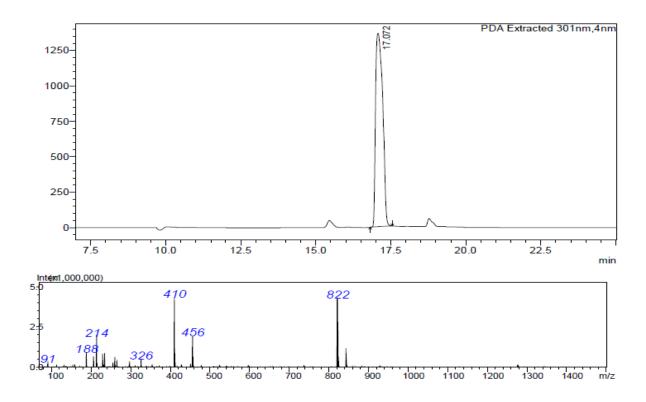
Anamika Sharma⁺,^[a] Iván Ramos-Tomillero⁺,^[b] Ayman El-Faham,^[c, d] Hortensia Rodríguez,^[e] Beatriz G. de la Torre,^[a, f] and Fernando Albericio^{*[a, b, c, g, h]}

open_201600157_sm_miscellaneous_information.pdf

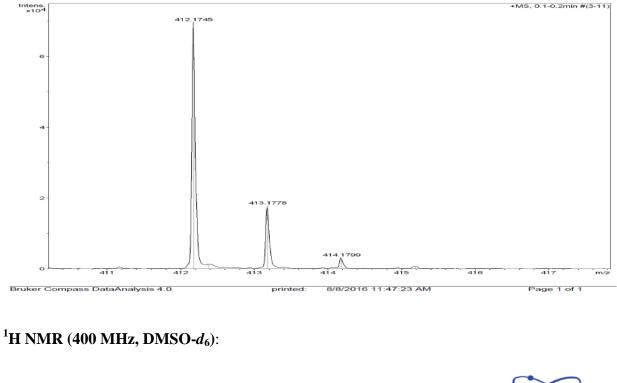

Supporting Information

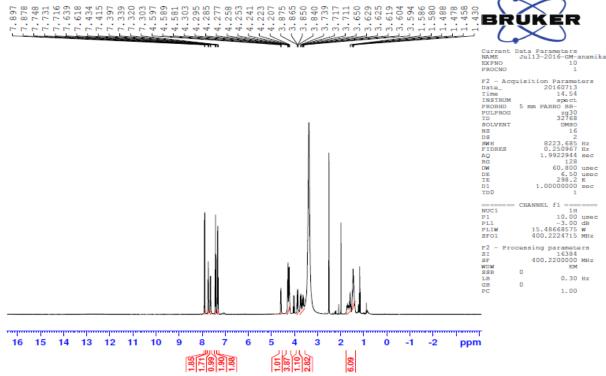
Materials

All reagents and solvents were obtained from commercial suppliers and were used without further purification unless otherwise stated. 2-CTC resin and Fmoc-amino acids were purchased from GL Biochem Pvt. Ltd., China. Ellman resin was purchased from Merck. NMR spectra (¹H NMR and ¹³C NMR) were recorded on a Bruker AVANCE III 400 MHz spectrometer. Chemical shift values are expressed in ppm. At short reaction times (2-5 min), the reactions were manually stirred with a Teflon stick, meanwhile for long reactions times (>30 min) the reactions were stirred on a Unimax 1010 shaker from Heidolph instruments. Solvents were removed from the reactor by vacuum suction. All the reactions were carried out at room temperature (~25 °C). Every reaction step was followed of washings of the peptide-resin with DMF (4×1 min) and DCM (4×1 min). Analytical HPLC was performed on an Agilent 1100 system using a Phenomex C₁₈ (3 µm, 4.6 x 50 mm) column. Buffer A: 0.1 % TFA in H₂O; buffer B: 0.1 % TFA in CH₃CN. LC–MS was performed on a Shimadzu 2020 UFLC-MS using an YMC-Triart C₁₈ (5 µm, 4.6 × 150 mm) column and data processing was carried out by LabSolution software. Buffer A: 0.1 % formic acid in H₂O; buffer B: 0.1 % formic acid in CH₃CN. High resolution mass spectrometry (HRMS) was performed using a Bruker ESI-QTOF mass spectrometer in positive mode.

