Supplemental material S1

Mathematical models for respiration rate measurements

We measured a change in O₂ concentration, *C* (μ mol l⁻¹ = nmol cm⁻³) over time, *t* (s), where *W* (cm³) is the volume of the surrounding medium in the incubation vial:

$$\frac{dC}{dt} \times W \ (nmol \ O_2 \ s^{-1}) \tag{1}$$

In a filled cuvette with planktonic bacteria the volume is described as

$$V = V_{magnet} + W \tag{2}$$

and in a filled cuvette containing n beads the volume from which the change in O_2 concentration is measured is

$$V = V_{beads} + V_{magnet} + W \tag{3}$$

A cuvette with total volume V (cm³) contains *n* individual beads each with a radius r_0 (cm). The total bead volume is thus described by

$$V_b = n \times \frac{4}{3} \pi r_0^3 (cm^3)$$
(4)

and the total surface area is described by

$$A_b = n \times 4\pi r_0^2 (cm^2)$$

(5)

Thus, the O₂ consumption pr. bead is given by

$$\frac{\left(\left(\frac{dc}{dt}\right) \times W\right)}{n} (nmol \ O_2 \ bead^{-1} \ s^{-1})$$
(6)

and the cell-specific O_2 respiration rate as

$$\frac{\left(\frac{dC}{dt} \times W\right)/n}{N} (nmol \ O_2 \ cell \ s^{-1})$$
(7)

where N is the number of bacterial cells in each alginate bead.

The O₂ consumption pr. surface area pr. bead is given by

$$R(A) = \frac{\left(\frac{dC}{dt} \times W\right)/n}{4\pi r_0^2} (nmol \ O_2 \ cm^{-2} \ s^{-1})$$

and the O₂ consumption pr. volume bead is given by:

$$R = \frac{\left(\frac{dC}{dt} \times W\right)/_{n}}{\frac{4}{3}\pi r_{0}^{3}} (nmol \ O_{2} \ cm^{-3} \ s^{-1})$$
(9)

when assuming a homogenous distribution of active bacterial cells throughout the entire bead. If active bacterial cells do not exhibit a homogenous distribution in the bead, R will be underestimated. If active cells are clustering in the periphery of the beads, R(V) can instead be calculated as:

where r_0 and r_n denote the inner- and outer-most radial distance encompassing the bacterial growth band, i. e., the spherical shell in the bead containing active bacteria.

As a consequence of the respiration of the alginate encapsulated bacteria the O_2 concentration in the alginate bead decreases towards the centre. The O_2 concentration within a spherical cell aggregate at steady state can be described as (11):

$$C_r = -\frac{R}{6D_{agg.}}(r_0^2 - r^2) + C_0$$
(11)

where C_r is the oxygen concentration at the radial distance r, D_{agg} is the molecular diffusion coefficient in alginate at 37°C (here assumed to be similar to D in water (1) at 37°C; D = 1.5×10^{-5} cm² s⁻¹), R is the bead volume-specific respiration rate and C_0 is the O₂ concentration at the surface of the bead. Here we assume that C_0 is the same as for the surrounding medium, due to the absence of an effective diffusive boundary layer, δ_{eff} , under the very turbulent environment in which the beads were kept during respiration measurements. In a

(8)

stagnant culture, the hypothetical $\delta_{eff} = r_0$ and in a turbulent environment δ_{eff} decreases inversely proportionally with *Sh* (the Sherwood number) approaches 0 at high turbulence (1).

Assuming that the centre of the alginate bead is anoxic, the equation can be rearranged to the following allowing for the calculation of the O_2 penetration depth based on volumetric respiration rate and concentration of oxygen at the surface of the beads, C_0 .

$$C_r = -\frac{R}{6D_{agg.}}(r_0^2 - r^2) + C_0 = 0$$
(12)

and

$$C_0 = \frac{Rr_0^2}{6D_{agg.}}$$

(13)

$$r = \sqrt{\frac{C_0 6 D_{agg.}}{R}}$$
(14)

