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Calculations	for	spatial	calibration	

We have modeled the problem of finding a transformation from any sensor coordinate frame to 

the coordinate frame of the first marker as path finding problem in a bipartite undirected graph 

ܩ ൌ ሺܸ, ሻܧ  with ܸ	 ൌ ܯ	 ∪ 	ܵ ܯ , ∩ ܵ ൌ ∅  and ܧ ൌ ሼሺݏ,݉ሻ ∈ ܵ ൈܯ, ሺ݉, ሻݏ ∈ ܯ ൈ

 denotes the set of all markers and ܵ the set of all ܯ ሽ where"݉	ݎ݁݇ݎܽ݉	ݏ݁݁ݏ	ݏ	ݎ݋ݏ݊݁ݏ"	|		ܵ

sensors. We define the relation “s	can	see	m	indirectly” as “there	is	a	path	in	G	from	s	to	m”. 

Here we outline proofs for the following two claims: (1) ܩ	is	connected	 ⇔ ݏ∀ ∈ ܵ		∀݉ ∈ ܯ ∶

	s	can	see	m	ሺindirectlyሻ  and (2) ∃	path	݌	from	ݏ ∈ ܵ	to	݉ ∈ 	ܩ	in	ܯ ⇒

the	position	and	orientation	of	sensor	s	can	be	expressed	relative	to	marker	m.  

Proof of claim 1 (by contradiction): 

(1.1) G	is	connected	 ⇒ ݏ∀ ∈ ܵ		∀݉ ∈ ܯ ∶ 	s	can	see	m	ሺindirectlyሻ  

Let ܩ be connected, ݏ∗ ∈ ܵ, ݉∗ ∈  ∗݉ cannot see ∗ݏ cannot see ݉∗ (indirectly). Since ∗ݏ and ܯ

indirectly, it follows from the definitions that there is no path in ܩ from ݏ∗ to ݉∗. Since G is an 

undirected graph, it therefore follows that G is not connected which is a contradiction to the 

assumptions. Hence, the claim is true. 

(1.2) G	is	connected	 ⇐ ݏ∀ ∈ ܵ		∀݉ ∈ ܯ ∶ 	s	can	see	m	ሺindirectlyሻ 

Let ∀sensor	s	∀marker	m	:	s	can	see	m	ሺindirectlyሻ. Assuming G is not connected, it follows 

by definition: ∃ݏ∗ ∈ ܵ,݉∗ ∈ ܯ ∶ there	is	no	path	between	s*	and	m*. Using the definition of 

the “sees-indirectly” relation it follows ∃ݏ∗ ∈ ܵ,݉∗ ∈ ܯ ∶ 	 s*	sees	m*	indirectlyതതതതതതതതതതതതതതതതതതതതതതതതതത, which is a 

contradiction to the assumptions. Hence, the claim is true. 

It follows: G	is	connected	 ⇔ ∀sensor	s	∀marker	m	:	s	can	see	m	ሺindirectlyሻ. 

Calculations to express any sensor s in the coordinate frame any marker m (claim 2): 

 ௠,௦: position of marker m in sensor s’ coordinate-frameݐ

ܴ௠,௦: orientation of marker m in sensor s’ coordinate-frame 

 ௠,௡: position of marker m in marker n’s coordinate-frameݐ

ܴ௠,௡: orientation of marker m in marker n’s coordinate-frame 
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Due to the calibration procedure we are given ݐ௠,௦ and ܴ௠,௦ for all sensor-marker-combinations 

for which the sensor s sees marker m, i.e. for which holds: ሺݏ,݉ሻ ∈  .ܧ

Case 1: ሺݏ,݉ሻ ∈  ܧ

The orientation of sensor s can be expressed in the marker m’s coordinate-frame by ܴ௦,௠ ൌ

ܴ௠,௦
் . Correspondingly, the position of sensor s can be expressed in marker m’s coordinate-

frame by ݐ௦,௠ ൌ െܴ௠,௦
்  .௠,௦ݐ	

Case 2:	ሺݏ,݉ሻ ∉  ܧ

Let ݌ ൌ ሺݏଵ ൌ ,ଵ݉,ݏ ,ଶ,݉ଶݏ … , ,ேିଵ,݉ேିଵݏ ே,݉ேݏ ൌ ݉ሻ be a path from sensor ݏ to marker ݉ 

in ܩ  with ݉௜ ∈ ,ܯ ௜ݏ ∈ ܵ . Hence, ሺݏ௜,݉௜ሻ ∈ ܧ	  for ݅ ൌ 1…ܰ  and ሺݏ௜ାଵ,݉௜ሻ ∈ ܧ	  for ݅ ൌ

1…ܰ െ 1. Due to the calibration procedure we are given ݐ௠೔,௦೔ ௠೔,௦೔శభ, ܴ௠೔,௦೔ݐ ,  and ܴ௠೔,௦೔శభ. 

Using the considerations for the first case we can easily calculate  ݐ௦೔,௠೔
 and ܴ௦೔,௠೔

. We are 

looking for ݐ௦,௠ ൌ ௦భ,௠ಿݐ
 and ܴ௦,௠ ൌ ܴ௦భ,௠ಿ

.  

1) Calculate for ݅ ൌ 1…ܰ െ 1: 

௠೔,௠೔శభݐ
ൌ ܴ௦೔శభ,௠೔శభ

௠೔,௦೔శభݐ ൅ ௦೔శభ,௠೔శభݐ
  

ܴ௠೔,௠೔శభ
ൌ ܴ௦೔శభ,௠೔శభ

ܴ௠೔,௦೔శభ  

2) Calculate for ݆ ൌ ܰ െ 2…1 (in that order): 

ܴ௠ೕ,௠ಿ
ൌ ܴ௠ೕశభ,௠ಿ

ܴ௠ೕ,௠ೕశభ
  

௠ೕ,௠ಿݐ
ൌ ܴ௠ೕశభ,௠ಿ

௠ೕ,௠ೕశభݐ
൅ ௠ೕశభ,௠ಿݐ

  

3) Calculate: 

ܴ௦,௠ ൌ ܴ௦భ,௠ಿ
ൌ ܴ௠భ,௠ಿ

ܴ௦భ,௠భ
  

௦,௠ݐ ൌ ௦భ,௠ಿݐ
ൌ ܴ௠భ,௠ಿ

௦భ,௠భݐ
൅ ௠భ௠ಿݐ

  


