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Methods for peptide synthesis 

 

Analytical reverse-phase HPLC was performed on a Hitachi D-7000 separations module 

equipped with a L-4500A photodiode array detector. Peptides were analyzed using a Vydac 

218TP54 Protein & Peptide C18 column (5 µm, 4.6 mm x 250 mm) at a flow rate of 1.5 mL min-

1 using a mobile phase of 99% water/1% acetonitrile containing 0.1% TFA (Solvent A) and 10% 

water/90% acetonitrile containing 0.07% TFA (Solvent B). Results were analyzed using Hitachi 

Model D-7000 Chromatography Data Station Software. Low-resolution mass spectra (LRMS) 

and reaction monitoring were recorded on an Agilent LCMS TOF mass spectrometer using 

electrospray ionization time-of-flight (ESI-TOF) reflectron experiments.  

 

Preparative reverse-phase HPLC was performed using a Hitachi system comprised of an L-7150 

pump and L-4000 programmable UV detector operating at a wavelength of 230 nm coupled to a 

Hitachi D-2500 Chromato-Integrator. Peptides were purified on a Thermo Scientific Bio-basic 

C18 10 µm preparative column operating at a flow rate of 12 mL min-1 using a mobile phase of 

99% water/1% acetonitrile containing 0.1% TFA (Solvent A) and 10% water/90% acetonitrile 

containing 0.07% TFA (Solvent B) and a linear gradient as specified. Peptides were isolated as 

white solids (unless otherwise noted) following lyophilization.  

 

Several peptide aldehydes were prepared using an Advanced ChemTech Apex 396 DCFWM 

automated peptide synthesizer. Reaction set-up, progress, and analysis were monitored by 

Aaptec Multiple Organic Synthesizer (Version 1.60.17T) software. An Innova 2000 portable 

platform shaker (operating at 145 rpm) was used for the general mixing and agitation of solid-

phase reactions. 

 

Materials  

Commercial materials were used as received unless otherwise noted. Amino acids and coupling 

reagents were obtained from Novabiochem or Combi-blocks. Rink amide resin (0.8 mmol/g) was 

purchased from Chempep. Solid-phase reaction vessels and pressure caps were purchased from 

Torviq. Reagents that were not commercially available were synthesized following literature 

procedures. 



 S8 

General Pictorial Supporting Information  

 
(Left) Solid-phase reaction vessels purchased from Torviq. (Right) PyAOP coupling reagent and 
commercially available resins (Chempep Rink amide resin and Novabiochem 2-chlorotrityl 
chloride resin). 
 

 
 

(Left) Orbital shaker for solid-phase peptide synthesis (SPPS). (Right) Adjustable pipettes (200 
µL and 20 µL) for reaction set-up. 
 

 

 

 

 

 



 S9 

Random Peptide Sequence Generator 

In an effort to preclude any bias toward preorganization in our selection of substrates, the 

Random Protein Sequence tool* was used to design indiscriminate residue sequences.     

URL: http://www.bioinformatics.org/sms2/random_protein.html 

 

 
(Top) Screen shot of the Random Protein Sequence website homepage. (Bottom) Example of the 

sequence generator at work (number of residues: 8, number of sequences: 50). 

 

 

*The Sequence Manipulation Suite © 2000, 2004 Paul Stothard 
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Solid-phase peptide synthesis 

General procedure 1. Rink amide resin (glycinal series) 

 
 

Preloading Rink amide resin – Coupling of Fmoc-Glu(All)-OH  

 

Rink amide resin (1.0 equiv., substitution = 0.8 mmol/g) was swollen in dry DCM for 30 min 

then washed with DCM (5 x 3 mL) and DMF (5 x 3 mL). A solution of the Fmoc-Glu(All)-OH 

(4.0 equiv.), PyAOP (4.0 equiv.) and N,N-diisopropylethylamine (DIEA, 8.0 equiv.) in DMF 

(final concentration 0.1 M) was added to the resin (1.0 equiv.) and agitated at room temperature. 

After 16 h, the resin was washed with DMF (5 x 3 mL), DCM (5 x 3 mL), and DMF (5 x 3 mL). 

A capping step was performed as described below and the resin-bound residue was submitted to 

iterative peptide assembly (Fmoc-SPPS). 

 

The loading efficiency was evaluated through treatment of the resin with 20% piperidine/DMF (3 

mL, 2 × 3 min) to deprotect the Fmoc group. The combined deprotection solutions were diluted 

to 10 mL with 20% piperidine/DMF. An aliquot of this mixture (50 µL) was diluted 200-fold 

with 20% piperidine/DMF and the UV absorbance of the piperidine-fulvene adduct was 

measured (λ = 301 nm, ε = 7800 M−1 cm−1) to quantify the amount of amino acid loaded onto the 

resin. The theoretical maximum for the reported yields of all isolated peptides are based on the 

numerical value obtained from the resin loading. 
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General iterative peptide assembly (Fmoc-SPPS) 

 

Peptides were elongated using iterative Fmoc-solid-phase peptide synthesis (Fmoc-SPPS), 

according to the following general protocols: 

 

Deprotection: The resin was treated with 20% piperidine/DMF (3 mL, 2 x 3 min) and washed 

with DMF (5 x 3 mL), DCM (5 x 3 mL) and DMF (5 x 3 mL). 

 

General amino acid coupling: A preactivated solution of protected amino acid (4 equiv.), PyBOP 

(4 equiv.), and N-methylmorpholine (NMM) (8 equiv.) in DMF (final concentration 0.1 M) was 

added to the resin. After 1 h, the resin was washed with DMF (5 x 3 mL), DCM (5 x 3 mL) and 

DMF (5 x 3 mL). 

 

Capping: Acetic anhydride/pyridine (1:9 v/v) was added to the resin (3 mL). After 3 min the 

resin was washed with DMF (5 x 3 mL), DCM (5 x 3 mL) and DMF (5 x 3 mL). 

 

On-resin deallylation 

A solution of Pd(PPh3)4 (0.88 equiv.) and PhSiH3 (40 equiv.) in dry DCM (final concentration of 

0.1 M with respect to resin) was added to the resin (1 equiv.). The resin was shaken for 1 h and 

the progress of the reaction checked by cleavage of a small portion of resin beads and LC-MS 

analysis. The procedure was repeated if necessary, and upon completion, the resin was washed 

with DCM (10 ︎x 3 mL) and DMF (10 x 3 mL). To remove residual Pd from the solid support, the 

resin-bound peptide was washed (2 x 15 min) with a solution of sodium dimethyldithiocarbamate 

hydrate (0.02 M in DMF). Following Pd removal, the resin was washed with DMF (5 x 3 mL) 

and DCM (5 x 3 mL).  

 

Aminoacetaldehyde dimethyl acetal coupling 

A solution of aminoacetaldehyde dimethyl acetal (10 equiv.), PyAOP (10 equiv.), and DIEA (20 

equiv.) in dry DMF (final concentration of 0.1 M with respect to resin) was added to the resin 

(1 equiv.). The resin was shaken for 3 h and the progress of the reaction checked by cleavage of a 

small portion of resin beads and LC-MS analysis. The procedure was repeated if necessary and, 
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upon completion, the resin was washed with DMF (10 ︎x 3 mL), DCM (10 x 3 mL), and DMF (10 

x 3 mL). 

 

Coupling conditions for Boc-Sec-OH (for the synthesis of selenopeptide dimers) 

A solution of Boc-Sec-OH dimer (2.0 eq.), HOAt (4.0 eq.) and DIC (4.0 eq.) in DMF (final 

concentration 0.1 M) was added to the resin (1.0 eq.) and shaken at rt. After 3 h, the resin was 

washed with DMF (5 x 3 mL), DCM (5 x 3 mL), and DMF (5 x 3 mL). 

 

Cleavage: A mixture of TFA and water (95:5 v/v) was added to the resin. After 2 h, the resin was 

washed with TFA (3 x 2 mL) and DCM (3 x 2 mL). Note: The scavenger triisopropylsilane (TIS) 

was excluded from the cleavage mixture to prevent unwanted reduction of the aldehyde.  

 

Work-up: The combined cleavage solution and TFA and DCM washes were concentrated under a 

stream of nitrogen. The residue was treated with cold Et2O to precipitate the crude peptide, 

which was subsequently dissolved in water/acetonitrile containing 0.1% TFA, filtered and 

purified by reverse-phase HPLC.  

 

General procedure 2. Rink TG resin (α-amino acid series) 

 
Preloading Rink TG resin – Coupling of Fmoc-AA-CHO  

 

Rink amide resin (1.0 equiv., substitution = 0.8 mmol/g) was swollen in dry DCM for 30 min 

then washed with DCM (5 x 3 mL) and DMF (5 x 3 mL). A solution of Fmoc-Gly-OH (4.0 
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equiv.), PyAOP (4.0 equiv.), and N-methylmorpholine (NMM) (8.0 equiv.) in DMF (final 

concentration of 0.1 M) was added and the resin agitated on an orbital shaker at rt for 2–3 h. The 

resin was washed with DMF (5 x 3 mL), DCM (5 x 3 mL), and DMF (5 x 3 mL) and capped 

with a solution of acetic anhydride/pyridine (1:9 v/v, 3 mL) for 10 min. The resin was washed 

with DMF (5 x 3 mL), DCM (5 x 3 mL), and DMF (5 x 3 mL), then treated with 20% 

piperidine/DMF (3 mL, 2 x 3 min) and washed with DMF (5 x 3 mL), DCM (5 x 3 mL), and 

DMF (5 x 3 mL) to effect Fmoc-deprotection. A preactivated solution of Fmoc-Thr-OH (4.0 

equiv.), PyBOP (4.0 equiv.) and N-methylmorpholine (NMM) (8 equiv.) in DMF (final 

concentration 0.1 M) was added to the resin. After 1 h, the resin was washed with DMF (5 x 3 

mL), DCM (5 x 3 mL) and DMF (5 x 3 mL). The Fmoc group was removed by treatment with 

20% piperidine/DMF (3 mL, 2 x 3 min) and washed with DMF (5 x 3 mL), DCM (5 x 3 mL) and 

DMF (5 x 3 mL). 

 

Note: The capping step was not performed following Fmoc-Thr-OH coupling to avoid potential 

acetylation of the free threonine hydroxyl side-chain.  

 

Fmoc-AA-CHO was prepared according to literature procedure.1 A solution of Fmoc-AA-CHO 

(4.0 equiv.) and DIEA (1% v/v with respect to MeOH) in MeOH (final concentration of 0.1 M 

with respect to the resin) was added to the resin and the resulting mixture was agitated at 60 °C 

for 5 h. The resin was then washed with MeOH (5 x 3 mL), DMF (5 x 3 mL), DCM (5 x 3 mL), 

and THF (5 x 3 mL). A solution of Boc2O (5.0 equiv.) and NMM (5.0 equiv.) in THF (final 

concentration of 0.1 M with respect to the resin) was added to the resin and agitated at 50 °C for 

5 h.  The resin was washed with THF (5 x 3 mL), DCM (5 x 3 mL), and DMF (5 x 3 mL). The 

loading efficiency was evaluated as described in general procedure 1. The resin-bound residue 

was submitted to iterative peptide assembly (Fmoc-SPPS), either manually (as described above) 

or through preparation on an automated peptide synthesizer.  

 

Automated Peptide Synthesis: Each of the required Fmoc-AA-OHs were added to labeled 50 mL 

centrifuge tubes. The amino acids were dissolved in a stock solution of 0.4 M OxymaPure® 

(Ethyl (hydroxyimino)cyanoacetate) in N-methylpyrrolidinone (NMP). A stock solution 1.2 M of 

N,N’-diisopropylcarbodiimide (DIC) in NMP was prepared for coupling reactions, which were 
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run at ca. 6.4 fold excess of amino acid relative to the resin-bound peptide. A separate stock 

solution of 30% pyrrolidine in NMP was prepared to effect Fmoc-deprotection. The dried resin 

was added to the instrument well plate (70 µmol per well), which was kept under a slow stream 

of N2 gas for the duration of the synthesis. The resin-bound peptide was then submitted to a 

reswelling period, followed by sequential deprotection–coupling reactions (ca. 2 hours per 

residue); progress was monitored by Aaptec Multiple Organic Synthesizer software. No capping 

steps were performed. On termination, the resin was transferred to a disposable PP reaction 

vessel, washed, and subjected to resin cleavage, as described below.   

 

Note: Throughout the text, general procedure 2a refers to manual elongation of the peptide 

amino aldehydes; general procedure 2b refers to automated elongation. 

 

Cleavage: A mixture of TFA/TIS/water (90:5:5 v/v/v) was added to the resin. After 2 h, the resin 

was washed with TFA (3 x 2 mL) and DCM (3 x 2 mL). Note: With Rink TG resin, reduction of 

the C-terminal aldehyde was not observed in the presence of the scavenger triisopropylsilane 

(TIS). 

 

Work-up: The combined cleavage solution and TFA and DCM washes were concentrated under a 

stream of nitrogen. The residue was treated with cold Et2O to precipitate the crude peptide, 

which was subsequently dissolved in water/acetonitrile containing 0.1% TFA, filtered and 

purified by reverse-phase HPLC.  

 

The theoretical maximum for the reported yields of all isolated peptides are based on the 

numerical value obtained from the resin loading. 

Notes on aldehyde synthesis: 

- Although a commercial NovaSyn TG resin is available, all described C-terminal 

aldehydes were constructed on a manually prepared Rink amide-based TG resin. 

Qualitative assessments indicate that the loading efficiency—and accordingly, isolated 

yields—are significantly higher with this resin linker, and no detrimental effect on 

peptide purity was observed, except where otherwise noted. Similarly, cost comparisons 

against the commercial variant reveal economic superiority.   
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- Oligomerization of the purified peptide aldehydes was observed on standing at reduced 

temperatures. As such, for ease of analysis, it is recommended that the aldehydes be used 

within one week of purification. Nonetheless, due to the reversible nature of the imine 

formation, oligomerized starting materials can, in principle, be employed (for a more 

detailed examination of this phenomenon, refer to the one-pot preparation of β-carboline 

30). 

