
1

20

30

40

50

p

0.54 0.56 0.58 0.6 0.62 0.64 0.66
ϕ

liquid EOS
δg = 10−3

δg = 10−4

δg = 10−5

δg = 10−6

swap

Supplementary Figure 1. Evolution of the reduced pressure p under compression, for a system of N = 2000 particles. The
data obtained from the swap algorithm agree with the Carnahan-Stirling empirical liquid EOS Eq. (Supplementary Equation
4) [1]. For comparison, we also plot data obtained from pure compression done by the LS algorithm without the swap for a
few different compression rate δg. The swap algorithm falls out of equilibrium at much higher ϕ, compared to the standard
compressions.
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Supplementary Figure 2. Quasi-static shear on equilibrium configurations prepared at a few different ϕg. The systems consist
of N = 1000 particles, and the data are averaged over Ns = 100 samples and Nth = 10 − 20 realizations for each sample. (a)
The shear stress σ and (b) the pressure p are plotted as functions of the shear strain γ. At small γ, the stress-strain curve is
fitted to a linear function σ = µγ (lines), and the pressure-strain curve is fitted to a quadratic function p = pg + Rγ2 (lines).
The star marks the peak of the stress-strain curve, which represents the yielding point (γy, σy), and the cross marks the peak
(γm, pm) of the pressure-strain curve. The parameters µ, γy, σy, γm, pm, and R are reported in Supplementary Figure 3 as
functions of ϕg. (c) The rescaled stress-strain curves and (d) the rescaled pressure-strain curves are compared to the mean-field
theoretical predictions (black line) [2], for the equilibrium volume fraction ϕ̂g = 2dϕg/d = 7, where the dimension d = 3. Here
the solid line part is the stable 1-step replica symmetry breaking (1RSB) solution, and the dashed line part is the unstable
1RSB solution [2]. We have checked that the theoretical results are insensitive to ϕ̂g on these rescaled plots.
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Supplementary Figure 4. Quasi-static shear on out-of-equilibrium glass states. The states are compressed from ϕg = 0.643
to target density ϕ before the shear is applied. The systems consist of N = 1000 particles, and the data are averaged over
Ns = 100 samples and Nth = 10−30 realizations for each sample. (a) The shear stress σ as a function of γ, for a few different ϕ
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ZFC shear modulus µZFC (we use γ = 2 × 10−3, see the main text), both of which diverge approaching to the jamming limit
ϕJ = 0.690(1) (vertical dashed line). For all figures, the error bars denote the standard error of the mean.
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Supplementary Figure 6. The stress-strain curves of three different realizations of the compressed glass at (a) ϕ = 0.670, and
(b) ϕ = 0.688, obtained from the same equilibrated sample of N = 1000 particles at ϕg = 0.643. They are driven by different
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Supplementary Figure 7. Stress-strain curves of three different realizations of the compressed glass at (a) ϕ = 0.670, and (b)
ϕ = 0.688, obtained from the same equilibrated sample of N = 1000 particles at ϕg = 0.643. They are driven by the common
strain rates γ̇ = 5 × 10−6 for ϕ = 0.670, and γ̇ = 10−4 for ϕ = 0.688.
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Supplementary Figure 8. Stress-strain curves on the compressed glasses at (a) ϕ = 0.670, and (b) ϕ = 0.688, obtained from three
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Supplementary Figure 9. Schematic illustration of the relaxation of ZFC shear stress σZFC(τ, tw) after an instantaneous shear
strain γ is applied, in the Gardner phase ϕ > ϕG [3]. The two shear moduli µZFC and µFC correspond to the first and second
plateaus respectively. Corresponding time scales for the black solid line are indicated. The dotted black line represents a shorter
waiting time tw. See also Fig. 2 of [3].
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(b) ϕ = 0.688, for a few different tw, under a quasi-static shear strain γ = 10−3. The system consists of N = 1000 particles, and
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Supplementary Figure 12. γ-dependence on the ZFC and FC shear moduli. The data are obtained for (a) N = 500 and (b)
N = 2000 particles, and are averaged over Ns ≈ 200 samples and Nr ≈ 100 individual realizations for each sample. The
vertical dashed line represents the Gardner transition [1], and the solid lines are the mean-field predictions µZFC ∼ p1.41574 and
µFC ∼ p [3].

