Rupp et al.: Supplemental data

Fig. S1: PCR products of *B. cinerea* strain B05.10 (1), *B. fragariae* strains D13_F_Me3 (2), D11_H_R4 (3), D14_F_Ju20 (4), and *B. pseudocinerea* strain VD110 (5) with primer pair Mrr1-spez-F/-R.

А

hsp60: PhyML, 826 sites, GTR, 1000 replicates

В

g3pdh: PhyML, 804 sites, GTR, 1000 replicates

C rpb2: PhyML, 794 sites, GTR, 1000 replicates

D

nep1: PhyML, 581 sites, GTR, 1000 replicates

nep2: PhyML, 799 sites, GTR ,1000 replicates

Ε

Fig. S2: Phylogenetic trees of *Botrytis* spp., including four strains of *B. fragariae* from Germany (strains D11_H_R4, D13_F_Me3, D13_D_F_Ju10) and South Carolina (strain U14_H3), based on combined sequences of *hsp60* (A), *g3pdh* (B), *rpb2* (C), *nep1* (D) and *nep2* (E). *Sclerotinia sclerotiorum* was used as outgroup.

Fig. S3: Identification of *B. fragariae* by PCR-RFLP. Amplification with primers G3PDH_785_R/G3PDH_665_F results in a 121 bp product that is cleaved by BsaJI, resulting in 86 bp and 35 bp fragments only with DNA of *B. fragariae* but not with *B. cinerea* or any other *Botrytis* species (data not shown).

Fig. S4: Frequency of occurrence of *B. fragariae*, *B. cinerea* and *B. pseudocinerea* in Germany. Fields are shown in which *B. fragariae* was found and all isolates (n) were identified to the species level. The proportion of fields in which *B. fragariae* was observed is also indicated.

PhyML ln(L)=-14202.6 4163 sites GTR 1000 replic. 4 rate classes

Fig. S5: Phylogenetic tree of four German and three US-American *B. fragariae* strains, based on *hsp60, g3pdh, rpb2, nep1* and *nep2*, using *B. cinerea* as outgroup.

Fig. S6: Infection of strawberry tissues by *B. fragariae* and *B. cinerea* (4 d p.i.). A: Infection rate on fruit. B: Lesion formation on leaves. Significant differences between the species are indicated (***: p<0.001, two-sided t-test).

Fig. S7: Distribution of fungicide resistance in 38 *B. fragariae* isolates (cf. Table 2). Fen: Fenhexamid; Bos: Boscalid; Cyp: Cyprodinil; Azo: Azoxystrobin. Flu: Fludioxonil; Ipr: Iprodione; Car: Carbendazim.

