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S1 

 

Cyclic Voltammetry in CH3CN. 

 

 

Figure S1. Cyclic voltammogram of 1 (blue), 3 (yellow), and 4 (red) recorded in CH3CN; 0.1 

M electrolyte [n-Bu4N][ClO4]; scan rate = 100 mVs
-1

; reference electrode: Ag/AgCl, counter 

electrode: Pt, and working electrode: Pt. 

 

  

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

-0.5 0 0.5 1

C
u

rr
e
n

t 
(1

0
-6

 A
) 

E/V (vs. Fc/Fc+) 

1

3

4



S2 

 

Photophysical properties and spectra. 

 

 

Figure S2. Photographs of solutions of 1−4 and 1+MB−4+MB. 

 

 

  

Figure S3. The absorption spectra of 4, 4 with 1−4 equivalents of MB, only MB and after 1 

day of 4 with 4 equivalents of MB in CH2Cl2, [4] = 1×10
-4

 M. 

Absorption of the addition of 4 equivalents of MB almost corresponds to that of MB. 
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Properties for electrochemical oxidation. 

 

 

Figure S4. Cyclic voltammograms of 1 recorded in CH2Cl2, [1] = 1×10
-4

 M, 0.1 M electrolyte 

[n-Bu4N][ClO4]; scan rate = 100 mVs
-1

; reference electrode: Ag/AgCl, counter electrode: Pt, 

and working electrode: Pt. 

 

 

 
Figure S5. The comparison of absorption spectra of thiazole 1 (blue), electrochemically 

oxidized 1 (yellow), and chemically oxidized 1 (red) in CH2Cl2, [solute] = 1×10
-4

 M. 
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S4 

 

DFT calculations 

All the calculations were carried out with the density functional theory (DFT) method as 

implemented in Gaussian 09 program package.
[1]

 Geometries were optimized at B3LYP 

level
[2]

 by using the 6-31+G(d) basis set and characterized as minima which have no 

imaginary frequency. Solvation effect from the CH2Cl2 solvent (Eps=8.930) was taken into 

account through the polarized continuum model (PCM).
[3]

 On the basis of the above 

optimized geometries, UV/Vis absorption spectra computed with time-dependent (TD) DFT 

method and g tensor along with the hyperfine coupling constants (HFCCs) were calculated at 

the same level of theory. The spin densities reported here were estimated using Mulliken 

population analysis.
[4]

 

 

 

 

 

Excitation energies and oscillator strengths: 

349 nm (364 nm in experiment), f=0.389, HOMO→SOMO: 97% 

 
 

 

 

Excitation energies and oscillator strengths: 

890 nm (900 nm in experiment), f=0.128, β-HOMO→β-SOMO: 97% 
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Figure S6. Frontier molecular orbitals for neutral compound of 1 at 

CAM-B3LYP/6-31+G(d)/PCM(CH2Cl2) level (up) and B3LYP/6-31+G(d)/PCM(CH2Cl2) 

level (middle), and radical cation of 1 (bottom) at B3LYP/6-31+G(d)/PCM(CH2Cl2) level.  
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Figure S7. Mulliken spin density maps and absorption spectra for radical cation of 4 at 

B3LYP/6-31+G(d) level charge+1/doublet (up) and charge+3/doublet (bottom), where 

positive (red) and negative (blue) spin densities. These images were generated with 

Chemcraft.  
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