a

1

2

5

µ̃
/µ̃

g

1 2 5 10 2 5 102 2

p/pg

ϕg = 0.630
ϕg = 0.643
ϕg = 0.655
ϕ̂g=5
ϕ̂g=6
ϕ̂g=7
ϕ̂g=8

b

0

2

4

6

8

10

µ̃
Z
F
C
−
µ̃
F
C

0.64 0.66 0.68 0.7
ϕ

Supplementary Figure 13. ϕg-dependence on the ZFC and FC shear moduli. The data are obtained for N = 1000 particles,
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γ = 2 × 10−3 is used. (a) The numerical data of the rescaled ZFC shear modulus µ̃ZFC = µZFC/p (filled symbols) and the
rescaled FC shear modulus µ̃FC = µFC/p (open symbols) with a few different ϕg, are compared to the mean-field theory (lines)
with different ϕ̂g, where ϕ̂g = 2dϕg/d with d = 3, following the convention used in Ref. [2]. Both numerical and theoretical
results are rescaled by the reference values µ̃g = µg/pg and pg at ϕg. (b) The difference µ̃ZFC − µ̃FC as a function of ϕ for a
few different ϕg, where the Gardner transitions ϕG (values from Ref. [1]) are marked by vertical lines.



7

0.0

2.5

5.0

7.5

10.0

µ̃
Z
F
C
−
µ̃
F
C

0.675 0.68 0.685 0.69
ϕ

tw = 0
tw = 10
tw = 100
tw = 1000

Supplementary Figure 14. The difference µ̃ZFC − µ̃FC is plotted as a function of ϕ, for ϕg = 0.643 and N = 1000. The shear
moduli are measured at τ = 1 for a few different waiting time tw. The data are obtained by using γ = 2 × 10−3, and are
averaged over Ns ≈ 100 samples and Nr ≈ 50 independent realizations for each sample. The vertical dashed line represents
ϕG = 0.684 [1].

5

6

7

8

9
101

2

µ̃

102 103 104p

ZFC
FC
FCS

Supplementary Figure 15. The reduced shear modulus obtained from the third protocol (FCS) is compared to µ̃ZFC and µ̃FC,
for ϕg = 0.643, N = 1000, and γ = 2×10−3. The data are averaged over Ns ≈ 200 samples and Nr ≈ 100 individual realizations
for each sample.

2

5

101

2

µ̃

102 103 104

p

µ̃ZFC
µ̃FC

Supplementary Figure 16. Protocol-dependent shear modulus of a bidisperse hard disk glass former, where the vertical dashed
line marks the Gardner transition estimated independently in Ref. [1]. The data are obtained for ϕg = 0.808, and are averaged
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SUPPLEMENTARY NOTE 1 – MODEL AND OBSERVABLES

Polydisperse hard sphere system

We study an assembly of N polydisperse HSs whose diameters are distributed according to a probability distribu-
tion [1, 4],

P (D) ∼ D−3, Dmin ≤ D < Dmin/0.45. (Supplementary Equation 1)

This distribution is chosen to optimize the swap algorithm so that denser equilibrium configurations can be obtained,
while ensuring that crystallization is suppressed [4]. The control parameter is the number density ρ = N/V or the

volume fraction ϕ = (π/6)ρ
∫Dmin/0.45

Dmin
dDP (D)D3, where V is the volume of the system. The mode-coupling theory

(MCT) dynamical crossover density is ϕd = 0.594(1) [1]. The simulation time t is expressed in units of
√
βmD̄2,

where the inverse temperature β, the particle mass m, and the mean particle diameter D̄ =
∫Dmin/0.45

Dmin
dDP (D)D all

set to unity.

