
1 Mixture model for DNase I data

We assume to have DNase I cuts nri ∈ N for regions r ∈ {1, . . . , R} at positions i ∈
{1, . . . , L}, where R is the number of regions and L the length of the regions (all assumed
to be of the same length). Indices iL and iR refer to boundary positions (the left and right
boundaries of a protected sequence motif) and we assume that the cuts are all aligned with
respect to some ankor, for example the position of a sequence motif reflecting the specificity
of a known protein-DNA interaction. We define J = {iL, . . . , iR} and I = {1, . . . , L}\J.

The goal is to calibrate a mixture model from the data, such that we can learn which
sites are bound (showing footprints), and which are not. While similar approaches have
been proposed [Pique-Regi et al., 2010], we are interested in additionally learning the op-
timal boundary positions, such that we can detect if a footprint changes shape (in our
case its width) in different conditions (for example at different time points). To make
the model tractable, we make the simplifying assumption that the shape of a footprint
can be approximated by a rectangular shape, showing on average less counts in the pro-
tected regions. While it was shown previously that the signal within the protected region
can be nonuniform for some factors [Neph et al., 2012], the rectangular model is a simple
generic model that captures the essential properties of DNase I signals around bound sites
in many cases. Specifically, we express the probability (likelihood) of the measured cuts
~n = (n1, . . . , nL) (here for a single region or one row in the matrix nri) as a product of
independent Poisson variables with a common mean λ when the site is not bound

P1(~n|~λ) =
L∏
i=1

Pois(ni|λ) =M(~n|~p,N)Pois(N |Λ) ≡ Q1(~n; Λ) , (1)

where we used the property that products of independent Poisson variable can be
factored into a multinomial (M) and one Poisson distribution, and defined N =

∑
i ni,

Λ =
∑

i λi = Lλ, pi = 1
L . The notation Q1 emphasises that this is now a function of Λ.

For the second (bound) model we assume two distinct means λI for unprotected, and
λJ for protected sites, representing the average number of cuts outside (i ∈ I), and inside
(j ∈ J) the footprinted region, respectively. This leads to

P2(~n|λI , λJ , iL, iR) =
∏
i∈I

P (ni|λI)
∏
j∈J

P (nj |λJ) (2)

= M(~n|~q,N)Pois(N |Λ) ≡ Q2(~n; iL, iR, qJ ,Λ) , (3)

where here Λ =
∑

i λi = L1λI + L2λJ with L1 = |I|, L2 = |J |, qi = λI/Λ ≡ qI for
i ∈ I and qi = λJ/Λ ≡ qJ for i ∈ J . The notation Q2 shows the dependencies in the new
variables.

We then marginalize the probabilities over the unknown Λ (using an improper flat prior,
such that

´∞
0 Pois(N |Λ)dΛ = P (N) = 1, and thus equivalent to making no assumption on

the total number of cuts). After some straightforward algebra, this leads to
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F1(~n) =

ˆ ∞
0

dΛQ1(~n; Λ) =
N !∏
i(ni!)

L−N (4)

where N =
∑

i ni, and

F2(~n|iL, iR) = L

ˆ 1/L

0
dqJ

ˆ
dΛQ2(~n;iL, iR, qJ ,Λ) (5)

=
1

N + 1

N1!∏
i∈I(ni!)

N2!∏
j∈J(nj !)

L−N1
1 L−N2

2

1

r
Ir(N2 + 1, N1 + 1) (6)

where N1 =
∑

i∈I ni, N2 =
∑

j∈J nj , r = L2
L , and Ir(α, β) is the regularized incomplete

Beta function (I1(α, β) = 1) that comes form the qJ integral. Note that since the same
improper (not normalized) prior on Λ is used for both models, this does not pose any
difficulties. The upper integration bound on the qJ integral uses the assumption that
qJ ≤ qI ≤ 1/L, reflecting that the probability of cuts is reduced inside J due to protection
from the bound protein.

We can now formulate the mixture model by introducing a global probability q (to be
estimated) to be in the bound state, such that

P (~n|iL, iR, q) = (1− q)F1(~n) + q F2(~n|iL, iR) , (7)

or since q is assumed to be common to all regions

P ({nri}|iL, iR, q) =
∏
r

P (nr•|iL, iR, q) . (8)

Finally we can marginalize over q to obtain the likelihood of the whole data with respect
to the indices I:

P ({nri}|iL, iR) =

ˆ 1

0
dq P ({nri}|iL, iR, q) , (9)

where we have assumed a uniform prior on q. The interesting aspect is that this likelihood
calculation requires only doing a one-dimensional numerical integral, and one can then
maximize with respect to the discrete indices iL and iR to find the optimal boundaries.
Once these have been found, it is straightforward to estimate the optimal q using Eq. 8,
and also to assign posterior probabilities to each region for each of the two models using
Eqs. 4 and 6.
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