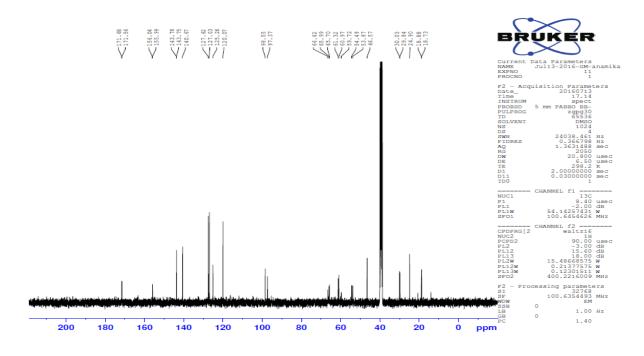

Spectroscopic Characterization

Fmoc-Ser(Thp)-OH: It was obtained as pure white solid (478 mg, 76 %).

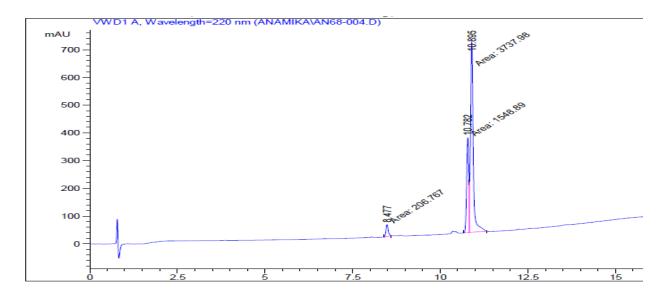


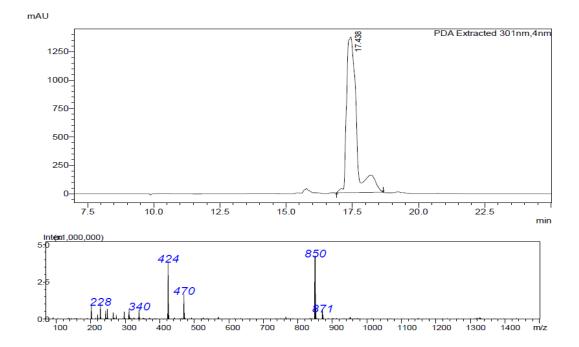

HPLC: (H₂O/MeCN 5:95) *t_R*: 10.4 min.

LCMS: m/z calculated for $C_{23}H_{25}NO_6 = 411.45$; found = 410 [M-H]⁺, being M the molecular weight of Fmoc-Ser(Thp)-OH.



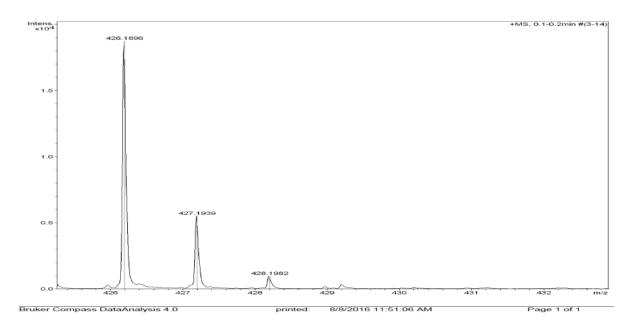
HRMS: Calculated for $C_{23}H_{26}NO_6$ [M+H] = 412.1760; found = 412.1745 [M+H]; where M is the molecular weight of Fmoc-Ser(Thp)-OH.