Name	Sequence $(5' - 3')$	Gene	Reference	
BosID 137F	GCAGATGAGGCGGATGATAG	BC1G 07159/		
BosID 273R	TCCACCCAAGCATCATCTTC	Bcin09g02270	Plesken et al. 2015	
BcinN-in-F	GCGACCTCATCGTTCTTTCAC			
BcinN-in-R	GGCTCTCGATGAGCTGTTTC	mrr1	Plesken et al. 2015	
Mrr1-spez-F	TATCGGTCTTGCAGTCCGC			
Mrr1-spez-R	TTCCGTACCCCGATCTTCGGAA	mrr1	Leroch et al., 2013	
BC-hch262	AAGCCCTTCGATGTCTTGGA			
BC-hch520L	ACGGATTCCGAACTAAGTAA	hch	Fournier et al., 2005	
Bc Tub for	AAGATCCGCGAGGAGTTCCC		This work	
Bc Tub rev	GGCGGTTTGGACGTTGTTAG	tubA		
BF1 56 opt	TTAGCAGCCTGGCTGCATATAC		This work	
BR1 1084 opt	TTGTGCCATGACGTTGAC	bos1		
BF2	CAACGTTATGGCACAAAATCTCA			
BR2	AAGTTTCTGGCCATGGTGTTCA	bosi	Ma et al., 2007	
BF3_opt	TCGAGGTTCAGGGAGAAATC		- 1 · 1	
BR3_opt	CTATCCACGCGGTAAGTGAG	bosi	Inis work	
BF4	GCAAACCGTATGATCATGGA		Ma et al., 2007	
BR4_opt	TCTTCGGCCAAGAGAATGTC	bosi	This work	
BR5	AAGTACTCGCAGTCGGTGGT		Ma et al., 2007	
BF5_opt	TTCTCGGCAATGGAAGAACC	bos1	This work	
Qo13ext	GGTATAACCCGACGGGGTTATAGAATAG	au th	Laraum at al. 2010	
Qo14ext	AACCATCTCCATCCACCATACCTACAAA	Сутв	Leroux et al., 2010	
HSP60_fw	CAACAATTGAGATTTGCCCACAAG	hcn60	Staats et al., 2005	
HSP60_rev	GATGGATCCAGTGGTACCGAGCAT	nspou		
G3PDH_fw	ATTGACATCGTCGCTGTCAACGA	a2ndh	Staats at al. 2005	
G3PDH_rev	ACCCCACTCGTTGTCGTACCA	yspun	Stadts et al., 2005	
G3PDH_785_R	GTCACCGTTCATGTCAGTAG	a2ndh	This work	
G3PDH_665_F	ATGGTCCTCTCAAGGGTAAG	yspun		
RPB2_fw	GATGATCGTGATCATTTCGG	rnh2	Staats et al. 2005	
RPB2_rev	CCCATAGCTTGCTTACCCAT	1002	518813 21 81., 2005	
FG1020_fw	GGAGGATGATATGGCAAAGTC	fa1020	Plesken et al. 2015	
FG1020_rev	GGATTAAGAGCTTCACTACCA	Jg1020		
Nep1for	CCAACGCAAAATTCCTTTCTATCC	nen1	Grant-Downton et al.,	
Nep1rev	GTTGGCGAAGTTGTGGTCATTGAA		2014	
NEP2forD	TTGCCTTCTCAAAATCATTACAGC	nep2	Staats et al., 2007	
NEP2revD	TCTAGAAAGTAGCCTTCGCAAGAT			
IGS1a	TCCCGGTGAGCCTTTTA	(IGS)	Kretschmer and Hahn,	
IGS1b	CCATCGGCCAGTAATCCAC	()	2008	
atrB_RT_for	CACCGGAGCAGGATTGAGTG	atrB	This work	
atrB_RT_rev	GCGGAAGGTTGATGGATAG			
BcAct_RTfor	TCTGTCTTGGGTCTTGAGAG	actin	Leroch et al., 2013 Leroch et al., 2013	
BcAct_RTrev	GGTGCAAGAGCAGTGATTTC			
Tub_RT_fw		tubA		
Tub_RT_rev			· · ·	
MATalpha5	ATGACGGCTCCCTTCAAAACC	Mat1-1	This work	
MATalpha3			-	
HMG5		Mat1-2	This work	
HMG3				
Flipper-tw	AGCCCTACCCATCGTCAAATAC (Flipper		This work	
Flipper-rev	GCTCGGGATCATCATCTGAAAC	5 FF - 7		

Table S1: Primers used in this study.

