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SUPPLEMENTARY MATERIAL FOR:
A PARTIALLY LINEAR FRAMEWORK FOR MASSIVE

HETEROGENOUS DATA

By Tianqi Zhao‡, Guang Cheng§ and Han Liu‡

In this supplemental material, we provide the detailed proofs of results
presented in the main text. Appendix A contains theoretical justification
of RKHS extension to the partially linear function space, as defined in
Section 2. Appendix B, C and D present proofs of results in Section 3, 4
and 5 respectively. Appendix E contains proof of lemmas used in proving
main theorems. Appendix F proves an exponential inequality for empirical
processes in a Banach space, and Appendix G provides proofs of auxiliary
lemmas which are used in Appendix E.

APPENDIX A: RKHS EXTENSION TO PARTIALLY LINEAR
FUNCTION SPACE

In this section, we provide detailed theoretical justifications for the RKHS
extension to the partially linear space. We first study the properties of the
inner product 〈·, ·〉C and its induced kernel K̃, and then prove Proposition
2.3. In the end we provide technical lemmas for the properties of Ru and Pλ .

A.1. A Collection of Lemmas. The following lemmas are direct con-
sequences of defining the new inner product 〈·, ·〉C. Lemma A.1 proves the
existence of kernel K̃ under the new inner product 〈·, ·〉C, and derives its
closed form. Lemma A.2 justifies the existence of the linear operator Wλ

and derives its closed form. Lemma A.3 studies the asymptotic limit of the
B −A, where recall A is the Reisz representer of B = E[X |Z] under the
inner product 〈·, ·〉C .

Lemma A.1. The linear evaluation functional Ez of H under the inner
product 〈·, ·〉C is bounded. Hence 〈·, ·〉C induces a new kernel K̃(z, z) with
the form

(A.1) K̃z(·) =

∞∑
`=1

φ`(z)

1 + λ/µ`
φ`(·).

Moreover, we have that ‖K̃z‖C ≤ cφh−1/2, where cφ is the constant specified
in Assumption 3.2. This implies that ‖f‖sup ≤ cφh−1/2‖f‖C for all f ∈ H.
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Proof. (i) Boundedness of Ez: We have for any f ∈ H,

|Ezf | = |f(z)| = |〈f,Kz〉H| ≤ ‖Kz‖H‖f‖H ≤ λ−1/2ck‖f‖C ,
where the last inequality follows from the relationship λ‖f‖2H ≤ ‖f‖C implied
by the definition of 〈·, ·〉C . It follows that Ez is bounded.

(ii) Existence and exact form of K̃: By Definition 2.1, we have that 〈·, ·〉C
induces a new kernel K̃(z, z). As K̃z ∈ H for all z ∈ Z, by Fourier expansion,
K̃z =

∑∞
`=1 κ`φ`. Then we have

κ` = 〈K̃z, φ`〉L2(PZ) = 〈K̃z, φ`〉C − λ〈K̃z, φ`〉H
= φ`(z)− λκ`/µ`.

Solving for κ`, we have κ` = φ`(z)/(1 + λ/µ`). Hence we get the formula for
K̃z(·) in (A.1).

(iii) Uniform bound of K̃z: By (A.1) and reproducing property, we have
that

‖K̃z‖2C = 〈K̃z, K̃z〉C = K̃(z, z)

=

∞∑
`=1

φ2
` (z)

1 + λ/µ`
≤ c2

φh
−1.

as desired. Hence for all z ∈ Z,

|f(z)| ≤ ‖f‖C‖K̃z‖C ≤ cφh−1/2‖f‖C ,
by Cauchy-Schwarz. This implies that ‖f‖sup ≤ cφh

−1/2‖f‖C for all f ∈
H.

Lemma A.2. There exists a bounded linear operator Wλ : H → H such
that for any f, f̃ ∈ H, we have

(A.2) 〈Wλf, f̃〉C = λ〈f, f̃〉H.
Moreover, we have for all eigenfunctions φ`, ` = 1, 2, . . .

(A.3) Wλφ`(·) =
λ

λ+ µ`
φ`(·).