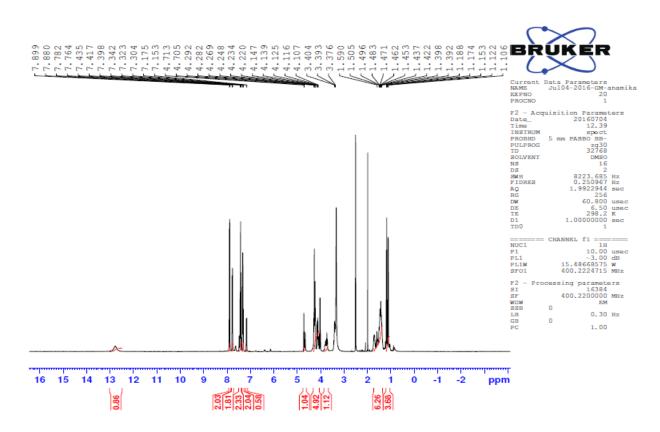

¹³C NMR(100 MHz, DMSO-*d*₆):



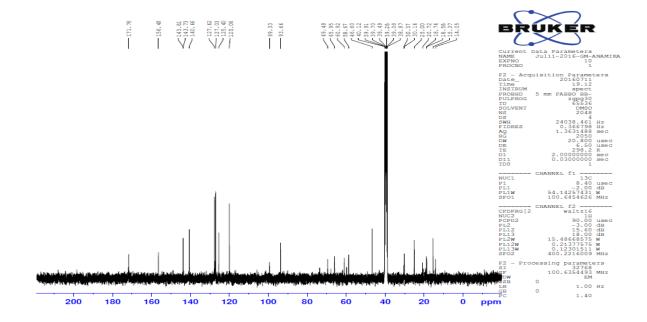
Spectroscopic Characterization

Fmoc-Thr(Thp)-OH: It was obtained as pure white solid (453 mg, 73 %).

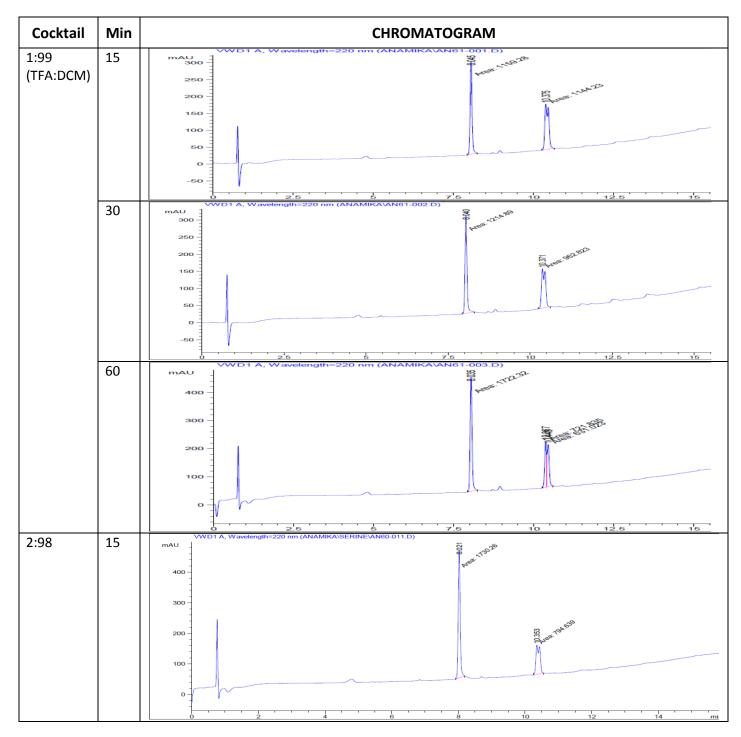

HPLC: (H₂O/MeCN 5:95) *t_R*: 10.8 min.