In a sphere, were an anoxic core is present because all the O_2 is consumed in the periphery of the sphere, the respiration rate needed to create anoxia at the radial distance r within a sphere is described by (1):

$$R = 3C_{\infty} \left(\frac{r_0^2 - r_n^2}{2D_{agg.}} + \frac{\delta_{eff} r_0}{D_w} - \frac{\delta_{eff} r_n^3 / r_0^2}{D_w} \right)^{-1}$$
(15)

Again, by assuming that the effective boundary layer is non-existent under the experimental conditions, the equation can be re-arranged to the following, by replacing δ_{eff} with 0:

$$R = 3C_{\infty} \left(\frac{r_0^2 - r_n^2}{2_{agg.}}\right)^{-1}$$
(16)

By assuming that the theoretical maximum diffusive boundary layer, $\delta_{eff} = r_0$ the equation can be re-written as:

$$R = 3C_{\infty} \left(\frac{r_0^2 - r_n^2}{2D_{agg.}} + \frac{r_0^2}{D_w} - \frac{r_0 r_n^3 / r_0^2}{D_w} \right)^{-1}$$
(17)

and

Equations (16) and (17) enable a theoretical estimate of *R* under the assumption of no δ_{eff} and a maximum δ_{eff} , respectively, and from the linear relationship between the two a hypothetical DBL can be calculated.

Supplemental material S2

Locus ID ^a	Gene name	Linear fold change ^b		Roles ^c	Description		
		Beads/Planktonic	Beads/Beads-NO ₃				
Upregulated genes in alginate beads							
PA1517 ^e		3.02	3.88		Conserved hypothetical protein		
PA1746		3.98	3.59	O ₂ (1, 2), SP (2)	Hypothetical protein		
PA2247	bkdA1	3.45	3.04	H ₂ O ₂ (3)	2-oxoisovalerate dehydrogenase (alpha subunit)		
PA2501		4.38	7.43	O ₂ (1)	Hypothetical protein		
<u>PA2931</u>	cifR	3.06	3.89	VF ^d	CifR		
PA3006	psrA	5.82	6.48	O ₂ (1)	Transcriptional regulator PsrA		
<u>PA3126</u>	ibpA	10.61	15.70	O ₂ (1), heat-shock ^d	Heat-shock protein ibpA		
PA3309	uspk	5.37	4.42	O ₂ (1, 2)	UspK pyruvate fermentation and long- term anaerobic survival		
PA3531	bfrB	3.30	3.54		Bacterioferritin		
PA3601		7.35	6.20		Conserved hypothetical protein		
<u>PA4352</u>	uspN	3.70	3.77	O ₂ (1, 2), SP (2)	UspN pyruvate fermentation and long- term anaerobic survival		
PA4542	clpB	3.09	3.45	Heat-shock ^d	ClpB protein		
PA4577		3.72	4.27	O ₂ (1), SP (2)	Hypothetical protein		
PA4761	dnaK	3.31	3.66	Heat-shock ^d	DnaK protein		
PA5170	arcD	3.31	3.73	O ₂ (1), SP (2)	Arginine/ornithine antiporter		
PA5232		3.12	3.56	O ₂ (1)	Conserved hypothetical protein		
PA5427	adhA	3.66	4.13	O ₂ (1, 2), SP (2)	Alcohol dehydrogenase		
Downregulated genes in alginate beads							
PA0122 ^f	rahU	-6.37	-1.31	HSL QS (4), SP (2)			
PA0139	ahpC	-3.75	-2.14	H ₂ O ₂ (3)	Alkyl hydroperoxide reductase subunit C		
PA0179		-5.61	-1.06	SP (2)	Probable two-component resonse-		
PA0258		-4.14	-2.77		Hypothetical protein		
PA0264		-4.46	-4.24		Hypothetical protein		
PA0283	sbp	-3.83	-10.85		Sulfate-binding protein precursor		
PA0284		-17.93	-86.03		Hypothetical protein		
PA0456 ^g		-10.01	-3.08		Probable cold-shock protein		
PA0579	rpsU	-3.75	-2.97		30S ribosomal protein S21		
PA0668	tyrZ	-3.04	-1.93		Tyrosyl-tRNA synthetase 2		
PA0769		-3.28	-2.19		Hypothetical protein		