Proof. The proof for the existence of Wλ uses Riesz representation
theorem. Define the bilinear form V (f, f̃) := λ〈f, f̃〉H, for any f, f̃ ∈ H. For
any fixed f , this defines a functional Vf (·) = V (f, ·). It is easy to verify that
Vf is linear. Moreover, Vf is bounded under the inner product 〈·, ·〉C , as

|Vf (f̃)| = |λ〈f, f̃〉H| ≤ λ‖f‖H‖f̃‖H ≤ λ1/2‖f‖H‖f̃‖C ,

for all f̃ ∈ H. Hence by Riesz representation theorem, there exists an unique
element f1 ∈ H such that Vf (f̃) = 〈f1, f̃〉C for all f̃ ∈ H. We let Wλf = f1,
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and it follows that 〈Wλf, f̃〉C = λ〈f, f̃〉H for all f, f̃ ∈ H.
We next prove linearity of Wλ. By definition, for any f1, f2, f̃ ∈ H and

a, b ∈ R, we have

〈Wλ(af1 + bf2), f̃〉C = λ〈af1 + bf2, f̃〉H
= aλ〈f1, f̃〉H + bλ〈f2, f̃〉H
= 〈aWλf1 + bWλf2, f̃〉C ,

which implies Wλ(af1 + bf2) = aWλf1 + bWλf2.
Furthermore,Wλ is a bounded operator under ‖ · ‖C , as for any f ∈ H

‖Wλf‖C = sup
‖f̃‖C≤1

〈Wλf, f̃〉C

= sup
‖f̃‖C≤1

λ〈λf, f̃〉H

≤ λ‖f‖H sup
‖f̃‖C≤1

‖f̃‖H

≤ ‖f‖C ,

where the last inequality follows from the fact that λ1/2‖f‖H ≤ ‖f‖C implied
by the definition of 〈·, ·〉C . This shows that Wλ has operator norm bounded
by 1.

To prove the second half of the lemma, we have that 〈Wλf, f̃〉C = λ〈f, f̃〉H.
Also, by the definition of 〈·, ·〉C we have 〈Wλf, f̃〉C = 〈Wλf, f̃〉L2(PZ) +

λ〈Wλf, f̃〉H. It follows from the two equations that

(A.4) 〈Wλf, f̃〉L2(PZ) = λ〈(id−Wλ)f, f̃〉H,

for any f, f̃ ∈ H. Wλφ` has a Fourier expansion: Wλφ` =
∑∞

k=1wkφk. Letting

f = f̃ = φ` in (A.4) yields w` = λ/(λ+ µ`), and letting f = φ` and f̃ = φr
in (A.4) yields wr = 0 for r 6= `. Hence the conclusion follows.

Lemma A.3. We have the following equations hold:

lim
λ→0

E
[
X
(
B(Z)−A(Z)

)T ]
= 0(A.5)

lim
λ→0

E
[
B(Z)

(
B(Z)−A(Z)

)T ]
= 0(A.6)

lim
λ→0

E
[(
B(Z)−A(Z)(B(Z)−A(Z))T

)]
= 0.(A.7)

The lemma shows that the difference B − A goes to zero as λ → 0.
Intuititively, as λ → 0, the inner product 〈·, ·〉C converges to 〈·, ·〉L2(PZ) by
its definition, hence the the representer A of B converges to B itself. The
following is the formal proof of this lemma.
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Proof. By reproducing property of K̃z, the definition of Ak and (A.1),
we have

(A.8) Ak(z) = 〈Ak, K̃z〉C = 〈Bk, K̃z〉L2(PZ) =

∞∑
i=1

〈Bk, φi〉L2(PZ)

1 + λ/µi
φi(z).

By Fourier expansion of Bk, it follows from the above equation that

(A.9) Bk(z)−Ak(z) =
∞∑
i=1

〈Bk, φi〉L2(PZ)λ/µi

1 + λ/µi
φi(z)→ 0,

As φi are uniformly bounded and
∑∞

i=1〈Bk, φi〉L2(PZ) ≤ ∞, it follows from
dominated convergence theorem that Bk(z) − Ak(z) → 0 for all z ∈ Z.
Therefore (A.7) holds. Moreover,

E
[
Bj(Z)(Bk(Z)−Ak(Z))

]
= 〈Bk, Bk −Ak〉L2(PZ)

=
∞∑
i=1

λ/µi
1 + λ/µi

〈Bj , φi〉L2(PZ)〈Bk, φi〉L2(PZ)(A.10)

→ 0,

where the second equality is by (A.9) and the limit is by dominated conver-
gence theorem. Hence (A.6) holds. Lastly,

E
[
Xj(Bk(Z)−Ak(Z))

]
=

∞∑
i=1

λ/µi
1 + λ/µi

〈Bk, φi〉L2(PZ)E[Xjφi(Z)]→ 0,

again by dominated convergence and the fact that Xj and φi are uniformly
bounded. Hence (A.5) also holds.

A.2. Proof of Proposition 2.3. With the theoretical foundations laid
up in the previous section, we are now ready to construct Ru and Pλ, whose
exact forms are presented in Proposition 2.3.