- Epimerization of C-terminal aldehydes has been documented in the literature upon 

loading onto TG resin and during routine peptide purifications.2 In the majority of our 

synthetic amino aldehydes prepared on Rink TG resin, however, we did not observe 

epimerization upon analysis of the purified peptide aldehydes by analytical HPLC and 

NMR. One notable exception was in the preparation of peptide S12 (a model 

pentapeptide bearing a D-Leu aldehyde), in which we isolated small amounts of the C-

terminal epimer following purification. Interestingly, in the case of the natural product 

imines, which are thought to spontaneously self-assemble following reductive cleavage 

from the NRPS, there is likely a self-correcting mechanism (thermodynamic 

equilibration) that leads to the cyclization of a single C-terminal configuration. Such 

configurational equilibration in imine macrocyclization processes has previously been 

observed by Marahiel and coworkers.3, 4 

Macrocyclization Protocols 

General procedure 3. Strecker macrocyclization 

 

To a solution of purified peptide aldehyde in deionized water (final concentration of 1 mM) was 

added KCN (1.2 equiv.). The resulting solution was stirred at room temperature for 24–48 h 

(unless otherwise noted) until consumption of starting material, as monitored by LC-MS 

analysis. The reaction was purified by preparative reverse-phase HPLC (direct inject of crude 

reaction mixture; eluent as noted) to afford the peptide macrocycle following lyophilization.   

 

Notes on Strecker macrocyclizations: 

- Due to the standard scale of the described reactions, KCN was typically added as a stock 

solution.   
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- As with most macrocyclization protocols, high dilution conditions are used to prevent 

unwanted oligomerization. See p. S22 for a thorough concentration study of the related 

reductive amination reaction.  

- Competitive nucleophilic addition to the aldehyde, resulting in formation of the 

corresponding linear cyanohydrin, accounts for the majority of the mass balance. In some 

cases, the reversible addition of cyanide to the aldehyde allows for the gradual funneling 

of material to the thermodynamically more stable α-aminonitrile. This feature of the 

equilibrium cyclization process is advantageous in slow macrocyclization reactions. In 

methods that require preactivation (e.g. activated ester formation in traditional amide 

couplings), competitive hydrolysis generally limits the yield and efficiency of such 

macrocyclizations. 

- Care should be taken when handling the Strecker macrocyclization products in aqueous 

acidic media (e.g. HPLC buffers containing TFA), as gradual hydrolysis of the α-

aminonitrile to regenerate the linear amino aldehyde was observed in some cases. 

Strecker products should ideally be stored dry at –20 oC to ensure long-term stability. 

 

General Procedure 4. Reductive amination 

 

To a solution of purified peptide aldehyde (final concentration of 1 mM) in NaOAc/AcOH buffer 

(0.4 M, pH = 5.5, unless otherwise noted) was added NaBH3CN (10 equiv.). The resulting 

solution was stirred at room temperature for 8 – 24 h, until consumption of starting material, as 

monitored by LC-MS analysis. The reaction was purified by preparative reverse-phase HPLC 

(direct inject of crude reaction mixture; eluent as noted) to afford the peptide macrocycle 

following lyophilization.   

 

Notes on reductive amination: 

- Due to the standard scale of the described reactions, NaBH3CN was typically added as a 

stock solution.   

- Competitive reduction of the linear aldehyde is a common byproduct observed in the 

reductive amination reactions, particularly in peptides that are less predisposed to cyclize. 

The amount of aldehyde reduction was also found to be highly pH dependent. A brief 
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study on the effect of pH in the synthesis of Lys-containing macrocycle 22 indicated that 

lower pH resulted in greater aldehyde reduction (see p. S184 for details). However, in 

some substrates, reduction was more prevalent at elevated pH. As a general rule, 

moderately acidic conditions (pH = 5.0–5.5) allowed for efficient formation of the 

desired macrocycles while minimizing the amount of reduced aldehyde observed.  

 

General Procedure 5. Thiazolidine formation 

 

Tris(2-carboxyethyl)phosphine (TCEP, 10 equiv.) was dissolved in Na2HPO4 buffer (0.2 M, final 

pH = 7.0 – 7.5), and the solution was degassed under argon sparge for 10 minutes. The solution 

was added to purified peptide aldehyde (final concentration of 1 mM) and the resulting solution 

stirred at room temperature for 6–18 h, until consumption of starting material, as monitored by 

LC-MS analysis. The reaction was purified by preparative reverse-phase HPLC (direct inject of 

crude reaction mixture; eluent as noted) to afford the peptide macrocycle following 

lyophilization.  

 

Notes on thiazolidine formation:  

- In order to facilitate thiazolidine formation, the N-terminal Cys residue must be in reduced 

form. To unleash the reactive thiol from StBu disulfide-protected Cys residues (e.g. S23), the 

phosphine reductant TCEP is added to the reaction mixture. Upon addition, pungent tBuSH is 

immediately observed. 

 

General Procedure 6. Selenazolidine formation 

 

Tris(2-carboxyethyl)phosphine (TCEP, 10 equiv.) and sodium ascorbate (50 equiv.) were 

dissolved in Na2HPO4 buffer (0.2 M, final pH = 7.0 – 7.5), and the solution was degassed under 

argon sparge for 10 minutes. The solution was added to the purified peptide aldehyde (final 

concentration of 1 mM) and the resulting solution stirred at room temperature for 1–2 h, until 

consumption of starting material, as monitored by LC-MS analysis. The reaction was purified by 

preparative reverse-phase HPLC (direct inject of crude reaction mixture; eluent as noted) to 

afford the peptide macrocycle following lyophilization.  
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Notes on selenazolidine formation:  

- Selenopeptides exist in solution primarily as the corresponding diselenide dimers. In order to 

facilitate macrocyclization, the dimer must first be reduced in situ by treatment with TCEP. 

To prevent phosphine-mediated deselenization,5 sodium ascorbate is added to the reaction 

mixture.6, 7 

- The selenazolidine cyclization proceeds much more rapidly than the corresponding 

thiazolidine cyclization, and generally reaches completion after 1–2 h at rt. 

- The selenazolidine product is stable to HPLC purification. However, prolonged exposure to 

aqueous media may lead to hydrolysis of the selenazolidine to re-form the linear diselenide 

dimer. The peptide should be stored dry and in the freezer to ensure long-term stability. 
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Pictorial Supporting Information, Representative Procedures. 

Representative Procedure – Strecker Macrocyclization: 

The following pictoral guide is representative of the general techniques employed in each of the 

macrocyclization reactions described. Reactions are generally carried out in an open flask and in 

aqueous reaction media, as described in the general procedures. 

 

(Left) Purified peptide amino aldehyde following lyophilization into a 20 mL vial (Right) A 
solution of KCN in water (~1 mg/mL) and the peptide amino aldehyde starting material. 
 

 
(Left) The peptide is dissolved in water (1 mM final concentration) and the vial charged with a 
magnetic stir bar (Right) An appropriate amount of the solution of KCN in water (1.2 eq. with 
respect to the peptide) is drawn up into a pipette. 
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(Left) The KCN solution is added to the peptide. (Right) The reaction is stirred at room 
temperature and monitored by LC-MS. Upon completion, the reaction is purified immediately by 
preparative reverse-phase HPLC. 
 
Representative Procedure – Peptide Lyophilization: 

 

(Left) Following HPLC purification, clean fractions are combined, concentrated on a rotovap, 
and transferred to a 20 mL vial for lyophilization (Center) Pre-weighed vial containing 
combined HPLC fractions. (Right) The vial is flash-frozen in liquid nitrogen and placed in a 
freeze-drier vessel for lypohilization (24 – 48 h). 
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Probing Imine Macrocyclization 

 
TIC traces at various timepoints showing the treatment of peptide S2 with various additives. 
Formation of cyclic imine (B) is observed most prominently under basic conditions with MeOH 
as the solvent (entries 1–2). Surprisingly, condensation is also observed in aqueous media (D2O, 
entry 8). However, imine formation was not visible upon analysis of the same sample by 1H 
NMR. The acidic LC-MS eluent (0.1% formic acid) may be sufficient to catalyze the 
condensation following injection of the sample onto the column. 
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Concentration Screen  

 
To evaluate the effect of peptide concentration on macrocyclization yield, the reductive 

amination of peptide S1 was carried out in 0.4 M NaOAc buffer (pH = 5.7) at 1 mM, 2 mM, 5 

mM, 10 mM, and 25 mM concentration with respect to S1. The peptide (0.5 µmol scale) was 

dissolved in buffer and treated with NaBH3CN (10 equiv.). The reaction was stirred at rt for 16 h, 

diluted to a concentration of 0.5 mM with respect to the initial concentration of S1 and evaluated 

by analytical reverse-phase HPLC (5 to 100% B over 25 min, λ = 220 nm). To estimate reaction 

yield, the area of the product was integrated and compared to a standard curve derived from the 

integration  (λ = 220 nm) of stock samples of macrocycle 10 prepared at concentrations of 0.5 

mM, 0.25 mM, and 0.10 mM. 

Standard curve preparation: 
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Crude reaction traces: 

 
 

Crude analytical HPLC traces of the reductive amination of amino aldehyde S1 to form 

macrocycle 10 at various reaction concentrations (5 to 100% B over 25 min, λ = 220 nm). 
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Characterization Data for Peptide Aldehydes 

Peptide S1 

 
Amino aldehyde S1 was prepared on a 30 µmol scale on Rink amide resin using standard Fmoc-

SPPS. The aldehyde was incorporated according to general procedure 1. Following cleavage 

from the resin and ether precipitation, the crude peptide was purified by preparative reverse-

phase HPLC (15% B for 5 min, then 15% B to 50% B over 25 min) to afford peptide S1 (10.0 

mg, 46% yield based on the original resin loading) as a white solid following lyophilization. 

 
Purified peptide S1 (Rt = 8.7 min, 5 to 100% B over 25 min, λ = 230 nm). 

 
LRMS (ESI-TOF): calc’d for C34H52N9O9 [M+H]+ 730.39; found 730.52. 
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Peptide S2 

 
Amino aldehyde S2 was prepared on a 50 µmol scale on Rink amide resin using standard Fmoc-

SPPS. The aldehyde was incorporated according to general procedure 1. Following cleavage 

from the resin and ether precipitation, the crude peptide was purified by preparative reverse-

phase HPLC (5% B for 5 min, then 5% B to 35% B over 30 min) to afford peptide S2 (8.0 mg, 

22% yield based on the original resin loading) as a white solid following lyophilization. 

 
Purified peptide S2 (Rt = 8.7 min, 5 to 100% B over 25 min, λ = 230 nm). 

 
LRMS (ESI-TOF): calc’d for C33H50N9O9 [M+H]+ 716.37; found 716.44. 

HN
H
N

H
N

O

HNNH2

NH2

Ph

N
H

HN

O

N

OO
O

O

O
O

O

H
S2



 S27 

1H, D
2 O

, 600 M
Hz

HN
HN

HN
O

HN
NH

2

NH
2

Ph

NH
HN

O

NO
O

O

O

O
O

O

H

S2



 S28 

  

Peptide S3 

 
Amino aldehyde S3 was prepared on a 62 µmol scale on Rink amide resin using standard Fmoc-

SPPS. The aldehyde was incorporated according to general procedure 1. Following cleavage 

from the resin and ether precipitation, the crude peptide was purified by preparative reverse-

phase HPLC (5% B for 5 min, then 5% B to 40% B over 30 min) to afford peptide S3 (16.9 mg, 

35% yield based on the original resin loading) as a white solid following lyophilization. 

 
Purified peptide S3 (Rt = 8.8 min, 5 to 100% B over 25 min, λ = 230 nm). 

 
LRMS (ESI-TOF): calc’d for C26H41N9O7 [M+H]+ 788.39; found 788.39. 
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Peptide S4 

 
Amino aldehyde S4 was prepared on a 170 µmol scale on Rink amide resin using standard 

Fmoc-SPPS. The aldehyde was incorporated according to general procedure 1. Following 

cleavage from the resin and ether precipitation, the crude peptide was purified by preparative 

reverse-phase HPLC (5% B for 5 min, then 5% B to 40% B over 30 min) to afford peptide S4 

(30.7 mg, 31% yield based on the original resin loading) as a white solid following 

lyophilization. 

 
Purified peptide S4 (Rt = 7.0 min, 5 to 100% B over 25 min, λ = 230 nm).  

 
LRMS (ESI-TOF): calc’d for C26H41N9O7 [M+H]+ 583.32; found 583.32. 
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Peptide S5 

 
Amino aldehyde S5 was prepared on a 70 µmol scale according to general procedure 2b. Fmoc-

Gly-CHO was loaded onto Rink TG resin and the peptide elongated using standard Fmoc-SPPS. 

Following cleavage from the resin and ether precipitation, the crude peptide was purified by 

preparative reverse-phase HPLC (5% B for 5 min, then 5% B to 40% B over 30 min) to afford 

peptide S5 (31.0 mg, 63% yield based on the original resin loading) as a white solid following 

lyophilization. 

 
Purified peptide S5 (Rt = 7.1 min, 5 to 100% B over 25 min, λ = 210 nm). 

 
LRMS (ESI-TOF): calc’d for C26H40N5O5 [M+H]+ 709.36; found 709.49, [M+2H]2+ 355.19; 
found 355.28. 
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Peptide S6 

 
Amino aldehyde S6 was prepared on a 25 µmol scale on Rink amide resin using standard Fmoc-

SPPS. The aldehyde was incorporated according to general procedure 1. Following cleavage 

from the resin and ether precipitation, the crude peptide was purified by preparative reverse-

phase HPLC (5% B for 5 min, then 5% B to 40% B over 30 min) to afford peptide S6 (3.2 mg, 

17% yield based on the original resin loading) as a white solid following lyophilization. 

 
Purified peptide S6 (Rt = 9.0 min, 0 to 100% B over 25 min, λ = 230 nm). 