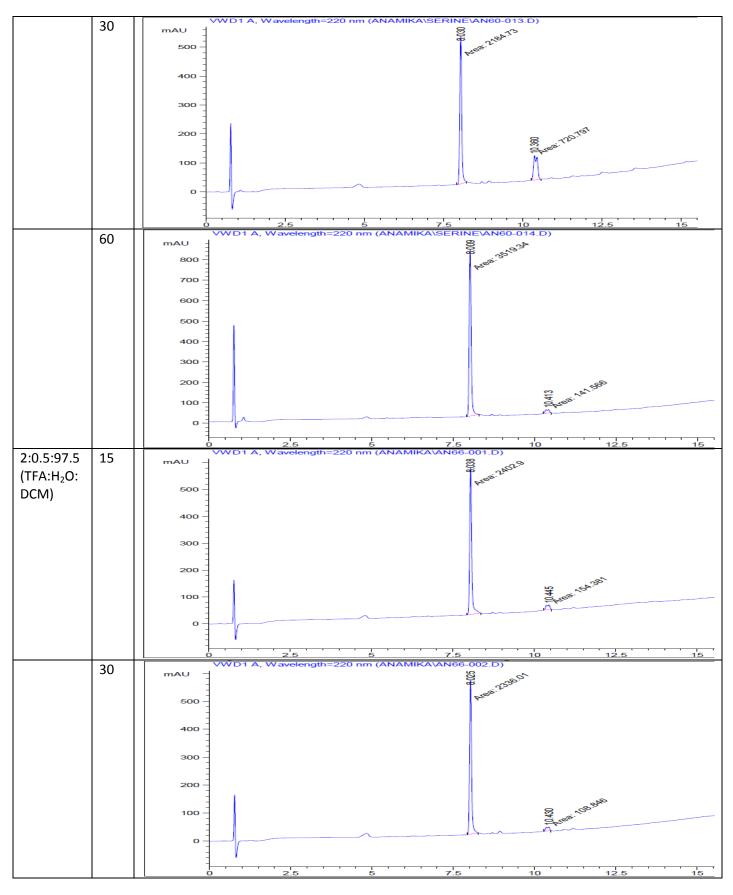


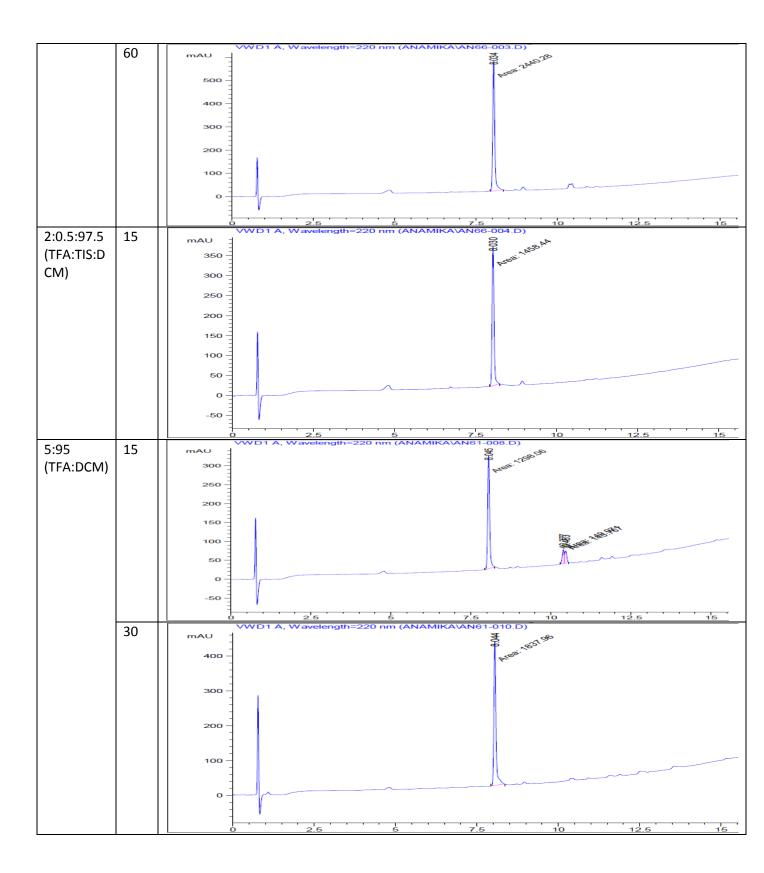
LCMS: m/z calculated for $C_{23}H_{25}NO_6 = 425.18$; found = 424 [M-H]⁺, being M the molecular weight of Fmoc-Thr(Thp)-OH.