Proof. The proof follows similarly as Proposition 2.1 in Cheng and Shang
(2013). We first want to construct Ru ∈ A such that it possess the following
reproducing property:

(A.11) 〈Ru,m〉A = βTx+ f(z),

for any u = (x, z) and m = (β, f) ∈ A. As Ru ∈ A, it has two components:
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Ru = (Lu, Nu). Hence the L.H.S. of (A.11) can be written as

〈Ru,m〉A = E
[
(XTLu +Nu(Z))(XTβ + f(Z))

]
+ λ〈Nu, f〉H

= βTE[XXT ]Lu + βTE[XNu(Z)] + LTuE[Xf(Z)]

+ E[Nu(Z)f(Z)] + λ〈Nu, f〉H
= βT

(
E[XXT ]Lu + E[B(Z)Nu(Z)]

)
+ LTuE[B(Z)f(Z)] + 〈Nu, f〉C

= βT
(
E[XXT ]Lu + E[B(Z)Nu(Z)]

)
+ 〈ATLu +Nu, f〉C

(A.12)

where in the second last inequality we used the definition of 〈·, ·〉C and in the
last equality we used E[B(Z)f(Z)] = 〈B, f〉L2(PZ) = 〈A, f〉C . On the other
hand, the R.H.S of (A.11) is

(A.13) βTx+ f(z) = βTx+ 〈K̃z, f〉.
Comparing (A.12) and (A.13), we have the following set of equations:

x = E[XXT ]Lu + E[B(Z)Nu(Z)]

K̃z = ATLu +Nu.

From the second equation we get Nu = K̃z −ATLu. Substitute it into the
first equation, we get

x = E[XXT ]Lu + E[B(Z)(K̃z(Z)−A(Z)TLu)]

=
(
Ω + E[B(Z)BT (Z)]

)
Lu + E[B(Z)K̃z(Z)]− E[B(Z)A(Z)TLu]

= (Ω + Σλ)Lu + 〈B, K̃z〉L2(PZ)

= (Ω + Σλ)Lu + 〈A, K̃z〉C = (Ω + Σλ)Lu +A(z),

where in the second inequality we used the fact that B(Z) and X −B(Z)
are orthogonal. Therefore it follows that

Lu = (Ω + Σλ)−1(x−A(z)).

This finishes the proof for the construction of Ru.
We next construct Pλ such that

(A.14) 〈Pλm, m̃〉A = λ〈f, f̃〉H,
for any m = (β, f), m̃ = (β̃, f̃) ∈ A. As Pλm ∈ A, it has two components:
Pλm = (Lλf,Nλf). Similar to the derivation of (A.12), the L.H.S. of (A.14)
can be written as

〈Pλm, m̃〉A = E
[
(XTLλf +Nλf(Z))(XT β̃ + f̃)

]
+ λ〈Nλf, f̃〉H

= β̃T
(
E[XXT ]Lλf + E[B(Z)Nλf(Z)]

)
+ 〈ATLλf +Nλf, f̃〉C(A.15)
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The R.H.S. of (A.14) is

(A.16) λ〈f, f̃〉H = 〈Wλf, f̃〉C .
Comparing (A.15) and (A.16), we obtain the following set of equations:

0 = E[XXT ]Lλf + E[B(Z)Nλf(Z)]

Wλf = ATLλf +Nλf.

Solving the above two equations, we get

Lλf = −(Ω + Σλ)−1〈B,Wλf〉L2(PZ) and Nλf = Wλf −ATLλf,

as desired.

A.3. Properties of Ru and Pλ. We first present a lemma that bounds
the A-norm of Ru.

Lemma A.4. There exists a constant cr > 0 independent to u such that
‖Ru‖A ≤ crh−1/2. It follows that ‖m‖sup ≤ crh−1/2‖m‖A for all m.

Proof. By Proposition 2.3, we have that for u = (x, z),

〈Ru, Ru〉A = xTLu +Nu(z)

= K̃z(z) + (x−A(z))TLu

= K̃z(z) + (x−A(z))T (Ω + Σλ)−1(x−A(z)).(A.17)

From Lemma A.1, we have K̃z(z) = ‖K̃‖2C ≤ c2
φh
−1. For the second term

in (A.17), we first show that Σλ is positive definite. Recall the definition of
Σλ = E

[
B(Z)(B(Z)−A(Z))

]
. (A.10) shows that

[Σλ]jk = E
[
Bj(Z)(Bk(Z)−Ak(Z))

]
=

∞∑
`=1

λ/µ`
1 + λ/µ`

〈Bj , φ`〉L2〈Bk, φ`〉L2 ,

which implies that Σλ is positive definite. Indeed, for any x ∈ Rp and x 6= 0,

xTΣλx =

p∑
j=1

p∑
k=1

xjxk[Σλ]jk =
∞∑
`=1

λ/µ`
1 + λ/µ`

( p∑
j=1

xj〈Bj , φ`〉L2

)2
> 0.