Shear stress and pressure

For a HS system, the stress is entropic. The stress tensor is given by

Σmn = − 1

V

∑

i<j

rij,mfij,n (Supplementary Equation 2)

where rij,m is the m-th component of the separation vector rij = ri−rj between particles i and j, and fij,n is the n-th
component of the inter-particle force fij . The force fij is computed from the exchange rate of the momentum between
i and j. In our shear protocols, we are interested in the z-x element of the stress tensor (we omit the subscript),

Σ = − 1

V

∑

i<j

zijfij,x. (Supplementary Equation 3)

The pressure P is the negative average of three diagonal elements of the stress tensor, i.e., P = −(Σxx+Σyy+Σzz)/3 =
1
3V

∑
i<j rij ·fij . In this study, we report results in the units of reduced pressure p = βP/ρ and reduced stress σ = βΣ/ρ.

SUPPLEMENTARY NOTE 2 – QUASI-STATIC SHEAR ON EQUILIBRIUM CONFIGURATIONS

First let us report data obtained by quasi-static shear on equilibrium configurations at a few different ϕg (Supple-
mentary Figure 2). As we noted in the main text, the system is in the liquid state in the thermodynamic sense (the
Kauzmann density ϕK, if any, is larger then ϕg), but the α-relaxation time is much larger than our simulation time
scales so that the system behaves as a solid. The stress-strain curve, averaged over many samples and realizations,
shows a linear elastic regime at small γ, followed by yielding. We define the location of the peak in the stress-strain
curve as the yield strain γy. Note that the definition of γy is more ambiguous for the stress-strain curve of a single
realization from a single sample (for example, see Fig. 1b in the main text). In this study, we do not attempt to
precisely determine γy for each single stress-strain curve. The shear modulus µ is determined by µ = σ/γ in the
elastic regime. Both γy and µ grow with ϕg (Supplementary Figure 3). The yield strain γy and the yield stress σy
(which is the stress at γy) appear to vanish continuously around ϕg ≈ ϕd. On the other hand, the shear modulus µ
appears to remain finite at ϕd, which implies a discontinuous jump of µ at ϕd being consistent with the mean-field
theory [3]. In the elastic regime, the dilatancy effect is observed: the pressure p increases quadratically with γ, i.e.,
p = pg + Rγ2, where pg is the pressure at ϕg and γ = 0, and R is the dilatancy parameter. The onset of the peak
in the pressure-strain curves lags behind the yielding, i. e. the peak of the stress-strain curves. We compare our
numerical data to the mean-field theoretical prediction [2], and find reasonable agreement on rescaled plots as shown
in Supplementary Figure 2.
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SUPPLEMENTARY NOTE 3 – QUASI-STATIC SHEAR ON OUT-OF-EQUILIBRIUM
CONFIGURATIONS

Stress-strain curves

Next, let us present quasi-static shear data of out-of-equilibrium configurations. These configurations are obtained
by compressing the equilibrium configurations from ϕg to a target density ϕ, at a constant compression rate δg = 10−3.
Supplementary Figure 4a shows that at small γ, the average stress-strain curve has a linear regime, which shrinks
with increasing ϕ. Note that the data presented here are obtained by averaging over many samples and realizations,
while the data in Fig. 1 (main text) are for one single sample and one single realization. For ϕ > ϕG, the apparent
linear regime in Supplementary Figure 4a is not truly elastic, since it is averaged over many mesoscopic plastic
events (MPEs) (Fig. 1). Thus the shear modulus defined as µ = σ/γ in the linear regime is not only due to purely
harmonic responses but also involves non-affine corrections due to the plastic events. With this point being clarified,
we show that the shear modulus µ obtained from fitting the data in the linear regime, is basically consistent with
µZFC presented in the main text (Supplementary Figure 4b).

