Use of bacteria to stabilize archaeological iron

Comensoli Lucrezia^{1,2}, Maillard Julien³, Albini Monica^{1,2}, Sandoz Frederic¹, Junier Pilar^{1*}, Joseph Edith^{2,4*}

¹Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland, pilar.junier@unine.ch

²Laboratory of Technologies for Heritage Materials, Institute of Chemistry, University of Neuchâtel, Switzerland, edith.joseph@unine.ch

³Laboratory for Environmental Biotechnology, ENAC-IIE-LBE, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

⁴Haute Ecole Arc Conservation-Restauration, HES-SO, 2000 Neuchâtel, Switzerland, edith.joseph@hearc.ch

*co-corresponding authors

Supplementary material

Supplementary Figure S1. Secondary elemental image of the crystals found on the abiotic control coupons, elemental composition, and corresponding Raman spectra identified as vivianite (Vi).

Supplementary Figure S2. Raman analysis of the abiotic control nail after the reduction test. On the left, the stereoscope images of the area sampled for the analysis; and, on the right, the corresponding Raman spectra identified as; 1: Goethite (Go), 2: Lepidocrocite (Le).

Supplementary Figure S3. Results of the average nucleotide identity (ANI) analysis performed between *Desulfitobacterium hafniense* strain LBE and the reference genome of *D. hafniense* strain DCB-2 (GenBank accession number NC_011830.1). The analysis was performed using the on-line ANI calculator tool available at http://enve-omics.ce.gatech.edu.

Supplementary Figure S4. Raman spectrum of the synthetic akaganeite. The analysis was carried out with a Horiba-Jobin Yvon Labram Aramis microscope equipped with a Nd:YAG laser of 532 nm at power lower than 1 mW (600 gr/mm). The spectral interval was 100 and 1600 cm $^{-1}$ and the measurement conditions were 1000 μ m hole, 100 μ m slit and 5 accumulations of 100 s.

Supplementary material: Anaerobic standard medium for Desulfitobacterium hafniense

Standard minimal medium (MM) according to Prat L, Maillard J, Grimaud R, Holliger C. 2011.

Physiological adaptation of Desulfitobacterium hafniense strain TCE1 to tetrachloroethene respiration. Applied and environmental microbiology **77**:3853-3859.

Mixture for 50 mL of culture, add aseptically with syringes the following solutions to 45 mL of solution A:

- o 1.25 mL solution B
- o 2.50 mL solution C
- o 1.25 mL solution D
- o 0.5 mL sodium lactate 40% (v/v)
- o 1 mL disodium fumarate 16% (v/v)

Solutions

Solution A:

→ Boil, cool down under N₂/CO₂, distribute to anaerobic flasks, gas exchange for N₂/CO₂, autoclave.

Solution B:

To 20 mL of anaerobic sterile H₂O, add the following solutions:

- o 1 mL solution IV, filter sterilize
- o 1 mL solution V
- o 1 mL solution VI
- o 1 mL solution VII
- o 1 mL solution VIII

Solution C:

To 49 mL of solution IX, add:

1 mL solution X

Solution D:

o $CaCl_2 \cdot 2 H_2O$ 4.40 g/L o $MgCl_2 \cdot 6 H_2O$ 4.06 g/L \rightarrow Gas exchange for N₂, autoclave.

Solution IV: Trace elements

EDTA 500 mg/L, dissolve in 900 mL H₂O, adjust the pH to 7.0 with HCl, then add:

FeCl₂·4 H₂O 2000 mg/L 0 $MnCl_2 \cdot 4 H_2O$ 100 mg/L 0 CoCl₂·6 H₂O 190 mg/L 0 $ZnCl_2$ 70 mg/L 0 CuCl₂·2 H₂O 2.55 mg/L 0 AICI₃ 5.52 mg/L 0 H_3BO_3 6 mg/L 0 $Na_2MoO_4 \cdot 2 H_2O$ 41.4 mg/L

24 mg/L, add to 1 L with H₂O $NiCl_2 \cdot 6 H_2O$

Solution V: Vitamins-1

0

Biotin 50 mg/L P-aminobenzoate (sodium salt) 250mg/L Pantothenate (sodium salt) 50mg/L 0 Folic acid·2 H₂O 20mg/L 0 0 Lipoic acid 50mg/L **Pyridoxine** 100mg/L 0 Nicotinic acid 550mg/L

→ Filter sterilize in sterile anaerobic flasks, gas exchange for N₂.

Solution VI: Vitamins-2

o Thiamine-HCl 100 mg/L

→ Filter sterilize in sterile anaerobic flasks, gas exchange for N₂.

Solution VII: Vitamins-3

50 mg/L Riboflavine

→ Filter sterilize in sterile anaerobic flasks, gas exchange for N₂.

Solution VIII: Vitamins-4

Cyanocobalamin 250 mg/L

→ Filter sterilize in sterile anaerobic flasks, gas exchange for N₂.

Solution IX:

NH₄HCO₃ 9.01g NaHCO₃ 76.11 g/L

 \rightarrow Boil, cool down under N₂/CO₂, distribute 49 mL to anaerobic flasks, gas exchange for N₂/CO₂, autoclave.

Solution X:

- O Na₂S·9H₂O 24.02 g in 100 mL
 → Wash crystals with N₂-degased H₂O, weight, dissolve in degased H₂O, filter sterilize into anaerobic flasks, gas exchange for N₂.