Therefore, it follows that the second term in (A.17) is bounded by

(x−A(z))T (Ω + Σλ)−1(x−A(z)) ≤ ‖Ω + Σλ‖−1‖x−A(z)‖22
≤ τmin(Ω)−1‖x−A(z)‖22.(A.18)

where recall τmin(Ω) is the minimum eigenvalue of Ω. As x is uniformly
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bounded, we are left to bound A(z). By (A.8), we have

(A.19) Ak(z) =
∞∑
`=1

〈Bk, φ`〉L2(PZ)

1 + λ/µ`
φ`(z),

Hence by the assumption that Bj ∈ L2(PZ) for j = 1, . . . , p and uniform
boundedness of φ`, we have

(A.20) A2
k(z) ≤ cφ

∞∑
`=1

〈Bk, φ`〉2L2(PZ)

∞∑
`=1

(1 + λ/µ`)
−2 ≤ cφ‖Bk‖2L2(PZ)h

−1.

Therefore, by (A.17) and (A.18), we have ‖Ru‖A ≤ crh
−1/2, where cr is

determined by p, cφ, cx, τmin and ‖Bk‖L2(PZ). Therefore, for any u = (x, z)

|m(u)| = |〈m,Ru〉A| ≤ ‖m‖A‖Ru‖A ≤ crh−1/2‖m‖A,
which implies that ‖m‖sup ≤ crh−1/2‖m‖A.

Based on the above lemma, if we have the extra condition that Bk(z) are
smooth functions, then we can bound the parametric and nonparametric
components of Ru and Pλm0 more precisely.

Lemma A.5. Suppose Assumptions 3.1 - 3.3 hold. Then we have

(i) ‖Lu‖22 ≤ C ′1 where C ′1 = 2τ−2
min

(
c2
xp + c2

φ Tr(K)
∑p

k=1 ‖Bk‖
2
H

)
, and

‖Nu‖2C ≤ C1h
−1 where C1 = 2c2

φ

(
1 + C ′1

∑p
k=1 ‖Bk‖

2
L2(PZ)

)
;

(ii) Moreover, ‖Lλf0‖22 ≤ C ′2λ
2 and ‖Nλf0‖2C ≤ 2‖f0‖2Hλ + C2λ

2, where
C ′2 = τ−2

min‖f0‖2H
∑p

k=1 ‖Bk‖
2
H and C2 = 2C ′2

∑p
k=1 ‖Bk‖

2
L2(PZ).

Proof. (i) By Proposition 2.3,

Lu = (Ω + Σλ)−1(x−A(z)) and Nu = K̃z −ATLu,

By the first equation we have

‖Lu‖22 ≤ ‖(Ω + Σλ)−1‖22‖x−A(z)‖22.
Recall

Ak(z) =
∞∑
`=1

〈Bk, φ`〉L2

1 + λ/µ`
φ`(z).

Hence by Assumption 3.3 it follows that

Ak(z)
2 ≤

∞∑
`=1

〈Bk, φ`〉2L2

µ`

∞∑
`=1

µ`
φ`(z)

2

(1 + λ/µ`)2
≤ c2

φ‖Bk‖2HTr(K),

where the first inequality is by Cauchy-Schwarz and the second is by As-
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sumption 3.2 that φ` are uniformly bounded. Hence for all z ∈ Z,

(A.21) ‖A(z)‖22 ≤ c2
φ Tr(K)

p∑
k=1

‖Bk‖2H.

Also, we showed in the proof of Lemma A.4 that ‖(Ω + Σλ)−1‖ is bounded
by τ−1

min. Finally, by the boundedness of the support of X , we have

‖LU‖22 ≤ 2τ−2
min

(
c2
xp+ c2

φ Tr(K)

p∑
k=1

‖Bk‖2H
)

= C ′1.