PA0805		-4.27	-3.48		Hypothetical protein
PA0971	tolA	-4.71	-4.25		TolA protein
PA1178	oprH	-14.13	-1.06	SP (2), Mg (5)	PhoP/Q and low Mg2+ inducible outer membrane protein H1 precursor
PA1245		-7.90	-7.97	SP (2)	AprX
PA1247	aprE	-4.96	-6.30		Alkaline protease secretion protein AprE
PA1248	aprF	-3.11	-4.21		Alkaline protease secretion outer membrane protein AprF precursor
DA1/21	rcal	4.92	-3.30		Regulatory protein Real
<u>FA1451</u>	ISUL	-4.36	-3.30	QS (4)	Regulatory protein RSaL
PA1533		-3.81	-2.94		Conserved hypothetical protein
PA1588	sucC	-4.28	-4.03		Succinyl-CoA synthetase beta chain
PA1774	crfX	-3.76	-2.53		CrfX protein
PA1776	sigX	-3.28	-1.95		ECF sigma factor SigX
PA1784		-3.06	-1.46	SP (2), HSL QS (4)	Hypothetical protein
PA1793	рріВ	-3.65	-1.76	Heat-shock ^d	Peptidyl-prolyl cis-trans isomerase B
PA1804	hupB	-3.19	-2.54		DNA-binding protei HU
PA1852		-3.42	-3.06	SP (2)	Hypothetical protein
PA1869		-13.92	-3.69	HSL QS (4), SP (2)	Probably acyl carrier protein
PA1887		-3.92	-1.62		Hypothetical protein
PA1888		-5.32	-1.10	SP (2)	Hypothetical protein
PA1939		-3.74	-2.00		Hypothetical protein
PA2037		-3.19	-1.70		Hypothetical protein
PA2223		-4.51	-2.64		Hypothetical protein
PA2300	chiC	-7.07	-3.31	HSL QS (4), SP (2)	Chitinase
PA2384		-49.88	-38.37	Fe (6)	Hypothetical protein
PA2386	pvdA	-16.14	-23.73	Fe (6), VF ^d	L-ornithine N5-oxygenase
PA2394	pvdN	-3.06	-6.32	VF ^d	PvdN
PA2396	pvdF	-10.00	-9.76	VF^{d}	Pyoverdine synthetase F
PA2397	pvdE	-7.31	-13.49	VF^{d}	Pyoverdine biosynthesis protein PvdE
PA2398	fpvA	-17.44	-20.63	VF^{d}	Ferripyoverdine receptor
PA2399	pvdD	-3.12	-2.81	VF^{d}	Pyoverdine synthetase D
PA2401	pvdJ	-3.56	-2.82	VF^{d}	PvdJ
PA2411		-3.10	-4.29		Probable thioesterase
PA2412		-4.78	-4.57		Conserved hypothetical protein
PA2426	pvdS	-130.15	-115.45	Fe (6), VF ^d	Sigma factor PvdS
PA2570	pa1L	-4.38	-1.83	HSL QS (4), SP (2)	LecA
PA2582		-3.24	-2.67		Hypothetical protein
PA2667	mvaU	-3.46	-3.94		MvaU
PA2730		-4.93	-5.02		Hypothetical protein
PA2733		-3.26	-2.84		Conserved hypothetical protein
PA2742	rpml	-4.57	-5.56		50S ribosomal protein L35
PA2797		-3.41	-2.19		Hypothetical protein
PA2851	efp	-4.20	-2.37		Translation elongation factor P
PA2966	асрР	-4.24	-2.11		Acyl carrier protein