 

 
LRMS (ESI-TOF): calc’d for C33H50N9O10 [M+H]+ 732.37; found 732.44. 
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Peptide S7 

 
Amino aldehyde S7 was prepared on a 50 µmol scale on Rink amide resin using standard Fmoc-

SPPS. The aldehyde was incorporated according to general procedure 1. Following cleavage 

from the resin and ether precipitation, the crude peptide was purified by preparative reverse-

phase HPLC (20% B for 5 min, then 20% B to 55% B over 30 min) to afford peptide S7 (8.1 mg) 

and a peptide epimer at the Cys(StBu) residue (4.6 mg) in 25% combined yield based on the 

original resin loading and as white solids following lyophilization. 

 
Purified peptide S7 (Rt = 9.6 min, 5 to 100% B over 25 min, λ = 210 nm). 
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LRMS (ESI-TOF): calc’d for  C46H74N11O11S2 [M+H]+ 1020.50; found 1020.24. 
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Peptide S8 

 
Amino aldehyde S8 was prepared on a 23 µmol scale on Rink amide resin using standard Fmoc-

SPPS. The aldehyde was incorporated according to general procedure 1. Following cleavage 

from the resin and ether precipitation, the crude peptide was purified by preparative reverse-

phase HPLC (15% B for 5 min, then 15% B to 60% B over 30 min) to afford peptide S8 (6.2 mg, 

32% yield based on the original resin loading) as a white solid following lyophilization. 

 
Purified peptide S8 (Rt = 12.8 min, 5 to 100% B over 25 min, λ = 230 nm). 

 
LRMS (ESI-TOF): calc’d for C38H60N9O9S2 [M+H]+ 850.40; found 850.31. 
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Peptide S9 

 
Amino aldehyde S9 was prepared on a 35 µmol scale according to general procedure 2b. Fmoc-

Gly-CHO was loaded onto Rink TG resin and the peptide elongated using standard Fmoc-SPPS. 

Following cleavage from the resin and ether precipitation, the crude peptide was purified by 

preparative reverse-phase HPLC (20% B for 5 min, then 20% B to 60% B over 30 min) to afford 

peptide S9 (6.8 mg) and a reduced Met variant (2.0 mg) in 26% combined yield based on the 

original resin loading and as white solids following lyophilization. 

 
Purified peptide S9 (Rt = 11.0 min, 5 to 100% B over 25 min, λ = 230 nm). 
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LRMS (ESI-TOF): calc’d for C48H67N8O12S [M+H]+ 979.46; found 979.60. 
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Peptide S10 

 
Amino aldehyde S10 was prepared on a 35 µmol scale according to general procedure 2b. Fmoc-

Gly-CHO was loaded onto Rink TG resin and the peptide elongated using standard Fmoc-SPPS. 

Following cleavage from the resin and ether precipitation, the crude peptide was purified by 

preparative reverse-phase HPLC (35% B for 5 min, then 35% B to 75% B over 30 min) to afford 

peptide S10 (17.1 mg, 45% yield based on the original resin loading) as a white solid following 

lyophilization. 

 
Purified peptide S10 (Rt = 13.4 min, 5 to 100% B over 25 min, λ = 210 nm). 

 
LRMS (ESI-TOF): calc’d for C26H40N5O5 [M+H]+ 1101.54; found 1101.27. 
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Peptide S11 

 
Amino aldehyde S11 was prepared on a 37 µmol scale according to general procedure 2a. Fmoc-

Leu-CHO was loaded onto Rink TG resin and the peptide elongated using standard Fmoc-SPPS. 

Following cleavage from the resin and ether precipitation, the crude peptide was purified by 

preparative reverse-phase HPLC (15% B for 5 min, then 15% B to 55% B over 25 min) to afford 

peptide S11 (13.0 mg, 70% yield based on the original resin loading) as a white solid following 

lyophilization. 

 
Purified peptide S11 (Rt = 11.2 min, 5 to 100% B over 25 min, λ = 210 nm). 

 
LRMS (ESI-TOF): calc’d for C26H40N5O5 [M+H]+ 502.30; found 502.36. 
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Peptide S12 

 
Amino aldehyde S12 was prepared on a 47.5 µmol scale according to general procedure 2a. 

Fmoc-D-Leu-CHO was loaded onto Rink TG resin and the peptide elongated using standard 

Fmoc-SPPS. Following cleavage from the resin and ether precipitation, the crude peptide was 

purified by preparative reverse-phase HPLC (20% B for 5 min, then 20% B to 55% B over 30 

min) to afford peptide S12 (11.5 mg, 48% yield based on the original resin loading) as a white 

solid following lyophilization. 

 
Purified peptide S12 (Rt = 12.1 min, 5 to 100% B over 25 min, λ = 210 nm). 

 
LRMS (ESI-TOF): calc’d for C26H40N5O5 [M+H]+ 502.30; found 502.21. 
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HPLC overlay of peptides S11 and S12 

 
A) Purified amino aldehyde S11, H-PAAFL-CHO (Rt = 11.2 min, 5 to 100% B over 25 min, λ = 
210 nm). B) Purified amino aldehyde S12, H-PAAFL-CHO (Rt = 12.1 min, 5 to 100% B over 25 
min, λ = 210 nm). 
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Peptide S13 

 
Amino aldehyde S13 was prepared on a 50 µmol scale on Rink amide resin using standard 

Fmoc-SPPS. The aldehyde was incorporated according to general procedure 1. Following 

cleavage from the resin and ether precipitation, the crude peptide was purified by preparative 

reverse-phase HPLC (0% B for 5 min, then 0% B to 70% B over 30 min) to afford peptide S13 

(16.5 mg, 42% yield based on the original resin loading) as a white solid following 

lyophilization. 

 
Purified peptide S13 (Rt = 9.3 min, 0 to 100% B over 25 min, λ = 254 nm). 

 
LRMS (ESI-TOF): calc’d for C37H59N10O9 [M+H]+ 787.45; found 787.51, [M+2H]2+ 394.23; 
found 394.28. 
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Peptide S14 

 
Amino aldehyde S14 was prepared on a 50 µmol scale on Rink amide resin using standard 

Fmoc-SPPS. The aldehyde was incorporated according to general procedure 1. Following 

cleavage from the resin and ether precipitation, the crude peptide was purified by preparative 

reverse-phase HPLC (0% B for 5 min, then 0% B to 70% B over 30 min) to afford peptide S14 

(16.5 mg, 38% yield based on the original resin loading) as a white solid following 

lyophilization. 

 
Purified peptide S14 (Rt = 10.7 min, 5 to 100% B over 25 min, λ = 230 nm). 

 
LRMS (ESI-TOF): calc’d for C41H63N10O11 [M+H]+ 871.47; found 871.41. 
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Peptide S15 

 
Amino aldehyde S15 was prepared on a 70 µmol scale according to general procedure 2b. Fmoc-

Gly-CHO was loaded onto Rink TG resin and the peptide elongated using standard Fmoc-SPPS. 

Following cleavage from the resin and ether precipitation, the crude peptide was purified by 

preparative reverse-phase HPLC (10% B for 5 min, then 10% B to 60% B over 30 min) to afford 

peptide S15 (31.2 mg, 51% yield based on the original resin loading) as a white solid following 

lyophilization. 

 
Purified peptide S15 (Rt = 8.8 min, 5 to 100% B over 25 min, λ = 210 nm). 

 
LRMS (ESI-TOF): calc’d for C26H40N5O5 [M+H]+ 861.53; found 861.67. 
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Peptide S16 

 
Amino aldehyde S16 was prepared on a 35 µmol scale according to general procedure 2b. Fmoc-

Gly-CHO was loaded onto Rink TG resin and the peptide elongated using standard Fmoc-SPPS. 

Following cleavage from the resin and ether precipitation, the crude peptide was purified by 

preparative reverse-phase HPLC (5% B for 5 min, then 5% B to 45% B over 35 min) to afford 

peptide S16 (3.1 mg) and an oxidized Met variant (3.5 mg) in 22% combined yield based on the 

original resin loading and as white solids following lyophilization. 

 
Purified peptide S16 (Rt = 9.6 min, 5 to 100% B over 25 min, λ = 210 nm). 
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LRMS (ESI-TOF): calc’d for C38H73N12O8S [M+H]+ 857.54; found 875.69 (aldehyde hydrate), 
[M+2H]2+ 429.27; found 429.38, [M+3H]3+ 286.52; found 292.60 (aldehyde hydrate). 
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Peptide S17 

 
Amino aldehyde S17 was prepared on a 40 µmol scale on Rink amide resin using standard 

Fmoc-SPPS. The aldehyde was incorporated according to general procedure 1. Following 

cleavage from the resin and ether precipitation, the crude peptide was purified by preparative 

reverse-phase HPLC (5% B for 5 min, then 5% B to 40% B over 25 min) to afford peptide S17 

(1.3 mg, 4% yield based on the original resin loading) as a white solid following lyophilization. 

 
Purified peptide S17 (Rt = 8.8 min, 5 to 100% B over 25 min, λ = 210 nm). 

 
LRMS (ESI-TOF): calc’d for C39H61N10O10 [M+H]+ 829.46; found 829.60. 
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Peptide S19 

 
 

Peptide S19 was prepared on Rink amide resin using Fmoc-SPPS according to the following 

reaction scheme: 

 
Preparation of Gly-SCH2CO2Me�HCl: 

Gly-SCH2CO2Me�HCl was prepared from Boc-Gly-OH according to a published protocol,8 by 

employing methyl thioglycolate in the thioesterification step. Briefly, Boc-Gly-OH (1.00 g, 5.71 

mmol) was dissolved in THF (20 mL) and treated with methyl thioglycolate (1.0 equiv.). The 

reaction was cooled to 0 oC and then treated with HOBt (1.2 equiv.) and DIC (1.2 equiv.). The 

reaction was warmed to rt and stirred for 20 h. The crude reaction mixture was filtered through a 

plug of Celite, eluted with DCM, and concentrated in vacuo. The residue was resuspended in 

EtOAc (40 mL) and washed with 5% NaHCO3 (30 mL), 0.1 M HCl (30 mL), and brine (30 mL). 

The organic layer was dried (MgSO4), filtered and concentrated, and subsequently purified by 

flash column chromatography (1:2 EtOAc/Hexanes) to afford the Boc-protected thioester 
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(1.301 g, 86% yield). A portion of the thioester (0.951 g, 3.61 mmol) was dissolved in DCM (2 

mL) and treated with 4 M HCl in dioxane (1.5 mL) to remove the Boc group. After stirring at rt 

for 3 h, a second aliquot of 4 M HCl in dioxane (1 mL) was added and the reaction stirred for an 

additional 3 h. The reaction mixture was concentrated in vacuo and coevaporated twice with 

EtOAc to afford the target thioester as the HCl salt in quantitative yield. 

 
Physical State: white solid 
 

1H NMR (600 MHz, D2O) δ 4.28 (s, 2H), 3.97 (s, 2H), 3.80 (s, 3H). 
 

13C NMR (151 MHz, D2O) δ 193.8, 171.1, 53.5, 46.8, 30.9. 
 
HRMS (ESI-TOF): calc’d for C5H10NO3S [M+H]+ 164.0376; found 164.0376.  
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Preparation of peptide thioester S19: 

General iterative Fmoc-SPPS was used to prepare the precursor peptide, Boc-GAGFVPE(All)-

Rink. The resin-bound peptide was deallylated using Pd(PPh3)4 and PhSiH3 as described in the 

general solid-phase protocols. The preformed amino acid thioester, Gly-SCH2CO2Me�HCl, was 

next coupled to the resin (20 µmol scale). The thioester (10 equiv.) was dissolved in DMF (0.55 

mL) and treated with DIEA (20 equiv.). PyAOP (10 equiv.) was added as a solid to the reaction 

vessel, followed by the addition of the solution of thioester. The resin was shaken at rt for 2 h 

then washed with DMF, and DCM. The peptide was cleaved from the resin upon treatment with 

a mixture of TFA/TIS/thioanisole/water (85:5:5:5 v/v/v/v) at rt for 2 h. The cleavage solution 

was concentrated under a stream of nitrogen and the crude peptide precipitated with cold ether. 

Purification by preparative reverse-phase HPLC (20% for 5 min, 20% to 70% over 30 min) 

afforded thioester S19 (6.7 mg, 41% yield) as a white solid following lyophilization. 

 
Purified peptide S19 (Rt = 10.5 min, 5 to 100% B over 25 min, λ = 230 nm). 

 
LRMS (ESI-TOF): calc’d for C36H54N9O11S [M+H]+ 820.37; found 820.36. 
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Peptide S20 

 
Amino aldehyde S20 was prepared on a 34 µmol scale on Rink amide resin using standard 

Fmoc-SPPS. The aldehyde was incorporated according to general procedure 1. Following 

cleavage from the resin and ether precipitation, the crude peptide was purified by preparative 

reverse-phase HPLC (20% B for 5 min, then 20% B to 55% B over 25 min) to afford peptide S20 

(6.2 mg, 22% yield based on the original resin loading) as a white solid following lyophilization. 

 
Purified peptide S20 (Rt = 10.6 min, 5 to 100% B over 25 min, λ = 210 nm). 

 
LRMS (ESI-TOF): calc’d for C42H57N10O9 [M+H]+ 845.43; found 845.58. 
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Peptide S21 

 
Amino aldehyde S21 was prepared on a 35 µmol scale according to general procedure 2b. Fmoc-

Gly-CHO was loaded onto Rink TG resin and the peptide elongated using standard Fmoc-SPPS. 

Following cleavage from the resin and ether precipitation, the crude peptide was purified by 

preparative reverse-phase HPLC (35% B for 5 min, then 35% B to 75% B over 30 min) to afford 

peptide S21(16.3 mg, 38% yield based on the original resin loading) as a white solid following 

lyophilization. 

 
Purified peptide S21 (Rt = 14.6 min, 5 to 100% B over 25 min, λ = 210 nm). 