To control Nu, we have

(A.22) ‖Nu‖2C ≤ 2
(
‖K̃z‖2C + ‖LTuA‖2C

)
For the first term in (A.22), by Lemma A.1, we have ‖K̃z‖2C ≤ c2

φh
−1. For

the second term, by (A.19) we have

‖Ak‖2C = 〈Ak, Ak〉C = 〈Bk, Ak〉L2(PZ) =

∞∑
`=1

〈Bk, φ`〉2L2(PZ)

1 + λ/µ`

≤ c2
φ‖Bk‖2L2(PZ)

∞∑
`=1

1

1 + λ/µ`
= c2

φ‖Bk‖2L2(PZ)h
−1.(A.23)

where the inequality is by Cauchy-Schwartz and uniform boundedness of φ`.
Hence it follows that

‖LTuA‖C = ‖
p∑

k=1

(Lu)kAk‖C ≤
p∑

k=1

|(Lu)k|‖Ak‖C

≤ ‖Lu‖2
( p∑
k=1

‖Ak‖2C
)1/2

≤ (C ′1)1/2cφh
−1/2

( p∑
k=1

‖Bk‖2L2(PZ)

)1/2
(A.24)

Therefore, by (A.22) we obtain

‖Nu‖2C ≤ 2c2
φ

(
1 + C ′1

p∑
k=1

‖Bk‖2L2(PZ)

)
h−1 = C1h

−1

(ii) By Proposition 2.3, we have

Lλf0 = −(Ω + Σλ)−1〈Wλf0,B〉L2(PZ)

Nλf0 = (Lλf0)TA+Wλf0
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To control Lλf0, we have by Fourier expansion of f0 and (A.3)

〈Bj ,Wλf0〉2L2(PZ) =
( ∞∑
`=1

〈Bk, φ`〉L2

λθ`
µ` + λ

)2

≤ λ2
( ∞∑
i=1

〈Bk, φ`〉2L2

µ` + λ

)( ∞∑
`=1

θ2
`

µ` + λ

)
≤ λ2‖Bk‖2H‖f0‖2H.

Hence by the positive definiteness of Σλ, we have

‖Lf0‖22 ≤ ‖(Ω + Σλ)−1‖‖〈Wλf0,B〉L2(PZ)‖22

≤ τ−2
min‖f0‖2H

p∑
k=1

‖Bk‖2Hλ2 = C ′2λ
2.

For Nλf0, we have

(A.25) ‖Nλf0‖2C = 2‖(Lλf0)TA‖2C + 2‖Wλf0‖2C
For the first term (A.25), by the fact that

∑∞
`=1〈Bk, φ`〉2L2(PZ) = ‖Bk‖2L2(PZ),

we first get an inequality for ‖Ak‖2C that is different than (A.23):

‖Ak‖2C = 〈Ak, Ak〉C = 〈Bk, Ak〉L2(PZ) =
∞∑
`=1

〈Bk, φ`〉2L2(PZ)

1 + λ/µ`
≤ ‖Bk‖2L2(PZ).

Therefore, following the same derivation as (A.24), we have

‖(Lλf0)TA‖2C ≤ ‖Lλf0‖22
p∑

k=1

‖Ak‖2C ≤ C ′2λ2
p∑

k=1

‖Bk‖2L2(PZ).

For the second term in (A.25) we have

‖Wλf0‖C = sup
‖f‖C=1

|〈Wλf0, f〉C | = sup
‖f‖C=1

λ|〈f0, f〉H|

≤ sup
||f ||C=1

√
λ‖f0‖2H

√
λ‖f‖2H ≤ λ

1/2‖f0‖H,

where the last equality follows from the fact that λ‖f‖2H ≤ ‖f‖2C . Therefore,
by (A.25), we obtain

‖Nλf0‖2C ≤ 2λ‖f0‖2H + 2C ′2λ
2

p∑
k=1

‖Bk‖2L2(PZ) = 2‖f0‖2Hλ+ C2λ
2,

as desired.

APPENDIX B: PROOFS IN SECTION 3

B.1. Proof of Theorem 3.5.
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Proof. By first order optimality condition, we have∑
i∈Lj

Xi

(
Yi −XT

i β̌
(j) − f̄(Zi)

)
= 0.

Hence we have

(B.1) β̌(j) =
(∑
i∈Lj

XiX
T
i

)−1 ∑
i∈Lj

Xi

(
Yi − f̄(Zi)

)
.

As for i ∈ Lj we have Yi = XT
i β

(j)
0 + f0(Zi) + εi, hence

√
n(β̌(j) − β0) = n−1/2

∑
i∈Lj

(Σ̂(j))−1Xiεi(B.2)

+ n−1/2
∑
i∈Lj

(Σ̂(j))−1Xi

(
f0(Zi)− f̄(Zi)

)
,

where the Σ̂(j) = 1
n

∑
i∈Lj XiX

T
i is sample covariance of X based on data

from the j-th subpopulation. For the first term on the R.H.S. of (B.2), it is
the same as the one for ordinary least squares, and so

(B.3) n−1/2
∑
i∈Lj

(Σ̂(j))−1Xiεi  N(0, σ2Σ−1).