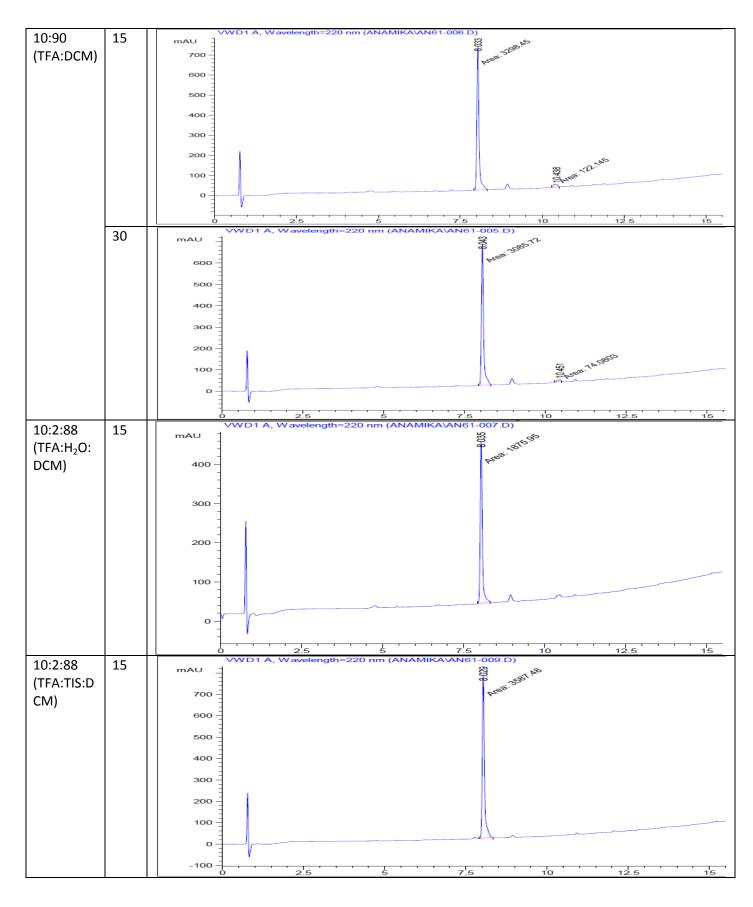

HRMS: Calculated for $C_{24}H_{28}NO_6$ [M+H] = 426.1917; found = 426.1896 [M+H], where M is the molecular weight of Fmoc-Thr(Thp)-OH.

¹H NMR (400 MHz, DMSO-*d*₆):