PA3049	rmf	-9.54	-9.61	Osmotic (7), O_2 (1,	Ribosome modulation factor
PA3162	rpsA	-3.09	-3.47	2), SP (2)	30S ribosomal protein S1
<u>PA3190</u>		-3.26	-4.56		Probable binding protein of ABC sugar transporter
PA3341		-6.30	-0.64		Probable transcriptional regulator
PA3385	amrZ	-17.48	-1.54	SP (2)	Alginate and motility regulator Z
PA3397	fprA	-4.43	-5.03		FprA
PA3440		-3.91	-1.84		Conserved hypothetical protein
PA3450		-4.40	-9.22		Probable antioxidant protein
<u>PA3477</u>	rhIR	-6.58	-5.17	SP (2), HSL QS (4), VF ^d	Transcriptional regulator RhIR
PA3496		-4.72	-1.26		Hypothetical protein
PA3520		-3.81	-2.74	SP (2), HSL QS (4)	Hypothetical protein
PA3530	bfd	-24.20	-13.65	Fe (6)	Bacterioferritin-associated ferredoxin Bfd
PA3533	grxD	-3.22	-1.86		GrxD
PA3621	fdxA	-4.19	-1.23		Ferredoxin I
PA3622	rpoS	-8.50	-6.24	SP (2)	Sigma factor RpoS
<u>PA3645</u>	fabZ	-3.17	-3.77	- /.> /->	(3R)-hydroxymyristoyl-[acyl carrier protein] dehydratase
PA3662		-5.12	-0.37	O ₂ (1), SP (2)	Hypothetical protein
<u>PA3724</u>	lasB	-5.64	-4.57	VF ^d , SP (2) HSL QS (4)	Elastase LasB
PA3756		-4.37	-1.78		Hypothetical protein
<u>PA3812</u>	iscA	-6.07	-9.35	O ₂ (1)	Probable iron-binding protein IscA
PA3813	iscU	-7.71	-12.18		Probable iron-binding protein IscU
<u>PA3814</u>	iscS	-4.47	-6.75		L-cysteine desulfurase (pyridoxal phosphate-dependent)
<u>PA3815</u>	iscR	-5.48	-5.02		IscR
PA3931		-5.89	-13.42		Conserved hypothetical protein
PA3966		-3.34	-2.79		Hypothetical protein
PA4139		-5.20	-3.75		Hypothetical protein
<u>PA4141</u>		-7.91	-8.70	SP (2), HSL QS (4)	Hypothetical protein
PA4156	fvbA	-3.00	-1.24	1/5 ^d co (o)	FvbA
<u>PA4211</u>	phzB1	-19.06	-12.44	vF ^a , SP (2), phenazine ^d	Probable phenazine biosynthesis protein
<u>PA4221</u>	fptA	-15.17	-8.18	Fe (6), VF ^d	Fe(III)-pyochelin outer membrane receptor precursor
PA4223		-4.06	-2.25	Fe (6), VF ^d	Probable ATP-binding component of ABC transporter
PA4224	phcG	-4.67	-1.86	Fe (6), VF ^d	Pyochelin biosynthetic protein PchG
PA4226	pchE	-3.69	-1.41	Fe (6), VF ^d	Dihydroaeruginoic acid synthetase
PA4228	pchD	-7.52	-3.11	Fe (6), VF ^d	Pyochelin biosynthesis protein PchD
PA4229	pchC	-3.14	-2.30	Fe (6), VF ^d	Pyochelin biosynthetic protein PchC
PA4230	pchB	-4.22	-1.56	Fe (6), VF ^d	Salicylate biosynthesis protein PchB
PA4231	pchA	-4.20	-1.73	Fe (6), VF ^d	Salicylate biosynthesis isochorismate synthase
PA4232	ssb	-3.35	-1.65		Single-stranded DNA-binding protein
PA4238	rpoA	-8.94	-10.89		DNA-directed RNA polymerase alpha chain
PA4241	rpsM	-4.97	-4.12		30S ribosomal protein S13