For the second term on the R.H.S. of (B.2), by triangular inequality, we have
for all 1 ≤ j ≤ s that∥∥ 1√

n

∑
i∈Lj

(
Σ̂(j)

)−1
Xi

(
f0(Zi)− f̄(Zi)

)∥∥
2
≤ ‖f̄ − f0‖supn

−1/2
∑
i∈Lj

‖Σ̂(j)Xi‖2

≤ Cn1/2‖f̄ − f0‖sup,

for some constant C that is related to the dimension p and boundedness of
the support of X . As ‖f̄ − f0‖sup ≤ ‖m̄ −m0‖sup ≤ crh

−1/2‖m̄ −m0‖A by
Lemma A.4, it suffices to bound ‖m̄−m0‖A. Taking average of equations
(7.2) for all j over s, we get

m̄−m0 =
1

N

N∑
i=1

RUiεi − Pλm0 −
1

s

s∑
j=1

Rem(j).

By triangular inequality,

(B.4) ‖m̄−m0‖A ≤ ‖
1

N

N∑
i=1

RUiεi‖A + ‖Pλm0‖A + ‖1

s

s∑
j=1

Rem(j)‖A.

For the first term on the R.H.S., define Qi = {|εi| ≤ logN}. Since ‖RU‖A ≤
crh
−1/2, we have that

{
εiRUiIQi

}N
i=1

is a sequence of random variables in
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Hilbert space F that are i.i.d. with mean zero and bounded by crh
−1/2 logN .

Therefore by Lemma G.1 we have

P
(
‖ 1

N

N∑
i=1

εiRUi‖A > cr log2N(Nh)−1/2
)

≤ P
({
∩i Qi

}
∩
{
‖ 1

N

N∑
i=1

εiRUi‖A > cr log2N(Nh)−1/2
})

+ P
(
(∩iQi)c

)

≤ 2 exp(− log2N) + 2N exp(− log2N)→ 0.

(B.5)

Therefore, we have || 1
N

∑N
i=1 εiRUi || = oP

(
log2N(Nh)−1/2

)
. Moreover, by

(A.26), we have ‖Pλm0‖A = O(λ−1/2). Furthermore, by Lemma 7.3, when s
satisfies Condition (3.17) , we have ‖1

s

∑s
j=1Rem

(j)‖A = oP (s−1/2bn,s logN).

By the definition of bn,s, we have if s satisfies (3.18), then ‖1
s

∑s
j=1Rem

(j)‖A =

oP ((Nh)−1/2). Therefore, by (B.4), we have

‖m̄−m0‖A = oP
(

log2N(Nh)−1/2 + λ1/2
)
.

Hence we have

max
1≤j≤s

‖ 1√
n

∑
i∈Lj

(
Σ̂(j)

)−1
Xi

(
f0(Zi)− f̄(Zi)

)
‖2

= oP
(
n1/2h−1/2(log2N(Nh)−1/2 + λ1/2)

)
.(B.6)

Plugging the relationship n = N/s, we have when s & h−2 log4N and
λ = O((Nh)−1),

‖ 1√
n

∑
i∈Lj

(
Σ̂(j)

)−1
Xi

(
f0(Zi)− f̄(Zi)

)
‖2 = oP (1).

Hence by (B.2) and (B.3),
√
n(β̌ − β0) N(0, σ2Σ−1),

as desired.

B.2. Proof of Theorem 3.6.

Proof. (i) By (7.3), we have for the jth sub-population

(B.7) β̂(j) − β(j)
0 =

1

n

∑
i∈Lj

LUiεi − Lλf0 −Rem(j)
β ,

where Rem
(j)
β = 1/n

∑
i∈Lj

(
LUi∆m

(j)(Ui)− EU [LU∆m(j)(U)]
)

. Equation
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(B.7) also holds for the k-th sub-population. Hence under H0 : β
(j)
0 = β

(k)
0 ,

we have

(B.8) β̂(j) − β̂(k) =
1

n

∑
i∈Lj

LUiεi −
1

n

∑
i∈Lk

LUiεi − (Rem
(j)
β −Rem

(k)
β ),

By independence between two sub-populations, we have 1
n

∑
i∈Lj LUiεi −

1
n

∑
i∈Lk LUiεi  N(0, 2σ2Ω−1). Moreover, when the conditions in Theorem

3.4 are satisfied, we have
√
n‖Q‖‖Rem(j)

