Supplementary Information to ## Novel Surface-Enhanced Raman Scattering-based Assays for Ultra-sensitive Detection of Human Pluripotent Stem Cells Jingjia Han^{1,#}, Ximei Qian^{2,#}, Qingling Wu^{1,2}, Rajneesh Jha¹, Jinshuai Duan⁴, Zhou Yang⁴, Kevin O. Maher¹, Shuming Nie^{2,3}, Chunhui Xu^{1,2} ¹Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA ²Wallace H. Coulter Departments of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA ³College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu Province 210093, China ⁴School of Materials Science and Engineering, University of Science & Technology Beijing, Beijing, China #: These authors contributed equally to this work **Supplementary Figure 1**: Characterization of gold (Au) nanoparticles conjugated with SSEA-5 IgG1 (Left) or TRA-1-60 IgM (Right). (A) Transmission electron microscopy (TEM) graphs. The nanoparticles had a diameter of ~60 nm. (B) Optical absorptions of SSEA-5-conjugated and TRA-1-60-conjugated nanoparticles displayed a typical profile for Au nanoparticles. (C) SERS intensity produced by Au nanoparticles prepared with different numbers of Raman reporter molecules per nanoparticle. For both SSEA-5-conjugated and TRA-1-60-conjugated nanoparticles, a ratio of ~12,000 Raman reporter molecules per nanoparticle produced the highest SERS intensity with minimal colloid aggregation and therefore was used throughout the experiments.