	hsp60	g3pdh	rpb2	nep1	nep2
B. fabae CBS109.57	AJ716074	AJ705013	AJ745685	AM087025	* ¹
B. pseudocinerea 10091	JN692400	JN692414	JN692428	* ¹	* ¹
B. calthae MUCL1089	AJ716061	AJ705000	AJ745672	AM087031	AM087088
B. sinoviticola GBc-5	JN692399	JN692413	JN692427	*2	* ²
B. ranunculi CBS178.63	AJ716095	AJ705034	AJ745706	AM087054	AM087086
B. sinoallii BC-23	EU514488	EU519217	EU514479	*2	* ²
<i>B. elliptica</i> BE0022	AJ716071	AJ705010	AJ745682	AM087050	AM087081
B. squamosa MUCL1107	AJ716098	AJ705039	AJ745710	AM087052	AM087084
<i>B. deweyae</i> B1	HG799519	HG799521	HG799518	HG799527	HG799520
B. ficariarum CBS176.63	AJ716076	AJ705015	AJ745687	AM087055	AM087085
<i>B. porri</i> MUCL 3349- 3234	AJ716093	AJ705032	AJ745704	AM087060	AM087063
B. paeoniae MUCL16084	AJ716089	AJ705028	AJ745700	AM087033	AM087064
<i>B. convoluta</i> MUCL11595	AJ716069	AJ705008	AJ745680	AM087035	AM087062
B. gladiolorum MUCL3865	AJ716081	AJ705020	AJ745692	AM087041	AM087072
<i>B. tulipae</i> BT9830	AJ716102	AJ705041	AJ745713	AM087037	AM087077
B. sphaerosperma MUCL21481	AJ716096	AJ705035	AJ745708	AM087042	AM087068
B. globosa MUCL21514	AJ716082	AJ705021	AJ745694	AM087044	AM087070
B. polyblastis CBS287.38	AJ716091	AJ705030	AJ745702	AM087039	AM087074
B. narcissicola MUCL2120	AJ716087	AJ705026	AJ745697	AM087046	AM087078
B. byssoidea MUCL94	AJ716059	AJ704998	AJ745670	AM087045	AM087079
B. fabiopsis BC-2	EU514482	EU519211	EU514473	*2	* ²
B. caroliniana_CB17	JN672675	JN672671	JN672677	JF811593	* ¹
B. galanthina MUCL3204	AJ716078	AJ705017	AJ745690	AM087058	AM087067
B. hyacinthi 0001	AJ716084	AJ705023	AJ745695	AM087048	AM087066
B. croci MUCL436	AJ716070	AJ705009	AJ745681	AM087047	AM087065
B. aclada MUCL8415	AJ716050	AJ704992	AJ745664	AM087059	AM087087

Table S2: Accession numbers of sequences used for assembling the phylogenetic trees.*

* Sequences of B. cinerea strain B05.10 and *Sclerotinia sclerotiorum* strain 1980 were obtained from genome assemblies provided by the EnsemblFungi website (http://fungi.ensembl.org/index.html). *¹: Own unpublished sequence data. *²: Unpublished sequence data (provided by Dr. Jing Zhang, Huazhong Agricultural University, Wuhan, China).

Table S3: Occurrence of <i>Botrytis species</i>	s on wild strawberries	(Fragaria vesca) in	Western
Germany.			

Site*	No of	B. cinerea		B. pseudocinerea	B. fragariae
	isolates	Group N	Group S		
Α	5	0	2	3	0
В	17	4	11	2	0
С	11	4	1	6	0
D	10	2	5	3	0

*Four sites located in the Palatine forest, Germany, Kaiserslautern.

Table S4: Fungicide treatments in fields from which *B. fragariae* isolates were recovered. *For GE-Nottensdorf (the only site where isolates were obtained after the treatments), treatments of the 2011 season are shown.

Field code	Year	Treatments in the previous year*		
GE-Nottensdorf	2011	Fenhexamid ^{*1} (1x), Fludioxonil + Cyprodinil ^{*2} (2x),		
		Boscalid + Pyraclostrobin* ³ (1x), Trifloxystrobin* ⁴		
		(1x)		
GE-Iffezheim	2012	None		
GE-Weiterstadt	2012	Fludioxonil + Cyprodinil (2x), Azoxystrobin,		
		Fenhexamid		
GE-Grafschaft	2011	Unknown		
GE-Wittlich-A	2012	Fludioxonil + Cyprodinil (1x)		
GE-Wittlich-B	2013	None		
GE- Gernsheim-1	2012	Unknown		
GE- Gernsheim-1	2013	Boscalid + Pyraclostrobin, Fludioxonil + Cyprodinil		
		(2x) , Fenhexamid		
GE-Wagshurst	2014	None		
US-Pelion-SC	2015	None		
US-Gilbert-SC	2015	Captan, Fenhexamid, Fludioxonil + Cyprodinil		
US-Holly Hill-SC	2015	Unknown		

*Trade names: ¹Teldor[®], ²Switch[®], ³Signum[®], ⁴Flint[®].

Table S5: Botrytis strains used for	quantitative fungicide	sensitivity assays (cf. Fig. 6) and <i>atrB</i>
expression studies (cf. Fig. 7).			