At larger γ, we find that with increasing ϕ, the shear yielding disappears and the shear jamming emerges (Supple-
mentary Figure 4a), which can be also observed in Fig. 1. Note that the simulation is performed under the constant
volume condition. If we instead fix the pressure and allow the volume to change, then the shear jamming does not
appear and the shear yielding exists, even at large ϕ (Supplementary Figure 5). We also stress that the shift from the
shear yielding to the shear jamming is not correlated to the Gardner transition. In fact, Supplementary Figure 5 shows
that it is possible to observe both MPEs (at small γ) and yielding (at large γ) in the same stress-strain curve. The
key difference is that, after a MPE, the system remains in the same basin although it escapes from the sub-basin, and
therefore it still behaves like a solid, while after yielding, the system escapes from the basin and essentially behaves
like a fluid.

We next discuss in detail how the measurements of stress-strain curves depend on factors such as the compres-
sion rate δg, the shear rate γ̇ (Supplementary Figure 6), the realization (Supplementary Figure 7), and the sample
(Supplementary Figure 8). First of all, although these configurations are in principle out-of-equilibrium, they reach
restricted equilibrium [2] for ϕ < ϕG, i.e., they are nearly equilibrated within their glass basins. As shown in Ref. [1],
neither structural relaxation nor aging can be observed within the simulation time scale. According to that, in this
regime, the results presented here should be nearly unchanged if a slower compression rate is used. The situation
is different for ϕ > ϕG: because the time scale diverges in this regime, it is difficult to obtain even the restricted
equilibrium configurations and the data would be δg-dependent. Effectively, decreasing δg is equivalent to increasing
the waiting time tw. Since the δg-dependence has been well studied in previous work [1], we do not repeat the analysis
here. For other factors, in the regime ϕ < ϕG, our results are independent of the shear rate (Supplementary Figure 6)
and realizations (Supplementary Figure 7), although noticeable sample-to-sample variance (Supplementary Figure 8)
is observed. In contrast, for ϕ > ϕG, the stress-strain curve becomes realization-dependent. This observation is
consistent with our basic expectation: the free energy landscape is complex in this regime, and the system could fall
into different sub-basins after compression.

Relaxation of the shear stress: connection to the free-energy landscape

To better understand the relaxation of shear stress upon a instantaneous shear strain γ, in particular the behavior
of σZFC(τ, tw) in the Gardner phase (Fig. 2b in the main text), for comparison we schematically plot σZFC(τ, tw)
anticipated from a theoretical point of view [3] (Supplementary Figure 9). The key feature is that, after an initial
fast decay within the ballistic time scale τb, two steps of relaxations are expected: the σZFC(τ, tw)/γ firstly relaxes to
the plateau corresponding to µZFC at time τ ∼ τβ , and then it further relaxes to the second plateau corresponding
to µFC at τ ∼ τmb. Here τβ and τmb are the times needed to explore a single glass sub-basin and a glass meta-basin
respectively. At even larger time τ ∼ τα, the stress may eventually relaxes to zero due to α-processes. In our study,
the initial configurations at ϕg are deeply equilibrated, such that τα is far beyond our simulation time scale. Thus the
α-relaxation is irrelevant in our analysis. However, if the initial configurations are far away from equilibrium, then
τα could be comparable to the simulation time scale. In that case, the last step of relaxation towards zero stress may
be observed [5, 6]. On the other hand, the behavior of σFC(t) is much simpler. As a one parameter function, it is
tw-independent by definition, and σFC(t)/γ should converge quickly to µFC after the initial ballistic processes.
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Relaxation of the shear stress: the case of slow switching on of the shear strain

In the main text we discussed the relaxation of the stress after instataneous shear. Here let us examine how the
shear stress relaxes if a small shear strain γ is applied quasi-statically (Supplementary Figure 10). The data should
be compared with those in Fig. 2, where an instantaneous shear strain is applied. For ϕ < ϕG, we do not see aging
effects within our numerical accuracy. The zero-field compression (ZFC) and the field compression (FC) shear stresses
converge quickly to the same value. For ϕ > ϕG, no converge is observed within our simulation time window. The
σZFC(τ, tw) displays a plateau for short τ , followed by slow decay. Note that the time scale τ = 1 used in determining
µZFC (see the main text) is in the plateau region.

