2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications ## **Supplementary Material** Supplementary Table 1: Agents to treat DM | | Agent | Route | Molecular target | Impact on glucose
homeostasis and
insulin | Impact on weight | Impact on colorectal cancer | |--|---|------------|--|--|----------------------|-----------------------------| | Activate
insulin
receptor/
increase
insulin
secretion | Insulin | Parenteral | Activates insulin receptor | Increased insulin | Increase | Increase/neutral/decrease | | | Sulphonyl-
ureas/ Megli-
tinides | Oral | Inhibits sulfonylurea receptor (SUR1, a component of the ATP-dependent potassium channel)/modulate ATP-dependent potassium channel activity in pancreatic beta cells | Increased insulin secretion | Increase | Neutral | | | | | | | | | | | GLP-1-based therapies: DPP-4 inhibi-tors | Oral | Inhibits DPP-4 and decreases degradation of incretins | Enhanced glucose-
dependent insulin
secretion, slowed
gastric emptying
reduced postprandial
glucagon and food
intake | Neutral | Neutral | | | GLP-1-based
therapies:
GLP-1 receptor
agonists | Parenteral | Activates GLP-1 receptor | | Neutral/
decrease | Neutral/decrease | | | | | | | | | | Sensitize
to insulin
action | Thiazolidin-
ediones | Oral | Activate peroxisome proliferator-activated receptor gamma (PPAR-γ) | Sensitize to insulin action: increase glucose utilization and decrease glucose production | Neutral | Neutral/decrease | | | | | | | | | | Decrease
glucose
absorp-
tion or
synthesis | Metformin | Oral | Inhibits glycerophos-
phate dehydrogenase | Decrease glucose synthesis | Decrease | Decrease | | | α-glucosidase
inhibitors | Oral | Inhibit intestinal alpha-
glucosidase | Decrease glucose gut absorption | Decrease | Neutral/decrease | | | SGLT2 inhibitors | Oral | Inhibit sodium-linked glucose transporter 2 | Increase glucose urinary losses | Decrease | Neutral | GLP-1: Glucagon-like peptide-1; DPP-4: dipeptidyl peptidase 4; SGLT2: sodium-linked glucose transporter GLP-1-based therapies mimic the effects of incretins. Incretins (GLP-1 and glucose-dependent insulinotropic polypeptide) are gut hormones released in response to food ingestion that stimulate insulin secretion and limit glucagon release.