 
LRMS (ESI-TOF): calc’d for C26H40N5O5 [M+H]+ 1230.60; found 1230.32. 

HN N

O
HN

NH2

OPh O
N
H

Ph
O

N

HN

O

O O
HN

O

OH

N
H

Ph

NH

OH

OH

S21



 S72 
  

HN
N

O
HN

NH
2

O
Ph

O
NH Ph

O

N

HN

O

O
O

HN

O O
H

NH Ph

NH

O
H

O
H

S21

1H, DM
SO

-d
6 /D

2 O
 (20:1 v/v), 600 M

Hz



 S73 

Peptide S22 

 
Amino aldehyde S22 was prepared on a 170 µmol scale on Rink amide resin using standard 

Fmoc-SPPS. The aldehyde was incorporated according to general procedure 1. Following 

cleavage from the resin and ether precipitation, the crude peptide was purified by preparative 

reverse-phase HPLC (5% B for 5 min, then 5% B to 40% B over 30 min) to afford peptide S22 

(31.6 mg, 28% yield based on the original resin loading) as a white solid following 

lyophilization. 

 
Purified peptide S22 (Rt = 6.80 min, 5 to 100% B over 25 min, λ = 210 nm). 

 
LRMS (ESI-TOF): calc’d for C26H41N9O7 [M+H]+ 663.36; found 663.30, [M+2H]2+ 332.18; 

found 332.14. 
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Peptide S23 

 
Amino aldehyde S23 was prepared on a 23 µmol scale on Rink amide resin using standard 

Fmoc-SPPS. The aldehyde was incorporated according to general procedure 1. Following 

cleavage from the resin and ether precipitation, the crude peptide was purified by preparative 

reverse-phase HPLC (15% B for 5 min, then 15% B to 60% B over 30 min) to afford peptide S23 

(6.2 mg, 32% yield based on the original resin loading) as a white solid following lyophilization. 

 
Purified peptide S23 (Rt = 12.8 min, 5 to 100% B over 25 min, λ = 230 nm). 

 
LRMS (ESI-TOF): calc’d for C38H60N9O9S2 [M+H]+ 850.40; found 850.31. 
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Peptide S24 

 
Amino aldehyde S24 was prepared on a 113 µmol scale on Rink amide resin using standard 

Fmoc-SPPS. The aldehyde was incorporated according to general procedure 1. Following 

cleavage from the resin and ether precipitation, the crude peptide was purified by preparative 

reverse-phase HPLC (5% B for 5 min, then 5% B to 40% B over 30 min) to afford peptide S24 

(27.1mg, 34% yield based on the original resin loading) as a white solid following lyophilization. 

 
Purified peptide S24 (Rt = 12.64 min, 5 to 100% B over 25 min, λ = 230 nm). 

 
LRMS (ESI-TOF): calc’d for C26H41N9O7 [M+H]+ 717.34; found 717.34.  
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Peptide S25 

 
Amino aldehyde S25 was prepared on a 40 µmol scale on Rink amide resin using standard 

Fmoc-SPPS. The aldehyde was incorporated according to general procedure 1. Following 

cleavage from the resin and ether precipitation, the crude peptide was purified by preparative 

reverse-phase HPLC (15% B for 5 min, then 15% B to 50% B over 25 min) to afford peptide S25 

(5.8 mg, 18% yield based on the original resin loading) as a white solid following lyophilization. 

 
Purified peptide S25 (Rt = 10.2 min, 5 to 100% B over 25 min, λ = 230 nm). 

 
LRMS (ESI-TOF): calc’d for C68H101N18O18Se2 [M+H]+ 1617.59; found 1617.73, [M+2H]2+ 
809.30; found 809.41. 
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Characterization Data for Strecker Macrocyclization 

Peptide 1 

 
Peptide 1 was prepared according to general procedure 3 from linear amino aldehyde S1 (5.8 mg, 

7.9 µmol). At t = 24 h, the reaction was purified by preparative reverse-phase HPLC (20% B for 

5 min, then 20% to 50% B over 30 min) to afford peptide macrocycle 1 (4.0 mg, 68% yield) as a 

mixture of diastereomers and as a white solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 1 from amino aldehyde S1 following 
Strecker macrocyclization (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 1 (Rt = 
12.1 min, 5 to 100% B over 25 min, λ = 210 nm). 
 

 
LRMS (ESI-TOF): calc’d for C35H51N10O8 [M+H]+ 739.39; found 739.40. 
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Peptide 2 

 
Peptide 2 was prepared according to general procedure 3 from linear amino aldehyde S2 (3.7 mg, 

5.2 µmol). At t = 44 h, the reaction was purified by preparative reverse-phase HPLC (5% B for 5 

min, 5% B to 20% B over 5 min, then 20% to 55% B over 30 min) to afford peptide macrocycle 

2 (1.6 mg, 43% yield) as a mixture of diastereomers and as a white solid following 

lyophilization. 
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A) Crude analytical HPLC trace of the formation of 2 from amino aldehyde S2 following 
Strecker macrocyclization (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 2 (Rt = 
11.3, 11.4 min, 5 to 100% B over 25 min, λ = 210 nm). 
 

 
LRMS (ESI-TOF): calc’d for C34H49N10O8 [M+H]+ 725.37; found 725.38. 
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Peptide 3 

 
Peptide 3 was prepared according to general procedure 3 from linear amino aldehyde S3 (10.0 

mg, 13 µmol). At t = 24 h, the reaction was purified by preparative reverse-phase HPLC (10% B 

for 5 min, then 10% B to 55% B over 30 min) to afford peptide macrocycle 3 (6.6 mg, 65% 

yield) as an inseparable mixture of diastereomers and as a white solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 3 from amino aldehyde S3 following 
Strecker macrocyclization (5 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 3 (Rt = 
11.8, 11.9 min, 5 to 100% B over 25 min, λ = 230 nm). 
Note: Diastereomers were inseparable by preparative reverse-phase HPLC. 

 
LRMS (ESI-TOF): calc’d for C37H52N10O10 [M+H]+ 797.39; found 797.54. 
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Peptide 4 

 
Peptide 4 was prepared according to general procedure 3 from linear amino aldehyde S4 (10.0 

mg, 17 µmol). At t = 18 h, the reaction was purified by preparative reverse-phase HPLC (10% B 

for 5 min, 10% B to 50% B over 30 min) to afford peptide macrocycle 4 (6.1 mg, 61% yield) as a 

mixture of diastereomers and as a white solid following lyophilization. 

NH2

O

NH

O NH
O

HN
O

N

O NH

O

HN

O
NH2

HN
O

NH

O NH
O

HN
O

N

O NH

O

NH

O

CN

KCN
water (1 mM)

rt, 18 h

61%

NH2 OH
S4 4



 S95 

 
A) Crude analytical HPLC trace of the formation of 4 from amino aldehyde S4 following 
Strecker macrocyclization (5 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 4 (Rt = 
8.7 min, 5 to 100% B over 25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C26H41N9O7 [M+H]+ 592.32; found 592.44. 
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Peptide 5 

 
Peptide 5 was prepared according to general procedure 3 from linear amino aldehyde S5 (5.6 mg, 

7.90 µmol). At t = 16 h, the reaction was purified by preparative reverse-phase HPLC (10% B for 

5 min, then 10% to 45% B over 30 min) to afford peptide macrocycle 5 (4.9 mg, 86% yield) as a 

mixture of diastereomers and as a white solid following lyophilization. 

 

O

NH
O

NH

O

N
H

O

NH

O

HN
O

HN

O
HN

O
OH

N NH
O

NH
O

NH

O

N
H

O

NH

O

HN
O

HN

O
N
H

H
N

CN

O
OH

N NH
H

O

NH2

KCN
water (1 mM)

rt, 16 h

86%

S5 5



 S100 

 
A) Crude analytical HPLC trace of the formation of 5 from amino aldehyde S5 following 
Strecker macrocyclization (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 5 (Rt = 
8.3 min, 5 to 100% B over 25 min, λ = 210 nm). 
 

 
LRMS (ESI-TOF): calc’d for C26H40N5O5 [M+H]+ 718.36; found 718.52. 
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Peptide 6 

 
Peptide 6 was prepared according to general procedure 3 from linear amino aldehyde S6 (5.0 mg, 

6.8 µmol). At t = 24 h, the reaction was purified by preparative reverse-phase HPLC (5% B for 5 

min, 5% B to 15% B over 5 min, then 15% to 45% B over 30 min) to afford peptide macrocycle 

6 (3.0 mg, 59% yield) as a mixture of diastereomers and as a white solid following 

lyophilization. 
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A) Crude analytical HPLC trace of the formation of 6 from amino aldehyde S6 following 
Strecker macrocyclization (0 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 6 (Rt = 
10.7, 10.8 min, 0 to 100% B over 25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C34H49N10O9 [M+H]+ 741.37; found 741.50. 
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Peptide 7 

 
Peptide 7 was prepared according to general procedure 3 from linear amino aldehyde S7 (3.6 mg, 

3.5 µmol). At t = 48 h, an additional portion of KCN (1.2 equiv.) was added to the reaction 

mixture. At t = 72 h, the reaction was purified by preparative reverse-phase HPLC (25% B for 5 

min, then 25% to 70% B over 35 min) to afford peptide macrocycle 7 (1.6 mg, 45% yield) as a 

mixture of diastereomers (3:1 d.r.) and as a white solid following lyophilization. 

Note: Linear cyanohydrin (1.2 mg) was also isolated from the crude reaction mixture. As the 

Strecker macrocyclization is an equilibrium process with cyanohydrin formation more readily 

reversible than α-aminonitrile formation, higher yields of the Strecker adduct may be obtained 

with prolonged reaction times. 
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A) Crude analytical HPLC trace of the formation of 7 from amino aldehyde S7 following 
Strecker macrocyclization (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 7 (Rt = 
16.5, 16.6 min, 5 to 100% B over 25 min, λ = 210 nm). 
 

 
LRMS (ESI-TOF): calc’d for C47H73N12O10S2 [M+H]+ 1029.50; found 1029.49. 

 

 

 

 



 S108 

 

HN
HN

HN
O

NH
2

Ph

O

NO
O

NH
O

HN
O

O

NH

O
HN

O
NH

O
NH

SS
tBu

NC

7
1H, D

2 O
/M

eO
D (4:1 v/v), 600 M

Hz



 S109 
 

7
CO

SY, D
2 O

/M
eO

D (4:1 v/v), 600 M
Hz



 S110 

Peptide 8 

 
Peptide 8 was prepared from macrocycle 1 (4.0 mg, 5.4 µmol) by treatment with ice-cold conc. 

H2SO4 (1.25 mL). The reaction was stirred at 0 oC for 30 min at which point LC-MS analysis 

indicated complete consumption of the starting peptide. The reaction mixture was kept at 0 oC 

and slowly diluted with 10 mL of water before purification by preparative reverse-phase HPLC 

(15% B for 5 min, then 15% to 50% B over 25 min) to afford peptide macrocycle 8 (2.8 mg, 

68% yield) as a mixture of diastereomers and as a white solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 8 from macrocycle 1 following acidic 
hydrolysis (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 8 (Rt = 10.7 min, 5 to 
100% B over 25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C35H53N10O9 [M+H]+ 757.40; found 757.40. 
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Characterization Data for Reductive Amination 

Peptide 9 

 
Peptide 9 was prepared according to general procedure 4 from linear amino aldehyde S2 (7.0 mg, 

9.8 µmol). At t = 22 h, the reaction was purified by preparative reverse-phase HPLC (15% B for 

5 min, then 15% to 50% B over 30 min) to afford peptide macrocycle 9 (3.7 mg, 54% yield) as a 

white solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 9 from amino aldehyde S2 following 
reductive amination (0 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 9 (Rt = 11.7 
min, 0 to 100% B over 25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C33H50N9O8 [M+H]+ 700.38; found 700.38. 
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Peptide 10 

 
Peptide 10 was prepared according to general procedure 4 from linear amino aldehyde S1 (4.3 

mg, 5.9 µmol). At t = 18 h, the reaction was purified by preparative reverse-phase HPLC (15% B 

for 5 min, then 15% to 50% B over 35 min) to afford peptide macrocycle 10 (2.1 mg, 50% yield) 

as a white solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 10 from amino aldehyde S1 following 
reductive amination (5 to 100% B over 25 min, λ = 220 nm). B) Purified peptide 10 (Rt = 10.7 
min, 5 to 100% B over 25 min, λ = 220 nm). 
 

 
LRMS (ESI-TOF): calc’d for C34H52N9O8 [M+H]+ 714.39; found 714.55. 
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Peptide 11 

 
Peptide 11 was prepared according to general procedure 4 from linear amino aldehyde S8 (3.6 

mg, 4.2 µmol). The peptide was solubilized in a 1:3 (v/v) mixture of MeCN/0.4 M NaOAc buffer 

(pH = 5.7). At t = 9 h, the reaction was purified by preparative reverse-phase HPLC (30% B for 5 

min, then 30% to 60% B over 25 min) to afford peptide macrocycle 11 (1.7 mg, 48% yield) as a 

white solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 11 from amino aldehyde S8 following 
reductive amination (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 11 (Rt = 13.6 
min, 5 to 100% B over 25 min, λ = 210 nm). 
 