Time evolution of the pressure

In the main text, we plot the rescaled shear stress σ̃ = σ/p in Figs. 2 and 3, since a simple scaling relation σ ∼ p is
expected in the normal glass phase. Here we examine whether the pressure p depends on time and protocol. Indeed,
Supplementary Figure 11 shows that, in contrast to the stress, the pressure is nearly time-independent and protocol-
independent after instantaneous shear, both below and above the Gardner transition. Therefore, σ̃ truly reveal the
behavior of stress since we can treat p as a constant at any ϕ.

SUPPLEMENTARY NOTE 4 – ADDITIONAL DATA ON THE PROTOCOL-DEPENDENT SHEAR
MODULUS

Here we report supplementary data on the protocol-dependent shear modulus. We discuss how the ZFC and the
FC shear moduli depend on the the shear strain γ, the number of particles N , equilibrium density ϕg, and the waiting
time tw. We also measure the shear modulus using a third protocol.

Dependence on the shear strain γ

In our analysis, the shear modulus is measured by taking the ratio between the stress and the strain, i.e., µZFC =
(σZFC− σ0)/γ and µFC = (σFC− σ0)/γ, where σ0 is the remanent shear stress. If γ is sufficiently small such that the
non-linear corrections are negligible, the measured modulus should be independent of γ. Our data show that the FC
modulus µFC is indeed in such a linear regime for the chosen γ (see Fig. 3b in the main text for N = 1000 systems,
and Supplementary Figure 12 for N = 500 and N = 2000 systems). However, γ-dependence is observed for µZFC:
at large pressure p close to jamming, µZFC increases for smaller shear strain γ. For smaller γ, the large-p scaling
µZFC ∼ pκ agrees better with the mean-field theory, for any N studied, but additional data are required to conclude
if the mean-field result is coincided in the limit γ → 0. Recently, a very careful study shows that the mean-field
jamming exponents, which characterize the critical distribution of small inter-particle gaps and weak contact forces,
are consistent with simulation data in finite dimensions, after removing localized bucking excitations [7]. Such an
analysis in the p→∞ limit is beyond the present numerical accuracy.

Dependence on the number of particles N

For a fixed γ, Fig. 3 in the main text shows that at large p, µZFC decreases with increasing N . It suggests that
the non-linear effect, associated to stress relaxation due to MPEs, is stronger in larger systems. Indeed, in Ref. [8],
the authors found a finite-size scaling δγ1 ∼ Nβ with β ≈ −0.62, for the mean strain δγ1 at which the first MPE
takes place in amorphous solids. This scaling suggests that, MPEs are easier to occur in larger systems, and become
unavoidable at any finite shear strain in the thermodynamic limit, because δγ1 → 0 as N →∞. It is thus reasonable
to see that data with smaller γ (for a fixed N) or smaller N (for a fixed finite γ) obeys better the mean-field scaling
µZFC ∼ p1.41574, because the theoretical µZFC is only concerned about the linear response [3].

In our data (Fig. 3b in the main text and Supplementary Figure 12), we do not find appreciable N -dependence of
µFC. In contrast, a scaling relation µFC ∼ N−0.25 was reported in Ref. [5]. Here we discuss possible reasons for this
discrepancy. In [5], the systems are quenched from completely random initial configurations. Compared to the case
in well equilibrated systems, in such non-equilibrium systems, the stress relaxes much faster and eventually decays
to zero, i.e., the system melts quickly [6] (see Supplementary Figure 9 for an illustration). Considering that larger
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systems have an easier tendency to relax, we expect that in the thermodynamic limit, the system turns to a liquid
within the simulation time scale used in Ref. [5], which is the reason why µFC → 0.

