

Fig. S1. (Related to Fig. 1, 2, 3) Estimation of escape currents in the ER retention system for expression of triheteromeric NMDARs. Co-expression of GluN1, GluN2A, and GluN2B subunits can produce three populations of functional NMDA receptors (i.e. A/B, A/A, and B/B), but expression of dihetomeric GluN1/2A (A/A) and GluN1/2B (B/B) receptors at the cell surface can be prevented by fusing the engineered C1 to the intracellular C-terminus of GluN2A (A-C1) and replacing the C-terminal domain of GluN2B with that of C2-tagged GluN2A (B-C2) (Hansen et al., 2014). Responses from A-C1/A-C1 and B-C2/B-C2 receptors that may have escaped ER retention (i.e. "leak" currents) can be assessed using RK+TI mutations, which abolish binding of glutamate and render NMDA receptors containing this subunit non-functional (Hansen et al., 2014). Currents activated by 1 mM glutamate plus 100 µM glycine from Xenopus oocytes injected with (A) GluN1, GluN2A-C1, and GluN2B-C2 cRNAs, (B) GluN1, GluN2A-C1, and mutated GluN2B-C2 (R519K and T691I) cRNAs, or (C) GluN1, mutated GluN2A-C1 (R518K and T690I), and GluN2B-C2 cRNAs. (D) Quantification of current amplitudes of each group. Data are mean \pm SEM of current amplitudes from 6 oocytes for each group. The sum of the fractional "leak" currents assessed using the RK+TI mutations provides an estimate of the percent "leak" current in oocytes expressing triheteromeric A-C1/B-C2 receptors (Hansen et al., 2014).

Figure S2.

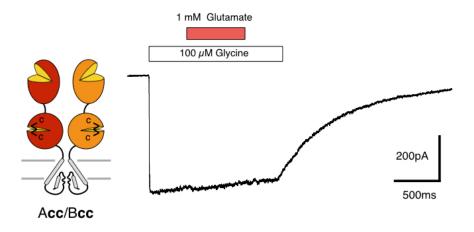


Fig. S2. (Related to Figure. 1) Crosslinking of the GluN2 ligand binding domain is highly efficient. Two cysteine mutations in GluN2A and GluN2B were designed to spontaneously form a disulfide bond that locks the ligand binding domain (LBD) in a conformation similar to the glutamate-bound state (GluN2A: K487C + N687C; GluN2B: K488C + N688C; hereafter Acc and Bcc) (Blanke and VanDongen, 2008, Kussius and Popescu, 2010, Dai and Zhou, 2016). Acc/Bcc receptors expressed on HEK-293 cells open fully when exposed to 100 μ M glycine. Addition of 1 mM glutamate did not further increase the amplitude, indicating complete formation of the engineered disulfide bond. Current amplitude in glycine alone was 99.5 ± 1.0 % of the current amplitude in glutamate and glycine (n = 3).

Figure S3.

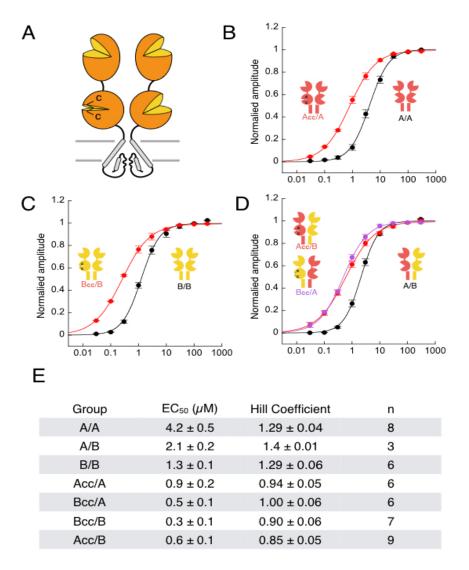


Fig. S3. (Related to Figure. 1) Crosslinking a single GluN2 within NMDARs increases glutamate potency and decreases Hill coefficient. (A) Cartoon showing LBD crosslinking of a single GluN2 subunit. (B-D) Glutamate concentration-response relationships for wild type and single-GluN2 crosslinked NMDARs expressed in *Xenopus* oocytes measured using two-electrode voltage-clamp recordings. (E) Summary of EC₅₀ values and Hill coefficients.

Figure S4.

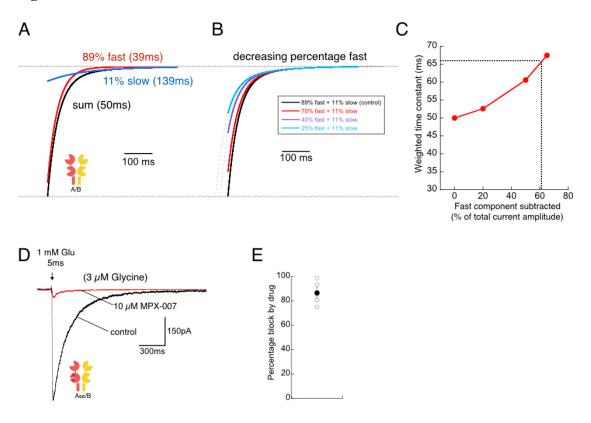


Fig. S4. (Related to Fig. 1 and STAR Methods) A/B or Acc/B deactivation is not mediated by escaped A/A or B/B receptors, respectively.

(A) The measured deactivation of A/B receptors can be fitted using a double exponential function, with 89% fast component (39 ms) and 11% slow component (139 ms). (B) Decreasing the amplitude of the fast component without changing the slow component results in a progressively slower weighted time constant, which is quantified in (C). This approach estimates that about 60% of the total current amplitude would have to be mediated by escaped A/A to cause the A/B deactivation time constant to be shifted from 66 ms to 50 ms. (D) The B/B escape current contributing to the measured Acc/B current was estimated by blocking the current using the GluN2A-selective NMDAR antagonist MPX-007 (kindly provided by Luc Therapeutics, Inc) (Volkmann et al., 2016). MPX-007 at 10 μ M in the presence of 3 μ M glycine blocks >95% of GluN2A-containing receptors (i.e. A/A and A/B), but does not affect B/B diheteromeric receptors (Yi et al., 2016). (E) MPX-007 blocked Acc/B responses by 87 ± 4 % (n=6), suggesting the majority of the expressed receptors contain at least one GluN2A subunit. The remaining <13% of the response, which is not inhibited by MPX-007, is mediated by unblocked A/B receptors and escaped B/B receptors.