 
LRMS (ESI-TOF): calc’d for C38H60N9O8S2 [M+H]+ 834.40; found 834.54. 
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Peptide 12 

 
Peptide 12 was prepared according to general procedure 4 from linear amino aldehyde S4 (10.0 

mg, 17 µmol). At t = 24 h, the reaction was purified by preparative reverse-phase HPLC (5% B 

for 5 min, 5% B to 40% B over 30 min) to afford peptide macrocycle 12 (4.4 mg, 45% yield) as a 

white solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 12 from amino aldehyde S4 following 
reductive amination (5 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 12 (Rt = 8.1 
min, 5 to 100% B over 25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C25H42N8O7 [M+H]+ 567.32; found 567.45. 
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Peptide 13 

 
Peptide 13 was prepared according to general procedure 4 from linear amino aldehyde S9 (4.4 

mg, 4.5 µmol). The peptide was solubilized in a 2:3 (v/v) mixture of MeCN/0.4 M NaOAc buffer 

(pH = 5.7). At t = 17 h, the reaction was purified by preparative reverse-phase HPLC (25% B for 

5 min, then 25% to 60% B over 30 min) to afford peptide macrocycle 13 (1.8 mg, 42% yield) as 

a white solid following lyophilization. A small amount of macrocyclic product bearing a reduced 

Met residue was also isolated (0.5 mg, 12% yield). 
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A) Crude analytical HPLC trace of the formation of 13 from amino aldehyde S9 following 
reductive amination (5 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 13 (Rt = 13.5 
min, 5 to 100% B over 25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C48H67N8O11S [M+H]+ 963.46; found 963.55. 
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Peptide 14 

 
Peptide 14 was prepared according to general procedure 4 from linear amino aldehyde S10 (5.1 

mg, 4.63 µmol). At t = 24 h, the reaction was purified by preparative reverse-phase HPLC (40% 

B for 5 min, then 40% to 80% B over 30 min) to afford peptide macrocycle 14 (1.9 mg, 37% 

yield) as a white solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 14 from amino aldehyde S10 following 
reductive amination (0 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 14 (Rt = 15.6 
min, 0 to 100% B over 25 min, λ = 210 nm). 
 

 
LRMS (ESI-TOF): calc’d for C26H40N5O5 [M+H]+ 1085.55; found 1085.54. 
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Peptide 15 

 
Peptide 15 was prepared according to general procedure 4 from linear amino aldehyde S7 (4.5 

mg, 4.4 µmol). The peptide was solubilized in a 1:3.6 (v/v) mixture of MeCN/0.4 M NaOAc 

buffer (pH = 5.7). At t = 18 h, the reaction was purified by preparative reverse-phase HPLC 

(25% B for 5 min, then 25% to 60% B over 30 min) to afford peptide macrocycle 15 (2.3 mg, 

52% yield) as a white solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 15 from amino aldehyde S7 following 
reductive amination (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 15 (Rt = 13.4 
min, 5 to 100% B over 25 min, λ = 210 nm). 
 

 
LRMS (ESI-TOF): calc’d for C46H74N11O10S2 [M+H]+ 1004.51; found 1004.50. 
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Peptide 16 

 
Peptide 16 was prepared according to general procedure 4 from linear amino aldehyde S5 (4.2 

mg, 5.93 µmol). At t = 18 h, the reaction was purified by preparative reverse-phase HPLC (5% B 

for 5 min, then 5% to 40% B over 30 min) to afford peptide macrocycle 16 (2.0 mg, 49% yield) 

as a white solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 16 from amino aldehyde S5 following 
reductive amination (0 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 16 (Rt = 7.86 
min, 0 to 100% B over 25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C26H40N5O5 [M+H]+ 693.37; found 693.19, [M+2H]2+ 347.19; 
found 347.07. 
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Peptide 17 

 
Peptide 17 was prepared according to general procedure 4 from linear amino aldehyde S11 (9.5 

mg, 19.0 µmol). The peptide was solubilized in 0.2 M NaOAc buffer (pH = 7–7.5). At t = 40 h, 

the reaction was purified by preparative reverse-phase HPLC (15% B for 5 min, 15% to 55% B 

over 25 min, then 55% to 70% B over 10 min) to afford peptide macrocycle 17 (3.3 mg, 36% 

yield) as a white solid following lyophilization. Reduction of the starting aldehyde was also 

observed (3.1 mg, 36% yield). 
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A) Crude analytical HPLC trace of the formation of 17 from amino aldehyde S11 following 
reductive amination (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 17 (Rt = 12.1 
min, 5 to 100% B over 25 min, λ = 210 nm). 
 

 
LRMS (ESI-TOF): calc’d for C26H40N5O4 [M+H]+ 486.31; found 486.31. 
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Peptide 18 

 
Peptide 18 was prepared according to general procedure 4 from linear amino aldehyde S12 (6.1 

mg, 12.2 µmol). The peptide was solubilized in 0.2 M NaOAc buffer (pH = 7–7.5). At t = 14 h, 

the reaction was purified by preparative reverse-phase HPLC (20% B for 5 min, then 20% to 

50% B over 25 min) to afford peptide macrocycle 18 (3.7 mg, 63% yield) as a white solid 

following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 18 from amino aldehyde S12 following 
reductive amination (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 18 (Rt = 13.0 
min, 5 to 100% B over 25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C26H40N5O4 [M+H]+ 486.31; found 486.37. 
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Comparative macrocyclization: Peptide 17 and 18 

 
A) Crude analytical HPLC trace of the formation of 17 from amino aldehyde S11 at t = 40 h (5 to 
100% B over 25 min, λ = 210 nm). B) Crude analytical HPLC trace of the formation of 18 from 
amino aldehyde S12 at t = 14 h (5 to 100% B over 25 min, λ = 210 nm).  

 

Note the enhanced rate of reaction for peptide S12, bearing a D-Leu aldehyde as the C-terminal 

residue. Based on HPLC analysis, the slower macrocyclization (S11 to 17) was also more prone 

to aldehyde reduction, cyanohydrin formation and dimerization (see minor byproducts in figure 

A, above). Based on retention time, a small amount of linear S11 may have epimerized at the C-

terminal aldehyde to afford macrocycle 18. However, this potential byproduct was not substantial 

enough to be isolated for analysis following HPLC purification.  
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Characterization Data for Internal Lysine Studies 

Peptide 19 

 
Peptide 19 was prepared according to general procedure 3 from linear amino aldehyde S13 (5.1 

mg, 6.5 µmol). At t = 63 h, the reaction was purified by preparative reverse-phase HPLC (10% B 

for 5 min, then 10% to 45% B over 30 min) to afford peptide macrocycle 19 (4.0 mg, 78% yield) 

as a mixture of diastereomers and as a white solid following lyophilization. 

 
A) Crude analytical HPLC trace of the formation of 19 from amino aldehyde S13 following 
Strecker macrocyclization (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 19 (Rt = 
10.4, 10.5 min, 5 to 100% B over 25 min, λ = 210 nm). 
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LRMS (ESI-TOF): calc’d for C38H58N11O8 [M+H]+ 796.45; found 796.38. 

Partial 2D NMR Correlations: 

 

 

HN
H
N

H
N

O

NH2

Ph

N
H

HN

O

N

OO
O

O

O
N
H

O H2
N

H2N

n = 4

NC H

H H

H H

α β

COSY

NOESY



 S156 
 

HN
HN

HN
O

NH
2

Ph

NH
HN

O

NO
O

O

O

O
NH

O
HN

H
2 N

n = 4

CN
19a

1H, DM
SO

-d
6 , 600 M

Hz



 S157 

 

19a
CO

SY, DM
SO

-d
6 , 600 M

Hz



 S158 

 

G
ly-N

H
2 /α-G

ly 

G
ly-N

H
2 /H

α  

Lys 

19a
CO

SY, DM
SO

-d
6 , 600 M

Hz



 S159 

	 

19a
NO

ESY, DM
SO

-d
6 /D

2 O
 (20:1 v/v), 600 M

Hz



 S160 

  

α-G
ly/H

α  
α-G

ly 

H
α  

H
β1  H

β2  

19a
NO

ESY, DM
SO

-d
6 /D

2 O
 (20:1 v/v), 600 M

Hz



 S161 

Peptide 20 

 
Peptide 20 was prepared according to general procedure 3 from linear amino aldehyde S14 (3.9 

mg, 4.5 µmol). At t = 52 h, the reaction was purified by preparative reverse-phase HPLC (25% B 

for 5 min, then 25% to 60% B over 30 min) to afford peptide macrocycle 20 (2.9 mg, 74% yield) 

as a mixture of diastereomers and as a white solid following lyophilization. 

 

 

 

 

 

 

HN
H
N

H
N

O

NH2

Ph

N
H

HN

O

N

OO
O

O

O
N
H

O
H
N

N
R

n = 4

CN

Alloc

HN
H
N

H
N

O

NH2

Ph

N
H

HN

O

N

OO
O

O

OHN
O

NH2
N
H

O

H

n = 4

S14

Alloc

KCN
water (1 mM)

rt, 52 h

74%

20



 S162 

 
A) Crude analytical HPLC trace of the formation of 20 from amino aldehyde S14 following 
Strecker macrocyclization (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 20 (Rt = 
13.4, 13.5 min, 5 to 100% B over 25 min, λ = 210 nm). 
 

 
LRMS (ESI-TOF): calc’d for C42H62N11O10 [M+H]+ 880.47; found 880.46. 
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Peptide 21 

 
Peptide 21 was prepared according to general procedure 3 from linear amino aldehyde S15 (7.0 

mg, 7.96 µmol). At t = 24 h, the reaction was purified by preparative reverse-phase HPLC (10% 

B for 5 min, then 10% to 45% B over 30 min) to afford peptide macrocycle 21 (4.6 mg, 46% 

yield) as a mixture of diastereomers and as a white solid following lyophilization. Note: The 

lysine-εNH2 cyclized compound was also isolated as a minor product (2.3:1 21:21-Lys).  

 
A) Crude analytical HPLC trace of the formation of 21 from amino aldehyde S15 following 
Strecker macrocyclization (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 21 (Rt = 
8.7 min, 5 to 100% B over 25 min, λ = 210 nm).  
 

O

NH

O
NH

O

N
H

O

H2N

NH

O

HN

O
HN

O
HNNH2

NH2O

HO

NH
N

n = 4

O

NH

O
NH

O

N
H

O

H2N

NH

O

HN

O
HN

O
N
H

H
N

CN

NH2O

HO

NH
N

n = 4

H
O

46%

S15 21

KCN
water (1 mM)

rt, 24 h



 S166 

 
LRMS (ESI-TOF): calc’d for C26H40N5O5 [M+H]+ 888.54; found 888.68, [M+2H]2+ 444.77; 
found 444.89. 
 
Partial 2D NMR Correlations:  

(top: compound 21; bottom: compound 21-Lys) 
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Peptide 22 

 
Peptide 22 was prepared according to general procedure 4 from linear amino aldehyde S13 (4.3 

mg, 5.5 µmol). At t = 15 h, the reaction was purified by preparative reverse-phase HPLC (5% B 

for 5 min, then 5% to 45% B over 30 min) to afford peptide macrocycle 22 (2.4 mg, 57% yield) 

as a white solid following lyophilization. 

 
A) Crude analytical HPLC trace of the formation of 22 from amino aldehyde S13 following 
reductive amination (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 22 (Rt = 9.7 
min, 5 to 100% B over 25 min, λ = 210 nm). 
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LRMS (ESI-TOF): calc’d for C37H59N10O8 [M+H]+ 771.45; found 771.39, [M+2H]2+ 386.23; 
found 386.19. 
 
Partial 2D NMR Correlations: 
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pH Screen 

The reductive amination of peptide S13 to form macrocycle 22 was studied at a variety of 

different pH conditions (0.4 M NaOAc buffer, adjusted to pH 3.7, 4.6, and 5.6 and 0.2 M 

Na2HPO4 buffer, adjusted to pH 7.0). All reactions yielded the same product macrocycle, but the 

relative amount of reduced aldehyde was sensitive to changes in pH, with the largest amount of 

aldehyde reduction observed at pH = 3.7. At pH = 7, minor macrocyclic byproducts were also 

observed. These minor byproducts were not sufficient in intensity to isolate by HPLC.   

 
Crude analytical HPLC traces (5 to 100% B over 25 min, λ = 210 nm) of the formation of 22 
from amino aldehyde S13 following reductive amination. The reaction was performed in 0.4 M 



 S185 

NaOAc buffer (pH = 3.7, 4.6, or 5.6, 1 mM concentration) or in 0.2 M Na2HPO4 buffer (pH = 
7.0, 1 mM concentration). Reactions were run for 16 h at A) pH = 3.7, B) pH = 4.6, C) pH = 5.6, 
and D) pH = 7.0. 

 

Note: Cyclization of S13 at the α-amine outcompetes cyclization at the ε-amine lysine side-chain 

at a variety of reaction pH conditions. To ensure that cyclization at the α-amine does not result 

from an absolute conformational preference over the side-chain lysine, an N-acetylated linear 

peptide aldehyde, S17, was prepared and subjected to the reductive amination conditions. 

Without competitive α-amine cyclization, reaction at the lysine side-chain was observed by 

analytical HPLC and LC-MS, although the reaction at pH = 5.7 was considerably slower, 

resulting in the formation of substantial reduced aldehyde and linear cyanohydrin: 

 
Peptide S18 was prepared on an analytical scale according to general procedure 4 from linear 

amino aldehyde S17. At t = 17 h, the reaction was monitored by LC-MS and analytical HPLC to 

determine the extent of macrocyclization. 

 
Crude analytical HPLC trace (5 to 100% B over 25 min, λ = 210 nm) of the formation of S18 
from amino aldehyde S17 following reductive amination. 
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LRMS (ESI-TOF): calc’d for C39H61N10O9 [M+H]+ 813.46; found 813.46. 
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Peptide 23 

 
Peptide 23 was prepared according to general procedure 4 from linear amino aldehyde S14 (4.4 

mg, 5.1 µmol). At t = 19 h, the reaction was purified by preparative reverse-phase HPLC (20% B 

for 5 min, then 20% to 55% B over 25 min) to afford peptide macrocycle 23 (2.4 mg, 56% yield) 

as a white solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 23 from amino aldehyde S14 following 
reductive amination (5 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 23 (Rt = 12.7 
min, 5 to 100% B over 25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C41H63N10O10 [M+H]+ 855.47; found 855.47. 
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Peptide 24 

 
Peptide 24 was prepared according to general procedure 4 from linear amino aldehyde S16 (2.5 

mg, 2.9 µmol). The peptide aldehyde was solubilized in 0.2 M Na2HPO4 (pH = 7.0). At t = 21 h, 

the reaction was purified by preparative reverse-phase HPLC (15% B for 5 min, then 15% to 

50% B over 30 min) to afford peptide macrocycle 24 (1.0 mg, 41% yield) as a white solid 

following lyophilization. 