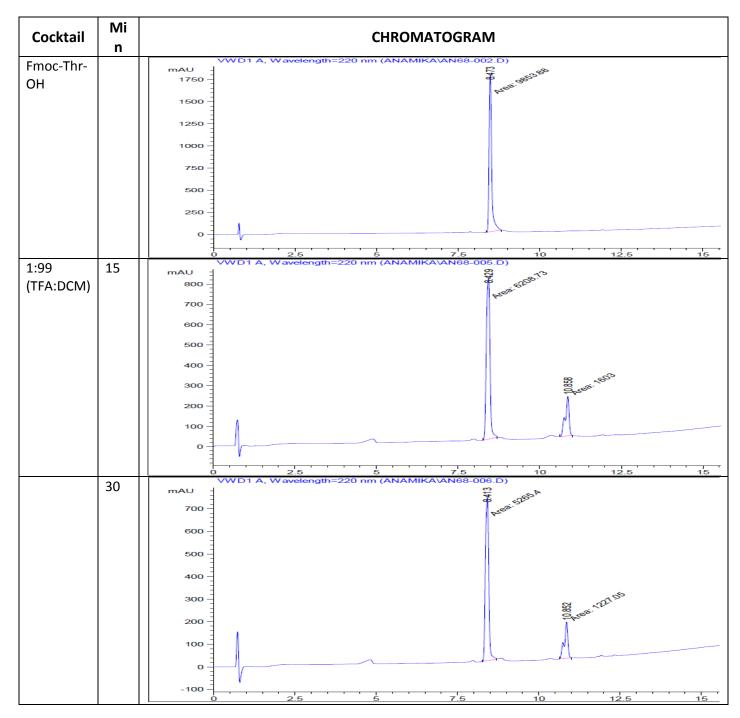


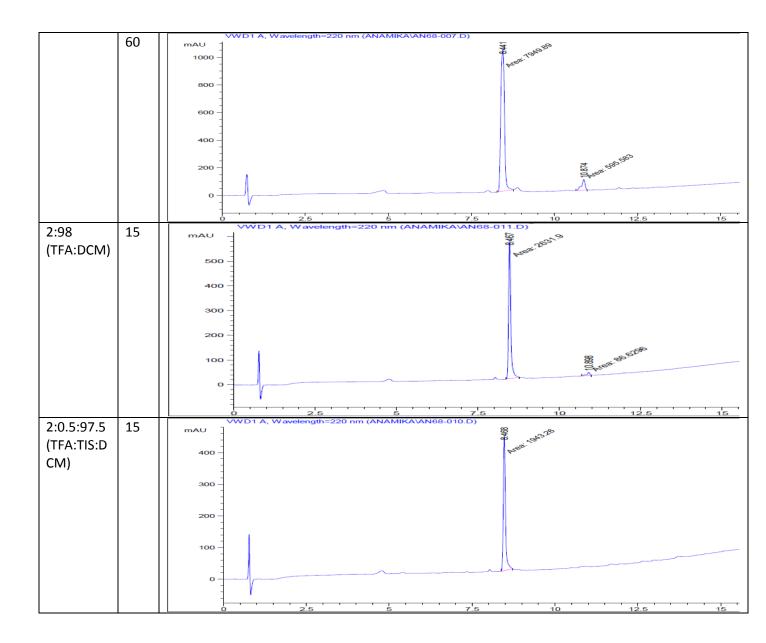

¹³C NMR(100 MHz, DMSO-*d*₆):