Species	Strain	Fungicide sensitivity or resistance			Reference
		Fludioxonil	Cyprodinil	Iprodione	
B. cinerea	B05.10*	S	S	S	Leroch et al., 2013
B. cinerea	D06_5-16*	MDR1	MDR1	n.a.	Kretschmer et al., 2009
B. cinerea	D08-H-8-07a*	MDR1h	MDR1h	n.a.	Leroch et al., 2013
B. cinerea	D09_K_A04	n.a.	n.a.	HR	This work
B. cinerea	D09_K_4_01	n.a.	HR	n.a.	This work
B. cinerea	D09_K_F04	n.a.	n.a.	MR	This work
B. fragariae	D11_H_R4*	S	S	MR	This work
B. fragariae	D13_F_HJ_2-34	S	S	S	This work
B. fragariae	D13_F_Me3	S	S	S	This work
B. fragariae	D13_F-Ju21	MDR1	MDR1	MR	This work
B. fragariae	D13_F-Ju26	MDR1	MDR1	n.a.	This work
B. fragariae	D14_F-Ju20*	MDR1	HR	HR	This work
B. fragariae	D13_F_Nba13	n.a.	MDR1	MR	This work
B. fragariae	D13_F_Ju10	S	S	n.a.	This work
B. fragariae	D13_F_Ju1	S	S	n.a.	This work
B. fragariae	D13_F_Ju29	n.a.	HR	n.a.	This work
B. fragariae	D14_F_Ju12	n.a.	HR	n.a.	This work
B. fragariae	D13_F_Nba10	n.a.	n.a.	S	This work
B. fragariae	D15_W_R3	n.a.	n.a.	HR	This work
B. fragariae	D14_BI.427-22	n.a.	n.a.	HR	This work

*: Used for *atrB* expression studies. Abbreviations: S: Sensitive; MR: Medium resistant; HR: Highly resistant. n.a.: Not analysed in Fig. 6.

References

Fournier E, Giraud T, Albertini C, Brygoo Y. 2005. Partition of the *Botrytis cinerea* complex in France using multiple gene genealogies. Mycologia **97**:1251–1267.

Grant-Downton RT, Terhem RB, Kapralov MV, Mehdi S, Rodriguez-Enriquez MJ, Gurr SJ, van Kan JA, Dewey FM. 2014. A novel *Botrytis* species is associated with a newly emergent foliar disease in cultivated *Hemerocallis*. PLoS One **9(6)**:e89272.

Kretschmer M, Hahn M. 2008. Fungicide resistance and genetic diversity of *Botrytis cinerea* isolates from a vineyard in Germany. J Plant Dis Protect **115**:214–219.

Kretschmer M, Leroch M, Mosbach A, Walker AS, Fillinger S, Mernke D, Schoonbeek HJ, Pradier JM, Leroux P, de Waard MA 2009. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus *Botrytis cinerea*. PLoS Pathog 5:e1000696.

Leroch M, Plesken C, Weber RWS, Kauff F, Scalliet G, Hahn M. 2013. Gray mold populations in German strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to *Botrytis cinerea*. Appl Environ Microbiol **79**:159–167.

Leroux P, Gredt M, Leroch M, Walker AS. 2010. Exploring mechanisms of resistance to respiratory inhibitors in field strains of *Botrytis cinerea*, the causal agent of gray mold. Appl Environ Microbiol **76**:6615-6630.

Ma Z, Yan L, Luo Y, Michailides TJ. 2007. Sequence variation in the two-component histidine kinase gene of *Botrytis cinerea* associated with resistance to dicarboximide fungicides. Pestic Biochem Physiol **88**:300–306.

Plesken C, Weber RWS, Rupp S, Leroch M, Hahn M. 2015. *Botrytis pseudocinerea* is a significant pathogen of several crop plants but susceptible to displacement by fungicide-resistant *B. cinerea* strains. Appl Environ Microbiol **81**:7048-7056.

Staats M, van Baarlen P, Schouten A, van Kan JAL, Bakker FT. 2007. Positive selection in phytotoxic protein-encoding genes of *Botrytis* species. Fungal Genet. Biol. **44**:52–63.