 

 
A) Crude analytical HPLC trace of the formation of 24 from amino aldehyde S16 following 
reductive amination (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 24 (Rt = 10.8 
min, 5 to 100% B over 25 min, λ = 210 nm). 
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LRMS (ESI-TOF): calc’d for C38H73N12O7S [M+H]+ 841.54; found 841.54, [M+2H]2+ 421.28; 
found 421.27, [M+3H]3+ 281.19; found 281.18. 
 

Partial 2D NMR Correlations: 
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Characterization Data for Introduction of Bioorthogonal Handles 

Peptide 25 

 
Peptide 25 was prepared with K13CN according to general procedure 3 from linear amino 

aldehyde S1 (1.5 mg, 2.1 µmol). At t = 23 h, the reaction was purified by preparative reverse-

phase HPLC (20% B for 5 min, then 20% to 50% B over 30 min) to afford isotope-labeled 

peptide macrocycle 25 (1.0 mg, 66% yield) as a mixture of diastereomers and as a white solid 

following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 25 from amino aldehyde S1 following 
Strecker macrocyclization with K13CN (5 to 100% B over 25 min, λ = 230 nm). B) Purified 
peptide 25 (Rt = 12.0 min, 5 to 100% B over 25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C34

13CH51N10O8 [M+H]+ 740.39; found 740.40. 
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Peptide 26 

 
Peptide 26 was prepared by ligation of macrocycle 15 and peptide thioester S19. Ligation buffer 

was first prepared by dissolving the phosphine reductant tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP) in aqueous 0.2 M Na2HPO4 to provide a 50 mM solution of TCEP. The 

final pH of the buffer was adjusted to 7.0 using 1 M NaOH. The buffer was then sparged with 

argon for 5 min. Peptide thioester S19 (0.9 mg, 1.1 µmol) was dissolved in ligation buffer (498 

µL) and added to peptide macrocycle 15 (1.0 mg, 1.0 µmol) in a 1.5 mL eppendorf vial. MeCN 

(100 µL) was added to the reaction mixture to aid in solubilizing macrocycle 15, thus providing a 

final reaction concentration of 1.7 mM with respect to peptide 15. Thiophenol (10 µL, 1.7 vol.%) 

was added and the reaction mixture was stirred at rt and monitored by LC-MS. At t = 4 h, the 

reaction was purified by preparative reverse-phase HPLC (20% B for 5 min, then 20% to 50% B 

over 30 min) to afford ligation product 26 (1.1 mg, 68% yield) as a white solid following 

lyophilization. 
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A) Crude analytical HPLC trace of the formation of 26 from macrocycle 15 and peptide thioester 
S19 following native chemical ligation (5 to 100% B over 25 min, λ = 230 nm). Note: S19-SPh 
represents the thiophenyl thioester variant of S19 which forms upon transthioesterification of 
S19 in the presence of excess PhSH. B) Purified peptide 26 (Rt = 12.7 min, 5 to 100% B over 25 
min, λ = 210 nm). 
 

 
LRMS (ESI-TOF): calc’d for C75H113N20O19S [M+H]+ 1629.82; found 1629.80, [M+2H]2+ 
815.41; found 815.41 
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Peptide 27 

 
Biotin-labeled peptide 27 was prepared from macrocycle 9 (3.5 mg, 5.0 µmol). To a solution of 

peptide 9 in dry DMF (1 mL) was added Et3N (1.4 µL, 2.0 eq.) followed by biotin-OPfp (10.3 

mg, 5.0 equiv.).9 The reaction was stirred at rt and monitored by LC-MS. At t = 8 h, the reaction 

was diluted with water (5 mL) and unreacted biotin-OPfp crashed out of solution. The crude 

mixture was partitioned between water and DCM. The aqueous layer was separated and purified 

by preparative reverse-phase HPLC (5% B for 5 min, 5% to 20% B over 5 min, then 20% to 50% 

B over 25 min) to afford peptide macrocycle 27 (3.3 mg, 72% yield) as a white solid following 

lyophilization. 
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A) Crude analytical HPLC trace of the formation of 27 from macrocycle 9 following treatment 
with biotin-OPfp (5 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 27 (Rt = 11.4 min, 
5 to 100% B over 25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C43H64N11O10S [M+H]+ 926.46; found 926.46. 
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Peptide 28 

 
To a solution of purified peptide 12 (2.4 mg, 4.24 µmol) in DMF (1 mM) was added DIEA (2 

equiv.), and the resulting solution was allowed to stir at room temperature for 5 min. Propargyl 

bromide (10 equiv.) was then added, and the reaction mixture was monitored by LC-MS 

analysis. At t = 4 h, the reaction was purified by preparative reverse-phase HPLC (10% B for 10 

min, 10% to 45% B over 30 min) to afford peptide macrocycle 28 (2.0 mg, 78% yield) as a white 

solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 28 from peptide 12 following propargylation 
(5 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 28 (Rt = 8.78 min, 5 to 100% B over 
25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C28H44N8O7 [M+H]+ 605.34; found 605.29. 
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Macrocyclization Data for Pictet-Spengler 

Peptide 29 

 
Peptide 29 was prepared from linear amino aldehyde S20 using a Pictet-Spengler 

macrocyclization approach. Peptide S20 (3.0 mg, 3.6 µmol) was dissolved in AcOH (1 mM) and 

stirred at rt. At t = 18 h, the reaction was purified by preparative reverse-phase HPLC (5% B for 

5 min, 5% B to 25% B over 5 min, then 25% to 65% B over 30 min) to afford peptide 

macrocycle 29 (2.2 mg, 75% combined yield) as a partially separable mixture of diastereomers 

and as white solids following lyophilization. 
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A) Crude Pictet-Spengler reaction to form diastereomeric macrocycles 29 (0 to 100% B over 25 
min, λ = 230 nm). B) Purified 29, major diastereomer (Rt = 13.7 min, 0 to 100% B over 25 min, 
λ = 230 nm). C) Purified 29, minor diastereomer (Rt = 14.1 min, 0 to 100% B over 25 min, λ = 
230 nm). Note: some mixed fractions were also obtained upon HPLC purification. 
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LRMS (ESI-TOF): calc’d for C42H55N10O8 [M+H]+ 827.42; found 827.42. 
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Peptide 30 

 
Peptide 30 was prepared by oxidation of diastereomeric tetrahydro-β-carboline 29. Peptide 29 

(2.0 mg, 2.4 µmol) was dissolved in AcOH (2.4 mL, 1 mM) and treated with phenyliodine 

diacetate (PIDA) (1.6 mg, 2 eq.). The reaction was stirred at rt for 16 h, at which point LC-MS 

analysis indicated complete consumption of the starting peptide. The reaction was concentrated 

to ~1 mL under a stream of nitrogen, diluted in a mixture of water and MeCN, and purified by 

preparative reverse-phase HPLC (25% B for 5 min, then 25% to 75% B over 25 min) to afford 

peptide macrocycle 30 (1.2 mg, 60% yield) as a white solid following lyophilization. 
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A) Reaction at t = 0 depicting diastereomeric tetrahydro-β-carboline 29 (5 to 100% B over 25 
min, λ = 230 nm). B) Crude oxidation to afford β-carboline 30 (5 to 100% B over 25 min, λ = 
230 nm). C) Purified β-carboline oxidation product 30 (Rt = 14.6 min, 5 to 100% B over 25 min, 
λ = 230 nm). 

 

 
LRMS (ESI-TOF): calc’d for C42H51N10O8 [M+H]+ 823.39; found 823.39. 
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Peptide 30 (one-pot protocol) 

 
Peptide 30 was prepared in a one-pot fashion from linear amino aldehyde S20 (2.0 mg, 2.4 

µmol). Peptide S20 was dissolved in AcOH (2.4 mL, 1 mM) and stirred at rt. At t = 48 h, 

phenyliodine diacetate (PIDA) (1.6 mg, 2 eq.) was added and the reaction was monitored for an 

additional 24 h before LC-MS indicated complete consumption of the tetrahydro-β-carboline. 

The crude mixture was concentrated to ~1 mL under a stream of nitrogen, diluted in a mixture of 

water and MeCN, and purified by preparative reverse-phase HPLC (25% B for 5 min, then 25% 

to 75% B over 25 min) to afford peptide macrocycle 30 (1.1 mg, 59% yield) as a white solid 

following lyophilization. 

 

Note: The one-pot oxidation protocol was performed on starting peptide aldehyde S20 that had 

been stored as a lyophilized solid at 4 oC for a period of 4 months. Over this time period, 

substantial oligomerization of the peptide aldehyde was observed (see HPLC traces below). 

Nonetheless, upon addition of AcOH (final peptide concentration of 1 mM) Pictet-Spengler 

macrocyclization led to clean formation of the monomeric macrocycle 30. The inherent 

reversibility of the amino aldehyde oligomerization allows the reaction to proceed efficiently 

despite the presence of a complex mixture of starting peptide.  
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A) Peptide amino aldehyde S20 after storage at 4 oC for 4 months (oligomeric mixture) (5 to 
100% B over 25 min, λ = 230 nm). B) Crude Pictet-Spengler reaction to form diastereomeric 
macrocycles 29. C) Crude oxidation following one-pot addition of PIDA. D) Purified β-carboline 
oxidation product 30 (Rt = 14.9 min, 5 to 100% B over 25 min, λ = 230 nm). 
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Peptide 31 

 
Peptide 31 was prepared from linear amino aldehyde S21 using a Pictet-Spengler 

macrocyclization approach. Peptide S21 (5.1 mg, 4.1 µmol) was dissolved in AcOH (1 mM) and 

stirred at rt. At t = 18 h, the reaction was purified by preparative reverse-phase HPLC (40% B for 

10 min, 40% to 80% B over 30 min) to afford peptide macrocycle 31 (3.5 mg, 70% combined 

yield) as a partially separable mixture of diastereomers and as white solids following 

lyophilization. 
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A) Crude Pictet-Spengler reaction to form diastereomeric macrocycles 31 (5 to 100% B over 25 
min, λ = 210 nm). B) Purified 31, minor diastereomer (Rt = 17.3 min, 5 to 100% B over 25 min, 
λ = 210 nm). C) Purified 31, major diastereomer (Rt = 17.6 min, 5 to 100% B over 25 min, λ = 
210 nm). Note: some mixed fractions were also obtained upon HPLC purification. 
 

 
LRMS (ESI-TOF): calc’d for C26H40N5O5 [M+H]+ 1212.59; found 1212.59. 
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Peptide 32 

 
Peptide 32 was prepared according to a modified literature report.10 To a solution of purified 

peptide aldehyde S22 (6.8 mg, 10.3 µmol) in MeOH (1 mM) was added Et3N (2 equiv.), and the 

resulting solution was heated to 65 °C and monitored by LC-MS analysis. At t = 30 h, the 

reaction was purified by preparative reverse-phase HPLC (5% B for 5 min, 5% to 40% B over 30 

min) to afford peptide macrocycle 32 (2.1 mg, 31% yield) as a white solid following 

lyophilization. 
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A) Crude analytical HPLC trace of the formation of 32 from amino aldehyde S22 following 
Pictet-Spengler macrocyclization (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 32 
(Rt = 7.00 min, 5 to 100% B over 25 min, λ = 210 nm). 
 

 
LRMS (ESI-TOF): calc’d for C29H44N10O7 [M+H]+ 645.35; found 645.29, [M+2H]2+ 323.18; 
found 323.14. 
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Characterization Data for Thiazolidine Formation 

Peptide 33 

 
Peptide 33 was prepared according to general procedure 5 from StBu-disulfide protected linear 

amino aldehyde S23 (4.5 mg, 5.3 µmol). At t = 16 h, the reaction was purified by preparative 

reverse-phase HPLC (20% B for 5 min, 20% to 50% B over 25 min) to afford peptide 

macrocycle 33 (2.4 mg, 61% yield) as a mixture of diastereomers and as a white solid following 

lyophilization. 
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A) Crude analytical HPLC trace of the formation of 33 from amino aldehyde S23 following 
thiazolidine macrocyclization (0 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 33 (Rt 
= 12.2 min, 0 to 100% B over 25 min, λ = 210 nm). 
 

 
LRMS (ESI-TOF): calc’d for C34H50N9O8S [M+H]+ 744.35; found 744.48. 
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Peptide 34 

 
Peptide 34 was prepared from diastereomeric thiazolidines 33 upon oxidation with MnO2. 

Peptide 33 (2.0 mg, 2.7 µmol) was dissolved in MeCN (1 mM concentration) and treated with 50 

eq. of MnO2. The reaction was heated at 65 oC and monitored by LC-MS. At t = 16 h, the 

reaction was filtered and purified by preparative reverse-phase HPLC (20% B for 5 min, 20% to 

50% B over 30 min) to afford peptide thiazole 34 (1.1 mg, 57% yield) as a white solid following 

lyophilization. 
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A) Crude analytical HPLC trace of the formation of 34 from thiazolidine 33 following oxidation 
(5 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 34 (Rt = 12.0 min, 5 to 100% B over 
25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C34H46N9O8S [M+H]+ 740.32; found 740.32. 
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Peptide 35 

 
Peptide 35 was prepared according to general procedure 5 from StBu-disulfide protected linear 

amino aldehyde S24 (10.0 mg, 14 µmol). At t = 6 h, the reaction was purified by preparative 

reverse-phase HPLC (10% B for 10 min, 10% to 45% B over 35 min) to afford peptide 

macrocycle 35 (4.4 mg, 52% yield) as a mixture of diastereomers and as a white solid following 

lyophilization. 
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A) Crude analytical HPLC trace of the formation of 35 from amino aldehyde S24 following 
thiazolidine formation (5 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 35 (Rt = 
12.64 min, 5 to 100% B over 25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C26H42N8O7S [M+H]+ 611.30; found 611.42. 
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Characterization Data for Selenazolidine Formation 

Peptide 36 

 
Peptide 36 was prepared according to general procedure 6 from linear amino aldehyde 

selenocystine dimer S25 (3.7 mg, 2.3 µmol). At t = 1 h, the reaction was purified by preparative 

reverse-phase HPLC (20% B for 5 min, 20% to 60% B over 25 min) to afford peptide 

macrocycle 36 (2.5 mg, 69% yield) as a mixture of diastereomers and as a white solid following 

lyophilization. 

