
S3 Text. Receptor positive feedback

We also considered a variant of the model that allows for positive feedback between each signalling type

and its own receptor presentation rate.

Briefly, after similar scaling, such a model leads to modified equations of the form
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Here γ, α are positive feedback magnitudes for each of the FGFR and WntR signalling systems, and

φ2, ω2 are the respective “EC50” parameters for that feedback (i.e. concentrations at which the positive

feedback is 50% of its maximal strength). The case γ = α = 0 reduces to the previous model with mutual

inhibition alone.

If the positive feedback terms are Michaelian (p = q = 1) terms, then the model is hardly changed

qualitatively, although steady states are of somewhat greater magnitude. (This stems from the fact that

the activation terms are multiplied by factors that approach 1 + γ and 1 + α for large values of FR,WR.)

Even in the case that p, q ≥ 2, there are parameter regimes in which little qualitative change is noticeable,

as shown in Fig. A. However, some exceptions are noteworthy, as illustrated in Fig. B.

Setting WR = 0 in Eqn. (18a) leads to a well-known positive feedback ODE for FR that is known to

have a bistable regime for an appropriate range of parameters when p ≥ 2. Similarly, setting FR = 0 in

Eqn. (18b), with q ≥ 2 can produce a bistable WR system. It comes as no surprise, therefore, that the

system as a whole can have up to four stable steady states, with all possible combinations of low and high

levels of FR and WR. Some extreme examples of possible outcomes are shown in Fig. B. Such behavior

occurs when the Hill coefficients p, q are relatively large, e.g ≈ 10, so that positive feedback turns on very

rapidly near its threshold. Experimentally, it is not clear whether cells in the PLLP exhibit such diversity

of states.

It is not possible to solve for steady states of Eqs. (18) analytically in the general case, since the

nonlinearities lead to polynomial equations. However, good insight can be obtained once more by

approximating the rational functions by step functions. This “sharp switch approximation” leads to

piecewise constant approximation of the nullclines, which are then easy to handle. The positive feedback

terms turn on when FR = φ2 and when WR = ω2, respectively. It is then easy to show that bistability in

either the FR or the WR signalling system takes place when 1 < φ2 < 1 + γ or 1 < ω2 ≤ 1 + α,
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Figure A. Positive feedback with little effect. Introducing positive feedback into the model, as per
Eqs. (18) has minor effect in some cases. Shown here are nullclines of the revised model in four cases that
resemble the dynamics of the system with no positive feedback. Parameter values: (a)
φ = 0.7, ω = 0.6, ω2 = 0.5, φ2 = 0.4, (b) φ = 2.1, ω = 2.5, ω2 = 0.5, φ2 = 0.4, (c)
φ = 1.2, ω = 0.5, ω2 = 2.5, φ2 = 2.4, (d) φ = 0.5, ω = 1.5, ω2 = 2.5, φ2 = 2.4. In all cases,
n = m = p = q = 10, γ = 1.0, α = 1.0. Black dots are stable steady states and white dots are unstable.

respectively. Configurations shown in Fig. B are then possible. As an example, panel (d) is obtained

when φ > 1 + γ > φ2 > 1 and ω > 1 + α > ω2 > 1.
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Figure B. Positive feedback can have major effect. Examples of possible WRFR phase planes
showing the effect of introducing positive feedback into the model, as per Eqs. (18). In these cases one or
both of the Wnt or FGFare bistable, which introduces the possibility of multiple steady states. The
curves on the plot are nullclines of the system of differential equations (18). Parameter values used were:
(a) φ = 0.7, ω = 0.5, ω2 = 1.5, φ2 = 1.4, (b) φ = 1.2, ω = 1.3, ω2 = 1.5, φ2 = 1.4,
(c)φ = 2.7, ω = 2.5, ω2 = 1.5, φ2 = 0.4, (d) φ = 2.7, ω = 2.5, ω2 = 1.5, φ2 = 1.4. In all cases,
n = m = p = q = 10, γ = 1.0, α = 1.0. Black dots are stable steady states and white dots are unstable.
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