PA4242	rpmJ	-20.88	-21.40		50S ribosomal protein L36
PA4245	rpmD	-4.00	-4.39		50S ribosomal protein L30
PA4246	rpsE	-5.65	-5.56		30S ribosomal protein S5
PA4248	rplF	-3.55	-2.48		50S ribosomal protein L6
<u>PA4249</u>	rpsH	-5.78	-3.81		30S ribosomal protein S8
<u>PA4250</u>	rpsN	-4.57	-3.98		30S ribosomal protein S14
<u>PA4251</u>	rplE	-5.43	-5.34		50S ribosomal protein L5
<u>PA4253</u>	rplN	-5.19	-5.12		50S ribosomal protein L14
<u>PA4254</u>	rpsQ	-8.35	-8.65		30S ribosomal protein S17
<u>PA4255</u>	rpmC	-9.23	-9.51		50S ribosomal protein L29
<u>PA4256</u>	rpIP	-4.60	-4.50		50S ribosomal protein L16
<u>PA4257</u>	rpsC	-9.48	-9.52		30S ribosomal protein S3
<u>PA4258</u>	rplV	-6.20	-5.91		50S ribosomal protein L22
<u>PA4259</u>	rpsS	-5.30	-5.35		30S ribosomal protein S19
<u>PA4260</u>	rplB	-4.54	-4.58	Nitrosative stress (8)	50S ribosomal protein L2
<u>PA4261</u>	rplW	-8.78	-6.48	(-)	50S ribosomal protein L23
<u>PA4262</u>	rplD	-4.38	-4.15		50S ribosomal protein L4
<u>PA4264</u>	rpsJ	-4.53	-3.02		30S ribosomal protein S10
PA4266	fusA1	-5.69	-4.82		Elongation factor G
PA4268	rpsL	-3.09	-2.64		30S ribosomal protein S12
<u>PA4271</u>	rpIL	-4.23	-3.48		50S ribosomal protein L7/L12
<u>PA4272</u>	rplJ	-13.64	-11.90		50S ribosomal protein L10
<u>PA4273</u>	rplA	-5.94	-4.60		50S ribosomal protein L1
<u>PA4274</u>	rplK	-12.49	-12.34		50S ribosomal protein L11
PA4276	secE	-3.62	-3.11		Secretion protein SecE
PA4296	pprB	-3.22	-1.03	SP (2)	Two-component response regulator PprB
<u>PA4370</u>	icmP	-4.82	-4.76	Fe (6)	Insulin-cleaving metalloproteinase outer membrane protein precursor
PA4433	rplM	-3.47	-1.31		50S ribosomal protein L13
PA4443	cysD	-4.82	-6.09		ATP sulfurylase small subunit
PA4451		-4.69	-2.21		Conserved hypothetical protein
<u>PA4468</u>	sodM	-8.88	-7.74	Fe (6), H ₂ O ₂ (3)	Superoxide dismutase
PA4469		-30.88	-36.81	Fe (6), SP (2)	Hypothetical protein
PA4470	fumC1	-15.70	-13.94	H ₂ O ₂ (3), VF ^d	Fumurate hydratase
PA4471		-83.87	-78.93	Fe (6)	Hypothetical protein
PA4515		-5.27	-5.57	Fe (6)	Conserved hypothetical protein
PA4537		-3.04	-2.49		Hypothetical protein
PA4556	pilE	-3.65	-2.67	VF^{d}	Type 4 fimbrial biogenesis protein PilE
PA4563	rpsT	-7.57	-2.74		30S ribosomal protein S20
PA4568	rplU	-3.55	-2.66		50S ribosomal protein L21
PA4570		-65.86	-46.45		Hypothetical protein
PA4638		-29.13	-24.38		Hypothetical protein
PA4723	dksA	-3.11	-1.49		Supressor protein DksA
PA4738		-6.10	-3.56	O ₂ (2), SP (2)	Conserved hypothetical protein

PA4739		-6.33	-3.25	SP (2), O ₂ (2)	Conserved hypothetical protein
PA4843	gcbA	-4.62	-1.03	SP (2), cdiGMP (9)	GcbA
PA4853	fis	-6.63	-4.00		DNA-binding protein Fis
PA4944	hfq	-3.25	-1.97		Hfq
PA5041	pilP	-3.04	-2.12	VF^{d}	Type 4 fimbrial biogenesis protein PilP
PA5163	rmlA	-4.87	-5.48		Glucose-1-phosphate thymidyltransferase
PA5315	rpmG	-3.99	-2.46		50S ribosomal protein L33
PA5316	rpmB	-3.11	-2.26		50S ribosomal protein L28
PA5348		-3.10	-1.96		Probable DNA-binding protein
PA5351	rubA1	-4.35	-1.56		Rubredoxin 1
PA5460	phoB	-5.74	-3.89		Two-component response regulator PhoB
PA5531	tonB	-4.59	-4.15	Fe (6)	TonB1
PA5557	atpH	-3.63	-2.56		ATP synthase delta chain
PA5560	atpB	-3.16	-2.46		ATP synthase A chain
PA5563	soj	-3.03	-2.95	Nitrosative stress (8)	Chromosome partitioning protein Soj
PA5570	rpmH	-3.18	-2.77		50S ribosomal protein L34