 

 

 

 

HN
H
N

H
N

O

NH2

Ph

N
H

HN

O

N

OO
O

O

OHN
O

H
N

Se

HN
H
N

H
N

O

NH2

Ph

N
H

HN

O

N

OO
O

O

OHN
O

H

O
NH2

Se

S25
2

TCEP, Na ascorbate
0.2 M Na2HPO4 (1 mM)

pH = 7, rt, 1 h
69%

36



 S247 

 
A) Crude analytical HPLC trace of the formation of 36 from amino aldehyde S25 following 
selenazolidine macrocyclization (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 36 
(Rt = 11.5, 11.7 min, 0 to 100% B over 25 min, λ = 210 nm). 

 

 
LRMS (ESI-TOF): calc’d for C34H50N9O8Se [M+H]+ 792.29; found 792.38. 
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Characterization Data for Scytonemide A Analogues 

Peptide S26 

 
Amino aldehyde S26 was prepared on a 40 umol scale according to general procedure 2a. Fmoc-

Ile-CHO was loaded onto Rink TG resin and the peptide elongated under standard Fmoc-SPPS 

protocols. Following cleavage from the resin and ether precipitation, the crude peptide was 

purified by preparative reverse-phase HPLC (15% B for 5 min, then 15% B to 55% B over 25 

min) to afford peptide S26 (22.5 mg, 73% yield based on the original resin loading) as a white 

solid following lyophilization. 
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Purified peptide S26 (Rt = 11.27 min, 5 to 100% B over 25 min, λ = 230 nm). 

 
LRMS (ESI-TOF): calc’d for C33H44N5O10S [M+H]+ 763.43; found 763.37. 
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Equilibration Studies 

 
Aldehyde-imine equilibration of peptide S26 (5.0 mg, 6.5 µmol) was induced by first dissolving 

the peptide in MeOD (1 mM). Et3N (4.0 equiv. total) was then added, equivalent-wise (5 min 

between each addition), to the resulting solution. After the final addition, the solution was 

allowed to stir at room temperature for 14 hours. The compound was characterized without 

further purification. 
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Peptide 37 

 
Peptide 37 was prepared according to general procedure 4 from linear amino aldehyde S26 (5.7 

mg, 7.5 µmol). At t = 20 h, the reaction was purified by preparative reverse-phase HPLC (20% B 

for 5 min, 20% to 60% B over 30 min) to afford peptide macrocycle 37 (3.7 mg, 66% yield) as a 

white solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 37 from amino aldehyde S26 following 
reductive amination (5 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 37 (Rt = 12.54 
min, 5 to 100% B over 25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C36H58N8O9 [M+H]+ 747.44; found 747.38. 
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Scytonemide Analogue Notes: 

- Attempts to purify the natural product proved fruitless, as the cyclic imine reverted to the 

linear form on removal of the Et3N.  

- Qualitative analysis suggests that under most conditions explored herein, the equilibrium 

favors the open-chain peptide aldehyde; as such, competitive nucleophilic addition to the 

aldehyde dominated during attempts at a Strecker macrocyclization, resulting in almost 

exclusive formation of the corresponding linear cyanohydrin.  
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Characterization Data for Koranimine Analogues 

Peptide S27 

 
Amino aldehyde S27 was prepared on a 50 µmol scale according to general procedure 2a. Fmoc-

Val-CHO was loaded onto Rink TG resin and the peptide elongated using standard Fmoc-SPPS. 

Following cleavage from the resin and ether precipitation, the crude peptide was purified by 

preparative reverse-phase HPLC (40% B for 5 min, then 40% B to 80% B over 30 min) to afford 

peptide S27 (14.4 mg, 35% yield based on the original resin loading) as a white solid following 

lyophilization. 

 
 

A) Crude analytical HPLC trace of amino aldehyde S27 following Fmoc-SPPS and acidic 
cleavage from the resin (5 to 100% B over 25 min, λ = 230 nm). B) Purified peptide S27 (Rt = 
16.9 min, 5 to 100% B over 25 min, λ = 230 nm). 
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A note on the structure of koranimine: LC-MS analysis of purified S27 indicated a mixture of 

aldehyde ([M+H]+ = 822.51) and spontaneous formation of a condensation product 

(imine/oxazolidine - see details below). NMR analysis in DMSO and upon treatment with Et3N 

in MeOD (conditions which promoted the macrocyclization of Scytonemide A) revealed a 

complex product mixture in which the characteristic imine peak (δ ≈ 6.8 ppm) was not observed. 

This is consistent with the isolation paper, in which characteristic imine signals were not 

observed in the 1H or 13C NMR spectra of isolated koranimine. A lack of sufficient material from 

the isolation also precluded detailed NMR analysis of the peptide.11 We hypothesize that 

koranimine may also be present as an equilibrium mixture of diastereomeric cyclic oxazolidines 

formed intramolecularly upon attack of the N-terminal Thr β-alcohol onto the macrocyclic imine. 

This ring-chain tautomerism has been well-characterized for oxazolidines.12–14 In the context of 

macrocyclic peptides, such an intramolecular cyclization event is reminiscent of the spontaneous 

thiazolidine formation in the natural product lugdunin.15 1H–13C HSQC NMR data (see below, in 

99.9% DMSO-d6) provides preliminary evidence of the formation of cyclic oxazolidine. 
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Predicted and observed C2 and C5 carbon chemical shifts of ca. 90 and 76 ppm, respectively.  
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LRMS (ESI-TOF): calc’d for C44H68N7O8 [M+H]+ 822.51; found 822.51 (aldehyde form). 

 
LRMS (ESI-TOF): calc’d for C44H66N7O7 [M+H]+ 804.50; found 804.50 (imine/oxazolidine 

form). 
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Peptide 38 

 
Peptide 38 was prepared according to general procedure 4 from linear amino aldehyde S27 (7.0 

mg, 9.8 µmol). The peptide was solubilized in a 1:1 mixture of MeCN and 0.4 M NaOAc buffer 

(pH = 5.7). At t = 18 h, the reaction was purified by preparative reverse-phase HPLC (45% B for 

5 min, then 45% to 80% B over 30 min) to afford peptide macrocycle 38 (3.1 mg, 71% yield) as 

a white solid following lyophilization. 

 
A) Crude analytical HPLC trace of the formation of 38 from amino aldehyde S27 following 
reductive amination (5 to 100% B over 25 min, λ = 230 nm). B) Purified peptide 38 (Rt = 18.4 
min, 5 to 100% B over 25 min, λ = 230 nm). 
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Characterization Data for Lugdunin Analogues  

Peptide 39 

 
Amino aldehyde 39 was prepared on a 14.5 µmol scale according to general procedure 2a. Fmoc-

Leu-CHO was loaded onto Rink TG resin and the peptide elongated using standard Fmoc-SPPS 

protocols. Following cleavage from the resin and ether precipitation, the crude peptide was 

purified by preparative reverse-phase HPLC (50% B for 5 min, then 50% B to 100% B over 30 

min) to afford lugdunin 39 (3.4 mg, 31% yield based on the original resin loading) as a mixture 

of interconverting diastereomers and as a white solid following lyophilization.  
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A) Crude analytical HPLC trace of the formation of 39 following cleavage from resin (5 to 100% 
B over 25 min, λ = 230 nm). B) Purified peptide 39 (Rt = 18.2, 18.4 min, 5 to 100% B over 25 
min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C40H62N8O6S [M+H]+ 783.46; found 783.46. 

The recorded NMR spectra for synthetic lugdunin (39) are in agreement with literature data.15 
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Peptide 40 

 
Amino aldehyde 40 was prepared on a 14.5 µmol scale according to general procedure 2a. Fmoc-

Leu-CHO was loaded onto Rink TG resin and the peptide elongated using standard Fmoc-SPPS 

protocols. Following cleavage from the resin and ether precipitation, the crude peptide was 

purified by preparative reverse-phase HPLC (50% B for 5 min, then 50% B to 100% B over 30 

min) to afford Thr-lugdunin 40 (4.1 mg, 37% yield based on the original resin loading) as an 

interconverting mixture the linear amino aldehyde and the cyclized diastereomers, and as a white 

solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 40 following cleavage from resin (5 to 100% 
B over 25 min, λ = 230 nm). B) Purified peptide 40 (Rt = 16.07, 16.25, 18.20 min, 5 to 100% B 
over 25 min, λ = 230 nm). 
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LRMS (ESI-TOF): calc’d for C41H64N8O7 [M+H]+ 781.50; found 781.51 (cyclized).  

 
LRMS (ESI-TOF): calc’d for C41H64N8O7 [M+H]+ 799.51; found 799.52 (linear).  
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Lugdunin Analogue Notes: 

- As noted in the original report,15 lugdunin (39) was isolated as a mixture of 
interconverting, inseparable diastereomers. A substantial (and inseparable) amount of the 
linear peptide aldehyde was observed in the case of 40, while no aldehyde was apparent 
by analytical HPLC or LC-MS analysis in the case of 39.  

- Complete removal of the standard side-chain Fmoc-Trp(Boc)-OH protecting group 
proved difficult, so the unprotected Fmoc-Trp-OH was incorporated instead. In order to 
avoid potential acetylation of the free indole nitrogen, all subsequent capping steps were 
shortened to one 30-second treatment of 10% Ac2O in pyridine.  
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Characterization Data for Sanguinamide A and Analogues 

Peptide S28 

 
Amino aldehyde S28 was prepared on a 50 µmol scale according to general procedure 2a. Fmoc-

Ile-CHO was loaded onto Rink TG resin and the peptide elongated using standard Fmoc-SPPS. 

Following cleavage from the resin and ether precipitation, the crude peptide was purified by 

preparative reverse-phase HPLC (30% B for 5 min, then 30% B to 80% B over 35 min) to afford 

peptide S28 (26.6 mg, 64% yield based on the original resin loading) as a white solid following 

lyophilization. 
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A) Crude analytical HPLC trace of amino aldehyde S28 following Fmoc-SPPS and acidic 
cleavage from the resin (0 to 100% B over 25 min, λ = 230 nm). B) Purified peptide S28 (Rt = 
17.1 min, 0 to 100% B over 25 min, λ = 230 nm). 

 

 
LRMS (ESI-TOF): calc’d for C41H66N7O7S2 [M+H]+ 832.45; found 832.37. 
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Peptide S29 

 
Amino aldehyde S29 was prepared on a 40 µmol scale according to general procedure 2a. Fmoc-

Ile-CHO was loaded onto Rink TG resin and the peptide elongated using standard Fmoc-SPPS. 

Following cleavage from the resin and ether precipitation, the crude peptide was purified by 

preparative reverse-phase HPLC (25% B for 5 min, then 25% B to 70% B over 30 min) to afford 

peptide S29 (6.9 mg, 22% yield based on the original resin loading) as a white solid following 

lyophilization. 

 
Purified peptide S29 (Rt = 16.3 min, 5 to 100% B over 25 min, λ = 210 nm). 
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LRMS (ESI-TOF): calc’d for C74H113N14O14Se2 [M+H]+ 1581.69; found 1581.39, [M+2H]2+ 
791.33; found 791.15. 
 

 
LRMS (ESI-TOF): Zoom-in of LRMS spectrum showing the isotopic distribution characteristic 
of a diselenide. 
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Peptide 41 

 
Peptide 41 was prepared according to general procedure 5 from StBu-disulfide protected linear 

amino aldehyde S28 (6.4 mg, 7.7 µmol). The peptide aldehyde was solubilized in a mixture of 

MeCN (3 mL) and 0.2 M Na2HPO4 (4.7 mL, pH = 7) and treated with TCEP. At t = 17 h, the 

reaction was purified by preparative reverse-phase HPLC (35% B for 5 min, 35% to 70% B over 

30 min) to afford peptide macrocycle 41 (4.6 mg, 82% yield) as a mixture of four diastereomers 

and as a white solid following lyophilization. 
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A) Crude analytical HPLC trace of the formation of 41 from amino aldehyde S28 following 
thiazolidine macrocyclization (5 to 100% B over 25 min, λ = 210 nm). B) Purified 
diastereomeric peptide 41 (Rt = 15.1, 15.4, 16.3 min, 5 to 100% B over 25 min, λ = 210 nm). 
 

 
LRMS (ESI-TOF): calc’d for C37H56N7O6S [M+H]+ 726.40; found 726.33. 
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Peptide 42 

 
Peptide 42 was prepared according to general procedure 6 from linear amino aldehyde 

selenocystine dimer S29 (5.7 mg, 3.6 µmol). The peptide aldehyde was solubilized in a mixture 

of MeCN (2 mL) and 0.2 M Na2HPO4 (5.2 mL, pH = 7) and treated with TCEP and sodium 

ascorbate.  At t = 2 h, the reaction was purified by preparative reverse-phase HPLC (20% B to 

35% B over 5 min, 35% to 80% B over 25 min) to afford peptide macrocycle 42 (3.5 mg, 63% 

yield) as a mixture of four diastereomers and as a white solid following lyophilization. Note: The 

ratio of diastereomers fluctuates in different buffers and solvent systems (e.g. the formic acid 

eluent used on the LC-MS and TFA buffer used for analytical HPLC give rise to different ratios 

of the diastereomeric products). 
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A) Crude analytical HPLC trace of the formation of 42 from amino aldehyde S29 following 
selenazolidine macrocyclization (5 to 100% B over 25 min, λ = 210 nm). B) Purified peptide 42 
as a mixture of diastereomers (5 to 100% B over 25 min, λ = 230 nm). Note: the purified sample 
was taken from a mixture of DMSO following NMR analysis. 
 