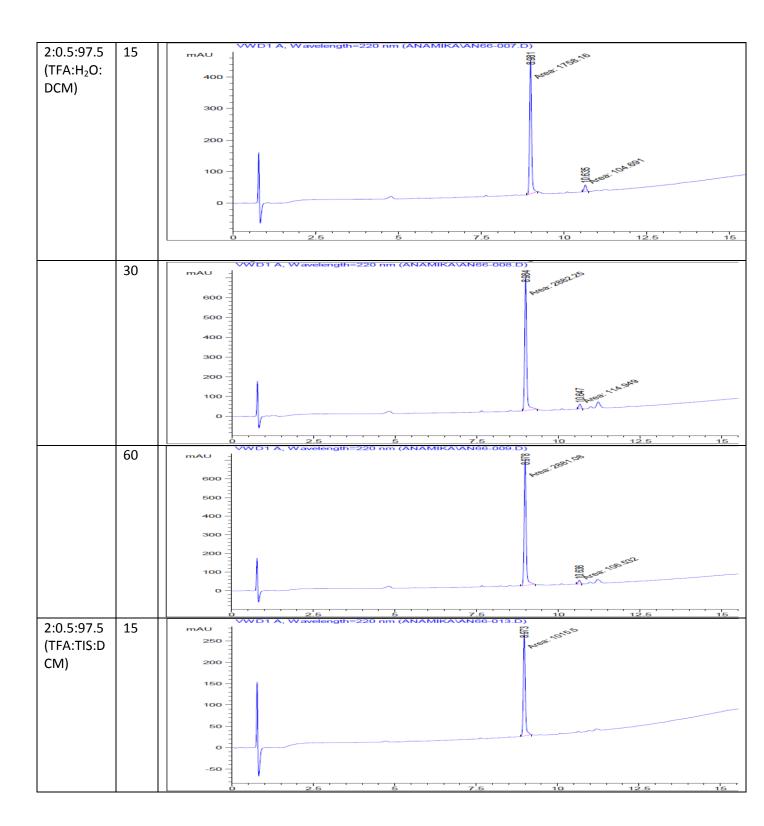

ACID LABILITY STUDIES OF Fmoc-Ser(Thp)-OH

- 1. 1 mg of compound was weighed in vial.
- 2. Added 200 μ L of cocktail.
- 3. After 15 min, 30 min and 60 min 20 μ L was taken, diluted with acetonitrile (400 μ L) and injected in HPLC (5:95 gradient).





ACID LABILITY STUDIES OF Fmoc-Thr(Thp)-OH


- 1. 1 mg of compound was weighed in vial.
- 2. Added 200 μ L of cocktail.
- 3. After 15 min, 30 min and 60 min 20 μ L was taken, diluted with acetonitrile (400 μ L) and injected in HPLC (5:95 gradient).

Synthesis and acid lability studies of Fmoc-Ala-Ser(Thp)-Leu-OH

- CTC resin was used for synthesis of Fmoc-Ala-Ser(Thp)-Leu-OH using DIPCDI/Oxyma Pure as coupling reagent.
- 2. Peptide was used to study acid lability studies.
- 3. 5 mg of resin was weighed in vial.
- 4. Added 500 μ L of cocktail.
- After 15 min, 30 min and 60 min 20 μL was taken, diluted with acetonitrile (400 μL) and injected in HPLC (5:95 gradient).

Synthesis and acid lability studies of Fmoc-Ala-Thr(Thp)-Leu-OH

- CTC rein was used for synthesis of Fmoc-Ala-Thr(Thp)-Leu-OH using DIPCDI/Oxyma Pure as coupling reagent.
- 2. Peptide was used to study acid lability studies.
- 3. 5 mg of resin was weighed in vial.
- 4. Added 500 μ L of cocktail.
- 5. After 15 min, 30 min and 60 min 20 μL was taken, diluted with acetonitrile (400 μL) and injected in HPLC (5:95 gradient).

	Min	CHROMATOGRAM
1:99	15	VWD1 A, Wavelength=220 nm (ANAMIKA\AN69-001.D)
(TFA:DCM)		WD1 A, Wavelength=220 nm (ANAMIKAVN69-001.D) mAU 350
, ,		300 -
		250 -
		150 - 100 - 100 -
		50
		-50 -
	30	O 2.5 5 7.5 10 12.5 15 VWD1 A, Wavelength=220 nm (ANAMIKAVAN69-003.D) 8 &
	50	mAU 500
		400 -
		300 -
		200- 100-
		• • • • • • • • • • • • • • • • • • •
	60	WD1 A, Wavelength=220 nm (ANAMIKA/AN69-004.D) mAU 500 - 500 - 500 -
		500
		400 -
		300 -
		200 -
2:98	15	VWD1 A, Wavelength=220 nm (ANAMIKA\AN69-002.D) 8 8 mAU 8 8
(TFA:DCM)	10	and the second se
		400 -
		300 -
		200 -
		100 -
		0
		0 2.5 5 7.5 10 12.5 15