β −Rem
(j)
β ‖2 = oP (1) by triangular

inequality. Therefore the result follows.
(ii) By (B.2), we have

√
n(β̌(j) − β(j)

0 ) =
1√
n

(
Σ̂(j)

)−1
∑
i∈Lj

Xiεi(B.9)

+
1√
n

(
Σ̂(j)

)−1
∑
i∈Lj

Xi

(
f0(Zi)− f̄(Zi)

)
,

where Σ̂(j) = 1
n

∑
i∈Lj XiX

T
i . The above equation is also true for k-th

sub-population. So if s satisfies Condition (3.16), (3.17) and (3.18), we have∥∥ 1√
n

(
Σ̂(j)

)−1
∑
i∈Lj

Xi

(
f0(Zi)− f̄(Zi)

)∥∥
2

= oP (1).

We have another equation that is same as (B.9) with j replaced by k. Hence

subtracting the two equations, we have under H0 : β
(j)
0 = β

(k)
0 ,

√
n(β̌(j) − β̌(k)) =

1√
n

(
Σ̂(j)

)−1
∑
i∈Lj

Xiεi −
1√
n

(
Σ̂(k)

)−1
∑
i∈Lk

Xiεi

+ oP (1).

Hence the conclusion follows from CLT and independence of sub-populations
j and k.

B.3. Proof of Theorem 3.7. Before presenting the proof, we define
the following preliminaries: for any G ⊂ {1, 2, . . . , s} with |G| = d, let

T0,G := max
j∈G,1≤k≤p

1√
n

∑
i∈Lj

(
Σ−1

)
k
Xiεi,

where
(
Σ−1

)
k

denotes the k-th row of the precision matrix Σ−1 of X.
Furthermore, let

W0,G := max
j∈G,1≤k≤p

n−1/2
∑
i∈Lj

Γi,k,
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where {Γi = (Γi,1, . . .Γi,p)} for each i ∈ Lj , j ∈ G is a sequence of mean zero
independent Gaussian vector with E[ΓiΓ

T
i ] = (Σ)−1σ2. Lastly, it is useful to

recall

WG := max
j∈G,1≤k≤p

1√
n

∑
i∈Lj

(
Σ̂(j)

)−1

k
Xiei,

and cG(α) = inf{t ∈ R : P(WG ≤ t |X) ≥ 1− α}.
The proof strategy is similar to that of Theorem 3.2 in Chernozhukov

et al. (2013). Specifically, we first approximate TG by T0,G , and then apply
Gaussian approximation to T0,G and W0,G . Then, we argue that W0,G and
WG are close. Hence we can approximate the quantiles of TG by those of WG .
The detailed proof is presented as follows.

Proof. By (B.2), we have
√
n(β̌(j) − β̃(j)) = n−1/2

∑
i∈Lj

(Σ̂(j))−1Xiεi + ∆(j),(B.10)

where
∆(j) = n−1/2

∑
i∈Lj

(Σ̂(j))−1Xi

(
f0(Zi)− f̄(Zi)

)
.

By (B.6) in the proof of Theorem 3.5, we have

max
j∈G
‖∆(j)‖∞ = oP

(
n1/2h−1/2(log2N(Nh)−1/2 + λ1/2)

)
.

and when s & h−2 log(pd) log4N and λ = O((Nh)−1), we have

max
j∈G
‖∆(j)‖∞ = oP (log−1/2(pd)).

By the definitions of TG and T0,G and (B.10), we have

|TG − T0,G | ≤ max
j∈G

1√
n

∥∥∥∑
i∈Lj

(Σ̂(j))−1Xiεi −Σ−1Xiεi

∥∥∥
∞

+ max
j∈G
‖∆(j)‖∞,

where we used the fact that maxj aj −maxj bj ≤ maxj |aj − bj | for any two
finite sequences {aj}, {bj}. By the above inequality and Lemma B.2, there
exist ζ1 and ζ2 such that

(B.11) P
(
|TG − T0,G | ≥ ζ1

)
≤ ζ2,

where ζ1

√
1 ∨ log(pd/ζ1) = o(1) and ζ2 = o(1).

