Scientific Reports revised (Supplementary data)

Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats

Sunderajhan Sekar¹, Siti Raihanah Shafie², Indira Prasadam¹, Ross Crawford³, Sunil K. Panchal², Lindsay Brown², Yin Xiao¹

- 1. Institute of Health and Biomedical Innovation, School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
- 2. Institute for Agriculture and the Environment, and School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia
- 3. The Prince Charles Hospital, Orthopaedic Department, Brisbane, Australia

Key words: Osteoarthritis, Saturated fatty acids, Obesity, Diet, Cartilage

Corresponding Author:

Professor Yin Xiao

Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, QLD 4059, Australia Tel: + 61 7 3138 6240; Fax: + 617 3138 6030; Email: yin.xiao@qut.edu.au

Supplementary Table 1: Cardiovascular function in C, H, HLA, HMA, HPA and HSA rats

Variable	C	HLA	HMA	HPA	HSA	H
Heart weight (mg/mm)	21.8 ± 2.5^{b}	16.2 ± 1.5^{c}	23.7 ± 2.2^{ab}	25.9 ± 4.1^{a}	$22.3 \pm 2.3^{\rm b}$	25.3 ± 3.0^{a}
LV + septum wet weight (mg/mm)	18.2 ± 2.3^{a}	13.0 ± 1.2^{b}	19.3 ± 1.7^{a}	20.1 ± 3.1^{a}	18.2 ± 2.1^{a}	20.0 ± 2.7^{a}
RV wet weight (<i>mg/mm</i>)	3.61 ± 0.90^{cd}	3.11 ± 0.38^{d}	4.38 ± 0.79^{bc}	5.78 ± 1.36^{a}	4.08 ± 0.39^{bc}	4.72 ± 0.76^{b}
LVIDd (mm)	7.36 ± 0.61^{b}	6.52 ± 0.52^{c}	$7.55 \pm 0.73^{\rm b}$	7.93 ± 0.51^{ab}	7.86 ± 0.56^{ab}	8.33 ± 0.46^{a}
LVPWd (mm)	1.65 ± 0.25^{ab}	1.55 ± 0.13^{b}	1.71 ± 0.11^{ab}	1.83 ± 0.11^{a}	1.72 ± 0.18^{ab}	1.79 ± 0.16^{a}
Relative wall thickness	0.46 ± 0.10^{a}	0.49 ± 0.06^{a}	0.46 ± 0.04^{a}	0.47 ± 0.04^{a}	0.45 ± 0.06^{a}	0.43 ± 0.05^{a}
Fractional shortening (%)	53.2 ± 10.5^{a}	50.5 ± 15.4^{a}	50.4 ± 9.4^{a}	42.6 ± 7.5^{a}	41.9 ± 6.2^{a}	43.0 ± 5.2^{a}
Heart rate (<i>bpm</i>)	343 ± 95^{a}	296 ± 78^{a}	360 ± 48^{a}	329 ± 81^{a}	310 ± 74^{a}	323 ± 54^{a}
Stroke volume (μL)	375 ± 96^{b}	246 ± 47^{c}	391 ± 92^{b}	420 ± 72^{ab}	412 ± 99^{ab}	493 ± 77^{a}
Cardiac output (µL)	133.5 ± 61.1^{a}	71.3 ± 18.1^{b}	139.1 ± 32.8^{a}	137.2 ± 38.1^{a}	125.1 ± 34.7^{a}	159.9 ± 40.3^{a}
Diastolic stiffness constant (κ)	22.0 ± 1.4^{c}	21.8 ± 2.9^{c}	25.3 ± 2.2^{b}	26.6 ± 2.2^{ab}	27.1 ± 1.3^{ab}	28.2 ± 1.5^{a}
Estimated LV mass, Litwin (g)	$0.83 \pm 0.08^{\rm cd}$	0.67 ± 0.08^{d}	0.89 ± 0.16^{bc}	1.03 ± 0.11^{ab}	0.96 ± 0.11^{ab}	1.06 ± 0.13^{a}
Systolic wall stress (<i>mmHg.cm</i> ⁻¹)	$75.8 \pm 28.7^{\mathrm{b}}$	101.7 ± 58.2^{ab}	95.0 ± 35.8^{ab}	127.9 ± 35.3^{a}	137.8 ± 26.6^{a}	131.7 ± 28.6^{a}
LV developed pressure (<i>mmHg</i>)	69.7 ± 22.3^{a}	74.0 ± 29.6^{a}	53.1 ± 16.9^{a}	84.4 ± 31.0^{a}	78.1 ± 27.0^{a}	66.6 ± 30.5^{a}
Ascending aorta flow (cm/sec)	98.6 ± 19.1^{a}	83.4 ± 21.4^{a}	96.3 ± 12.4^{a}	97.8 ± 11.0^{a}	98.9 ± 8.6^{a}	97.4 ± 14.6^{a}
Descending aorta flow (cm/sec)	87.3 ± 17.2^{a}	81.4 ± 12.8^{a}	95.1 ± 9.1^{a}	97.0 ± 18.6^{a}	95.0 ± 18.8^{a}	96.2 ± 18.4^{a}
Ejection time (msec)	78.2 ± 8.1^{b}	94.9 ± 9.0^{a}	80.4 ± 9.1^{b}	84.0 ± 7.5^{b}	85.6 ± 12.2^{ab}	87.0 ± 7.2^{ab}

Supplementary table 1 Legend: Measurement of cardiovascular function in rats fed the different diets (n=10). All values are represented as mean \pm SD. Mean values within a row with unlike superscript letters are significantly different (P < 0.05) with a>b>c>d.

Abbreviations: C – corn starch diet-fed rats; H – high-carbohydrate, high-fat diet-fed rats; HLA – high-carbohydrate, high-lauric acid-fed rats; HMA – high-carbohydrate, high-palmitic acid-fed rats; HSA – high-carbohydrate, high-stearic acid-fed rats; LV – left ventricle; RV – right ventricle; LVIDd – left ventricular internal diameter during diastole; LVPWd – left ventricular posterior wall thickness during diastole.

Supplementary Table 2: Osteocyte morphology in C, H, HLA, HMA, HPA and HSA rats

Variables	С	HLA	HMA	HPA	HSA	Н
Avg OS.L/mm ²	67.5±17.08	65.5±21.60	70.5±17.08	122.5±21.60 ^a	182.5±18.93 ^a	162.5±19.15 ^a
Avg OS.N/mm ²	712.5±50.58	660.0±63.77	525.0 ± 42.03^{a}	460.0 ± 35.59^{a}	420.0 ± 29.44^{a}	512.5 ± 34.03^{a}
Total Osteocyte Lacunae/mm ²	787.5±37.75	727.5±50.58	597.5±65.51 ^a	585.0±58.02 ^a	587.5±56.79 ^a	657.5 ± 59.09^{a}

Supplementary table 2 Legend: Diverse distribution of osteocytes in the subchondral bone region of the rats fed the different diets (n=8). The rats fed with H, PA and SA had increased Avg OS.L and decreased Avg OS.N compared to other diet groups. Values with superscript letter (a) are significantly different (P<.05). All values are represented as mean \pm SD.