 
LRMS (ESI-TOF): calc’d for C37H56N7O6Se [M+H]+ 774.35; found 774.28. 
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Peptide 43 (Sanguinamide A) 

 
Peptide 43 was prepared from diastereomeric thiazolidines 41 upon oxidation with MnO2. 

Peptide 41 (3.4 mg, 4.7 µmol) was dissolved in MeCN (1 mM concentration) and treated with 

MnO2 (50 eq.). The resulting mixture was heated at 65 oC and monitored by LC-MS. At t = 24 h, 

the reaction was filtered and purified by preparative reverse-phase HPLC (45% B for 5 min, 45% 

to 80% B over 30 min) to afford Sanguinamide A (43) (1.0 mg, 30% yield) and recovered 

thiazolidine starting material 41 (1.0 mg, 29%) as white solids following lyophilization. 
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A) Starting thiazolidine 41 as a mixture of diastereomers (5 to 100% B over 25 min, λ = 230 
nm). B) Crude analytical HPLC trace of the formation of 43 following oxidation with MnO2 (5 
to 100% B over 25 min, λ = 230 nm). C) Purified peptide 43 (Rt = 19.6 min, 5 to 100% B over 
25 min, λ = 230 nm). 
 

 
LRMS (ESI-TOF): calc’d for C37H52N7O6S [M+H]+ 722.37; found 722.25. 
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Note: Sanguinamide A (43) could also be prepared from a single isolated thiazolidine 

diastereomer (unknown configuration at the thiazolidine). The oxidation step proceeded in 93% 

yield to afford Sanguinamide A: 

 
Thiazolidine 41 was prepared according to general procedure 5 and purified by preparative 

reverse-phase HPLC. A single diastereomer of 41 (2.6 mg, 3.6 µmol, unknown configuration at 

the thiazolidine) was isolated and subjected to oxidation with MnO2 as described above. After 18 

h at 65 oC, LC-MS analysis indicated consumption of the thiazolidine. The reaction was filtered 

and purified by preparative reverse-phase HPLC (45% B for 5 min, 45% to 85% B over 30 min) 

to afford Sanguinamide A (43) (2.4 mg, 93% yield) as a white solid following lyophilization. 
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A) Crude thiazolidine 41 as a mixture of diastereomers (0 to 100% B over 25 min, λ = 230 nm). 
B) A single, purified diastereomer of macrocyclic thiazolidine 41 (Rt = 16.0 min, 0 to 100% B 
over 25 min, λ = 230 nm). C) Crude analytical HPLC trace (following filtration) of the formation 
of 43 upon oxidation with MnO2 (0 to 100% B over 25 min, λ = 230 nm).  
 

The recorded NMR spectra for synthetic sanguinamide A (43) are in agreement with literature 

data.16 
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Circular Dichroism 

All far-UV CD spectra were acquired at room temperature in 30% (v/v) acetonitrile-d3 using a 

JASCO J-815 spectropolarimeter. A quartz cuvette with a pathlength of 1 mm was used for all 

experiments. All spectra are the averages of four repeats, recorded over a range from 250 to 190 

nm with each scan recorded at intervals of 0.5 nm and an averaging time of 3 s.   

 

Amide Temperature Coefficient Measurements by NMR 

The temperature dependence of amide chemical shifts is well established and has been widely 

used to assess the solvent shielding properties of amide protons.17–19 Accordingly, amide proton 

temperature coefficients were extracted from 1D and TOCSY spectra acquired on a Bruker 

Avance III 600 MHz spectrometer. Spectra were measured at 282, 291, 300 and 309 K and 

referenced to acetonitrile at 1.968 ppm. Assignments of the amide protons were made using 

conventional 2D NMR approaches. 

Temperature coefficients are categorized as the following; DdHN/DT with values less than -4.6 

ppb/K indicate water-exposed NHs. Intermediate values from –4.6 to –3.0 ppb/K indicate 

intermediate shielding and potentially weak or strained hydrogen bonding. Whereas DdHN/DT  

values greater than –3.0 ppb/K place NHs in the highly shielded and potentially strongly 

hydrogen bound category.20–22 This information is summarized in the Table S1. 

 

TOCSY spectra of peptides 

The TOCSY spectra presented in this supplementary information were acquired at 291 K in 30% 

(v/v) acetonitrile-d3 with a mixing time of 80 ms. 

 

N-H Shift (ΔδHN/ΔT) Structural Implications 

> –3.0 ppb K-1 strong shielding or H-bonding 

< –4.6 ppb K-1 solvent exposed 

< –3 and > –4.6 ppb K-1 weak/strained shielding or H-bonding 

 

Table S1. Amide proton chemical shift values, ΔδHN/ΔT, and their corresponding properties. 
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Circular Dichroism Studies 
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Variable Temperature NMR Studies 
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Glu7& –7.28&
Gly8& –6.31&

TOCSY, 30% (v/v) MeCN-d3, 600 MHz
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29 (major diastereomer)

1
2

3

4 5 6
7

8

Amino&
Acid&

ΔδHN/ΔT&
(ppb&K31)&

Trp1& –5.34&
Ala2& –6.17&
Gly3& –4.90&
Phe4& –4.94&
Val5& –5.49&
Pro6&
Glu7& –5.98&
Gly8& –5.81&

TOCSY, 30% (v/v) MeCN-d3, 600 MHz
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S26 (scytonemide A aldehyde)

1

2

3 4 5

6
7

Amino&Acid& ΔδHN/ΔT&
(ppb&K31)&

Leu1& –4.96&
Val2& –4.72&
Ser3& –4.89&
Ile4& –4.61&
Gln5& –5.03&
Gly6& –5.21&
Tyr7& –4.62&

Val2,&minor& –4.44&
Tyr7,&minor& –5.07&

TOCSY, 30% (v/v) MeCN-d3, 600 MHz
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37

1

2

3 4 5

6

7 Amino&
Acid&

ΔδHN/ΔT&
(ppb&K31)&

Leu1& –4.29&
Val2& –6.30&
Ser3& –2.99&
Ile4& –7.59&
Gln5& –5.65&
Gly6& –3.92&
Tyr7& –4.29&

TOCSY, 30% (v/v) MeCN-d3, 600 MHz
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S27 (koranimine aldehyde)

HN

O

H
N

O

N
H

OHN
O

HN

O

Ph

Ph

O

H NH

O

H2N

OH

7

6

543

2

1
Amino&
Acid&

ΔδHN/ΔT&
(ppb&K31)&

Val1& –3.89&
Phe2& –2.47&
Val3& –2.43&
Phe4& –4.25&
Leu5& –4.73&
Leu6& –5.72&
NH2& –6.04&

TOCSY, 30% (v/v) MeCN-d3, 600 MHz
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38

7

6

543

2

1 Amino&
Acid&

ΔδHN/ΔT&
(ppb&K31)&

Val1& –4.40&
Phe2& –1.51&
Val3& –8.67&
Phe4& –9.70&
Leu5& –3.85&
Leu6& –8.02&

Val3OH7& –4.36&
TOCSY, 30% (v/v) MeCN-d3, 600 MHz
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39 (lugdunin)

1

23

4

5

6
Peak,&(Residue)& ΔδHN/ΔT&(ppb&K71)&
1&(Leu3&iso&1)& –2.90&
2&(Trp2&iso&1)& –5.24&
3&(Thia&iso&1)& –5.32&
4&(Trp2&iso&2)& –5.31&
5&(Leu3&iso&2)& –2.28&

6&(Val)& –2.35&
7&(Val1&iso&1)& –5.47&
8&(Val1&iso&2)& –5.00&

9&(Val)& –5.07&
10&(Thia&iso&2)& –2.97&

11& –5.39&
TOCSY, 30% (v/v) MeCN-d3, 600 MHz
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Troubleshooting and Frequently Asked Questions 

 

A. Aldehyde Synthesis  

Question 1: How were the peptide sequences chosen? 

Answer: While many of the substrate structures were inspired by natural products, a number 

of the peptides were designed through the use of the Random Peptide Sequence tool provided 

by The Sequence Manipulation Suite. See Random Peptide Sequence Generator (p. S9) for 

more information.  

 

Question 2: How do you prepare peptide aldehydes? 

Answer: Although there are multiple ways to prepare peptide aldehydes for the imine-

mediated macrocyclization strategy, we prefer direct incorporation of a masked aldehyde 

(e.g. aminoacetaldehyde dimethyl acetal—see general protocol 1) onto the solid-phase or 

anchoring of a pre-formed Fmoc-protected amino aldehyde onto “Rink TG” resin (see 

general protocol 2). Both strategies are described in the general methods. An alternative 

approach includes the use of a Weinreb amide functionalized resin. However, as this method 

requires cleavage of the peptide from the resin using a strong reductant (LiAlH4), some 

sensitive functional groups may pose a problem. Both general methods 1 and 2, on the other 

hand, allow for release of the target aldehyde upon acidic cleavage from the resin. Although 

not employed in this study, backbone amide linker (BAL) technologies may also be readily 

employed for the preparation of C-terminally modified peptides, including peptide 

aldehydes.23 

 

Question 3: Do you see epimerization of C-terminal aldehydes with α-chirality? 

Answer: Epimerization of chiral aldehydes is an important factor to consider. Loading amino 

aldehydes via an oxazolidine linkage onto TG-resin in some cases may lead to epimerization. 

We observed a small amount of epimerization in the preparation of aldehyde S12, a 

pentapeptide bearing a D-Leu aldehyde at the C-terminus. Nevertheless, this minor 

component was separable by HPLC, thus providing homogeneous material based on NMR 

analysis of the purified amino aldehyde. Generally, when dealing with aldehydes with α-

chirality, care should always be taken when purifying and analyzing the crude peptide. 
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Furthermore, the purified material should be evaluated by NMR prior to use in a 

macrocyclization reaction.  

 

Question 4: How do you store the aldehydes? 

Answer: We generally store the aldehydes as lyophilized solids at –20 °C. They are generally 

stable, but over time will start to oligomerize. This process is not necessarily deleterious to 

the outcome of a macrocyclization reaction—the reversibility of oligomer formation allows 

re-equilibration under the dilute reaction conditions to afford good yields of the desired 

monomeric macrocycle. For a direct example of this reversible phenomenon, refer to the one-

pot Pictet-Spengler-oxidation approach to afford peptide 30. In this example, application of 

an aldehyde that had been stored at 4 °C for four months provided nearly identical yields in a 

Pictet-Spengler macrocyclization reaction as a freshly prepared aldehyde. When using an 

aldehyde that has oligomerized, we suggest pre-equilibrating the reaction mixture by stirring 

at 1 mM concentration in the desired reaction solvent prior to the addition of an external 

nucleophile (e.g. KCN or NaBH3CN).  

 

Β. General Macrocyclization Questions 

 

Question 1: How do you monitor the reactions? 

Answer: The progress of reactions is most efficiently monitored using LC-MS or analytical 

HPLC. A small sample of the reaction mixture is diluted in water or MeOH and injected 

directly into the instrument.  

 

Question 2: How do you purify the crude reaction mixture? 

Answer: Preparative reverse-phase HPLC is the most efficient way to purify the peptide 

macrocycles. Following elution from the column, pure fractions are combined and 

concentrated on a lyophilizer to afford the target peptide as a fluffy white solid.  

 

Question 3: What are the major byproducts observed? 

Answer: By-product formation generally depends on the type of macrocyclization reaction: 

- Strecker macrocyclization: Addition of KCN to the aldehyde to form a cyanohydrin will 
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often occur in peptides that are not conformationally pre-disposed to cyclization. The 

reversibility of this addition, however, often allows for the funneling of material to the 

target α-aminonitrile Strecker product.  

- Reductive amination: Reduction of the aldehyde to the corresponding alcohol is the most 

commonly observed by-product. The extent of aldehyde reduction is highly pH 

dependent, so various buffer and pH conditions (NaOAc buffers, pH = 3.5–7.5 and/or 

phosphate buffers pH = 6–8) may be screened.  

- Thiazolidine cyclizations: In the case of peptides bearing StBu-disulfide protected Cys 

residues, incomplete reduction of the starting disulfide may cause the reaction to stall. 

Adding more reductant (TCEP) and keeping the solution degassed can prevent unwanted 

disulfide formation and help drive the reaction.  

- Selenazolidine cyclization: Selenocysteine can deselenize in the presence of TCEP. 

Although we add sodium ascorbate to the cyclization mixture to prevent this process, 

potential cleavage of the C–Se bond should be monitored.  

 

A general by-product that may result from any of the above imine-macrocyclizations is 

oligomerization (formation of dimers, trimers, etc.). This problem can be remedied by varying 

the reaction concentration, and specifically, running the reaction at higher dilution. Another 

possible by-product is erosion of α-chirality in the case of non-Gly C-terminal aldehydes. Since 

these reactions are mediated by a thermodynamic (equilibrium) process, it is possible that the C-

terminal residue may epimerize prior to or during the cyclization event. By observing the effects 

of the cyclization reaction on the α-center of the peptide aldehyde, valuable information on the 

structure and predisposition of a peptide to cyclize can be gained.  

 

Question 4: What effect does pH have on the reaction? 

Answer: The pH can have a substantial effect on the nature of the aldehyde-imine equilibrium. 

As discussed above, pH effects may be employed to reduce by-product formation (e.g. aldehyde 

reduction in the reductive amination reaction). Give the profound effects observed with pH 

adjustments, we suggest having on-hand a number of potential buffer systems of varying pH, e.g. 

aqueous NaOAc buffers at various pH values between 3.5 and 7.5, and Na2HPO4 buffers 

between pH 6 and 8. Generally speaking, these buffers can be used interchangeably in any of the 
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macrocyclization reactions (with the exception of the Pictet-Spengler reactions) and can 

therefore be used as a tool for optimization.  

 

Question 5: Do any special precautions need to be taken when setting up the reactions? 

Answer: The macrocyclizations proceed in open-air flasks and most often under aqueous 

conditions. As such, they are generally very operationally simple.  
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