Dependence on the initial equilibrium density ϕg

We find that our basic observation – the bifurcation between the ZFC shear modulus µZFC and the FC shear
modulus µFC at the Gardner transition ϕG – is independent of the initial equilibrium density ϕg (see Supplementary
Figure 13). Note that the value of ϕG itself depends on ϕg. The large pressure (ϕ� ϕG) scalings, µZFC versus p, and
µFC versus p, are nearly unchanged for different ϕg. Additionally, we compare our simulation data with theoretical
predictions for ϕ < ϕG. We plot µ̃ZFC/µ̃g and µ̃FC/µ̃g as functions of p/pg obtained from simulations, together with
the mean-field state following theory [2], where µ̃ = µ/p is the modulus rescaled by the pressure, and µg and pg are
the shear modulus and the pressure at ϕg. Note that the theory does not distinguish between ZFC and FC moduli
in this regime. On this rescaled plot, the theory and the simulation data show similar behaviors, both of which are
insensitive to ϕg. We point out that the mean-field theory uses an over-simplified liquid EOS, that is only valid for
mono-disperse hard spheres in the large dimensional limit. Thus a direct comparison between the theory and our
simulation is impossible. However, once the effect of this mismatch on the liquid structure is removed by a proper
rescaling with respect to the reference point at ϕg, the theory basically captures the general trend on how the system
evolves under a slow compression annealing.

Dependence on the waiting time tw

In Supplementary Note 3, we have discussed how σZFC(τ, tw) and σFC(τ, tw) relax with τ under a quasi-static shear
strain γ. Based on the data (Supplementary Figure 10), we choose time scales τ = 1 and τw = 10 to measure µZFC

and µFC (see the main text). The scale τ = 1 is chosen within the first plateau regime of σZFC(τ, tw). Note that
for larger τ , the difference µZFC − µFC would decrease, and would eventually vanish as τ →∞, even in the Gardner
phase. On the other hand, in order to examine the tw-dependence more carefully, we obtain additional data of µZFC

and µFC for a few different tw (we fix τ = 1 in all cases). Interestingly, we found that the differences µZFC − µFC

obtained by using different tw, when plotted as a function of ϕ, collapse onto the same curve, within our numerical
accuracy (Supplementary Figure 14). In particular, because the Gardner transition is determined as the bifurcation
point between µZFC and µFC, this result shows that the location of the transition point is independent of tw in our
approach.

A third protocol

To further verify and emphasize the protocol dependence on the shear modulus, we design a third protocol, in
which we apply an additional shear strain after the FC procedure. In this protocol, we first apply a small quasi-static
strain γ at ϕg, compress the system to ϕ, and then after waiting for tw = 10 and τ = 1, we measure the stress
σFC. This procedure is basically the same as the FC (see the main text). We then apply an additional quasi-static
strain γ at ϕ, and measure the stress σFCS after waiting for τ = 1. The FCS (FC+shear) modulus is defined as
µFCS = (σFCS − σFC)/γ. Supplementary Figure 15 shows that this shear modulus is close to µZFC, and clearly
different from µFC. From the view point of free energy landscape, for ϕ > ϕG, µFCS represents the local curvature of
the sub-basins at a finite given γ (see Fig. 4 in the main text), while µZFC is the local curvature of the sub-basins at
γ = 0.

SUPPLEMENTARY NOTE 5 – PROTOCOL-DEPENDENT SHEAR MODULUS OF BIDISPERSE HARD
DISKS

To test if the ZFC/FC approach can be applied to other systems, we also study a two-dimensional bidisperse
hard disk model glass former. The system contains N = 1000 equimolar bidisperse hard disks with diameter ratio
D1 : D2 = 1.4 : 1. The dynamical crossover density is ϕd = 0.790(1) [1]. The example in Supplementary Figure 16
shows that the shear modulus becomes protocol-dependent for ϕ > ϕG. This signature can be used to determine ϕG,
whose value is fully consistent with the previous independent estimate [1].
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SUPPLEMENTARY METHODS – NUMERICAL PROTOCOLS

Compression protocols

Generation of dense equilibrium liquids – To prepare dense equilibrium configurations, we combine the Lubachevsky-
Stillinger (LS) algorithm [9] with swap Monte Carlo moves [1, 4]. The LS algorithm consists of standard event-driven
molecular dynamics (MD), and slow compression which is realized by variation of the diameter of particles. Our
protocol consists of the following two steps:

1. Starting from an ideal gas configuration, we first compress it to ϕ0 = 0.54, by growing spheres at a constant
rate δg = 10−3, such that D(t) = D(0)(1 + δgt). Because the process is equivalent to compression, hereafter we
call δg as compression rate. This initial compression is fast enough to suppress crystallization, and slow enough
to equilibrate the configuration up to ϕ0.