Table S2. List of genes with an >3-fold change in gene expression in alginate-encapsulated *P. aeruginosa* when compared to 24 hours planktonic culture of *P. aeruginosa* and the corresponding 24 hours alginate-encapsulated *P. aeruginosa* supplemented with 100 mM KNO₃ as compared to 24 hours planktonic culture.

^a ID: identification

^b Detection of >3-fold increase in gene expression of alginate-encapsulated *P. aeruginosa* (Beads) compared to planktonic cells (Planktonic) and the corresponding gene expression when alginate-encapsulated *P. aeruginosa* is compared to alginate-encapsulated *P. aeruginosa* supplemented with nitrate (Beads-NO₃). Bead data is based on 4 biological replicas. Planktonic and Beads-NO₃ data is based on 3 biological replicas.

 c O₂, oxygen limitation; SP, stationary phase; H₂O₂, peroxide stress; VF, virulence factor; Fe, iron limitation; Mg, magnesium limitation; HSL QS, homoserine lactone based quorum sensing; cdiGMP, cyclic diguanylate GMP.

^d As annotated at pseudomonas.com (10).

^e The 141 genes shared between Beads/Planktonic and Beads/Beads-*NO*³ are <u>underlined</u>. All 17 genes from the Beads/Planktonic comparison are shared with Beads/Beads-*NO*³, whereas 87 of the 153 downregulated genes have a similar >3-fold differential expression.

^f The 13 genes shared between Beads/Planktonic and Beads-*NO₃*/Planktonic are all downregulated, and are marked in *italic* in Table S2.

^g The two genes which share a similar >3-fold change between all three comparisons (beads/planktonic, beads/beads-*NO*₃⁻ and beads-*NO*₃⁻/planktonic) are highlighted in gray. The same two genes are shared between Beads/Beads-*NO*₃⁻ and Beads-*NO*₃⁻ /Planktonic, according to Venn-diagramm (Figure 8A).

All genes encoding ribosomal proteins have been boxed.

- 1. Trunk K, et al. (2010) Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. *Environmental microbiology* 12(6):1719-1733.
- 2. Alvarez-Ortega C & Harwood CS (2007) Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. *Molecular microbiology* 65(1):153-165.
- 3. Chang W, Small DA, Toghrol F, & Bentley WE (2005) Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. *BMC genomics* 6:115.
- 4. Hentzer M, et al. (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. *The EMBO journal* 22(15):3803-3815.
- 5. McPhee JB, *et al.* (2006) Contribution of the PhoP-PhoQ and PmrA-PmrB twocomponent regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. *Journal of bacteriology* 188(11):3995-4006.

- 6. Ochsner UA, Wilderman PJ, Vasil AI, & Vasil ML (2002) GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. *Molecular microbiology* 45(5):1277-1287.
- 7. Aspedon A, Palmer K, & Whiteley M (2006) Microarray analysis of the osmotic stress response in Pseudomonas aeruginosa. *Journal of bacteriology* 188(7):2721-2725.
- 8. Firoved AM, Wood SR, Ornatowski W, Deretic V, & Timmins GS (2004) Microarray analysis and functional characterization of the nitrosative stress response in nonmucoid and mucoid Pseudomonas aeruginosa. *Journal of bacteriology* 186(12):4046-4050.
- 9. Kulasakara H, et al. (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. Proceedings of the National Academy of Sciences of the United States of America 103(8):2839-2844.
- 10. Winsor GL, et al. (2016) Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. *Nucleic acids research* 44(D1):D646-653.