2. Starting from the equilibrium configuration at ϕ0, we switch to a slower compression rate δg = 10−5, and
compress the configuration to a higher density ϕg. Swap attempts are introduced: we randomly pick a pair of
particles and exchange their diameters if no overlap is created after the swap. The particle sizes do not change
during swap moves. We perform 10% swap moves and 90% LS molecular dynamics steps. After the compression,
we further relax the configuration for t = 1000 to check that the pressure does not change. The equation of state
(EOS) of our equilibrium configurations agrees with the Carnahan-Stirling (CS) expression (see Supplementary
Figure 1) [10],

pCS(ϕ) =
1

1− ϕ +
3s1s2
s3

ϕ

(1− ϕ)2
+
s32
s23

(3− ϕ)ϕ2

(1− ϕ)3
, (Supplementary Equation 4)

where sk is the k-th moments of the diameter distribution function P (D).

Generation of glasses – The swap algorithm is swithced off once the equilbriated configuration at the target ϕg is
obtained. All the subsequent simulations are performed using the MD without swap. Since the α-relaxation time has
become much larger than our MD simulation time scales, we are left with a piece of glass. We call the configuration
of the particle positions {ri} (i = 1, 2, . . . , N) of such a glass at ϕg as a sample. From each of such a sample at ϕg,
we generate many realizations by setting random particle velocities {vi} (i = 1, 2, . . . , N) drawn from the Maxwell-
Boltzmann disribution. Each of such realizations is compressed by the LS algorithm to obtain compressed glasses at
desired densities ϕ > ϕg. Note that the kinetic energy is conserved so that the system remains at the unit temperature
throughout our simulations.

Shear protocols

Quasi-static shear – In the quasi-static shear, the shear strain γ is increased with time at a constant rate γ̇, which
is set small enough such that the system is quasi-equilibrated at each step. The protocol consists of the following
steps:

1. Increase the shear strain γ instantaneously by an infinitesimal amount γ → γ+ δγ with δγ = 10−4. We perform
an affine deformation to all particles, whose positions are shifted by xi → xi + δγzi, where xi and zi are the
x− and z−coordinates of particles i. This instantaneous shift could introduce overlaps between some particles,
which are removed by using the the conjugated gradient (CG) method [11]. To use CG, a harmonic inter-particle
potential φij(r) = (1− r/Dij)

2 (zero when r > Dij) is used, where Dij = (Di +Dj)/2 is the average diameter
of particles i and j. The boundary condition in the z direction satisfies the Lees-Edwards scheme [12], i.e.,
the x-position of the top (bottom) imaginary box is shifted by δγL (−δγL), where L is the linear size of the
simulation box. After this step, we obtain an non-overlapping hard sphere (HS) configuration under shear strain
γ + δγ.

2. We switch the soft potential back to the hardcore potential, and equilibrate the system by using the event-
driven MD to simulate the dynamics of HSs under fixed shear strain γ + δγ. Again we emphasize that the
dynamics preserves the kinetic energy so that the system remains at a constant temperature. The velocities are
reinitialized after each step of the shear strain. The Lees-Edwards boundary condition is kept. We perform LS
simulation for a duration δt, such that δγ/δt = γ̇.

3. The above two steps are repeated until the shear strain reaches a target value.
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To simulate quasi-static shear, we choose a sufficiently small γ̇ = 10−4. We have checked that for ϕ < ϕG, the
stress-strain response is independent of γ̇ when γ̇ is decreased from 10−3 to 10−5 (see Supplementary Note 3).

Instantaneous shear – To simulate instantaneous shear, we instantaneously increase the shear strain from 0 to γ.
We then turn on the harmonic soft-potential, and use the CG algorithm to remove the overlaps. Different from the
quasi-static shear, the system is generally far away from equilibrium after the instantaneous shear.
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