We next turn to bound the distance between quantiles of WG and W0,G .
Let c0,G(α) := inf{t ∈ R : P(W0,G ≤ t) ≥ 1− α}, and let π(ν) := C2ν

1/3(1 ∨
log(pd/ν))2/3 with C2 > 0, and

Ψ := max
1≤k,`≤p
j∈G

σ2|(Σ̂(j) −Σ)k`|.
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As the data size in each Lj is the same, we can relabel {Xi ∈ Rp}i∈Lj ,j∈G as

{X(j)
i ∈ Rp}1≤i≤n,j∈G and {Γi ∈ Rp}1≤i≤n,j∈G as {Γ(j)

i ∈ Rp}1≤i≤n,j∈G . Then

we can re-write W0,G = maxj∈G,1≤k≤p U
(j)
k , and WG = maxj∈G,1≤k≤p V

(j)
k ,

where

U
(j)
k =

1√
n

n∑
i=1

Γ
(j)
ik and V

(j)
k =

1√
n

n∑
i=1

(Σ̂(j))−1
k X

(j)
i e

(j)
i .

(e
(j)
i is defined in the similar way). Notice that U = {U (j)

k }1≤k≤p,j∈G can be
viewed as an (p · d)-dimensional Gaussian random vector with mean zero
and covariance

σ2Σ−1 0 . . . 0
0 σ2Σ−1 . . . 0
...

...
. . .

...
0 0 . . . σ2Σ−1

 ∈ R(p·d)×(p·d).

Conditioned on X, V = {V (j)
k }1≤k≤p,j∈G can be viewed as an (p·d)-dimensional

Gaussian random vector with mean zero and covariance
σ2
(
Σ̂(1)

)−1
0 . . . 0

0 σ2
(
Σ̂(2)

)−1
. . . 0

...
...

. . .
...

0 0 . . . σ2
(
Σ̂(d)

)−1

 ∈ R(p·d)×(p·d).

Using Gaussian comparison (Lemma 3.1 in Chernozhukov et al. (2013)) and
applying the same argument as in the proof of Lemma 3.2 in Chernozhukov
et al. (2013), we obtain for any ν > 0

P
(
c0,G(α) ≤ cG(α+ π(ν))

)
≥ 1− P(Ψ > ν),(B.12)

P
(
cG(α) ≤ c0,G(α+ π(ν))

)
≥ 1− P(Ψ > ν).(B.13)

By Lemma B.1, we have

(B.14) sup
α∈(0,1)

∣∣P(T0,G > cG(α)
)
−α

∣∣ ≤ sup
α∈(0,1)

∣∣P(W0,G > cG(α)
)
−α

∣∣+n−c.

To further control P
(
W0,G > cG(α)

)
, we define E1 = {c0,G(α−π(ν)) ≤ cG(α)},

E2 = {cG(α) ≤ c0,G(α+ π(ν))}. We have

P
(
W0,G > cG(α)

)
= P

(
W0,G > cG(α), E1

)
+ P

(
W0,G > cG(α), Ec1

)
≤ P

(
W0,G > c0,G(α− π(ν))

)
+ P(Ec1)

≤ α− π(ν) + P(Ψ > ν),

where the last inequality is by the definition of c0,G(α) and (B.12). Similarly,



STATISTICAL INFERENCE FOR MASSIVE HETEROGENEOUS DATA 15

we have

P
(
W0,G > cG(α)

)
= 1− P

(
W0,G ≤ cG(α)

)
= 1− P

(
W0,G ≤ cG(α), E2

)
− P

(
W0,G ≤ cG(α), Ec2

)
≥ 1− P

(
W0,G ≤ c0,G(α+ π(ν))

)
− P(Ec2)

≥ α+ π(ν)− P(Ψ > ν),

where the last inequality is by the definition of c0,G(α) and (B.13). Hence it
follows from (B.14) that

(B.15) sup
α∈(0,1)

∣∣P(T0,G > cG(α)
)
− α

∣∣ ≤ π(ν) + P(Ψ > ν) + n−c.

Define the event E3 = {|T0,G − TG | ≤ ζ1}. By (B.11), we have P(Ec3) ≤ ζ2.
Hence, we deduce that for any α

P(TG ≥ cG(α))− α ≤ P(TG ≥ cG(α), E3) + P(Ec3)− α
≤ P(T0,G ≥ cG(α)− ζ1) + ζ2 − α,

≤ P(T0,G ≥ cG(α)) + Cζ1

√
1 ∨ log(ps/ζ1) + ζ2 − α

≤ π(ν) + P(Ψ > ν) + n−c + Cζ1

√
1 ∨ log(ps/ζ1) + ζ2,

where the second last inequality is by Corollary 16 of Wasserman (2014)
(Gaussian anti-concentration). By similar arguments, we get the same bound
for α− P(TG ≥ cG(α)), so we have

sup
α

∣∣P(TG ≥ cG(α))−α
∣∣ ≤ π(ν)+P(Ψ > ν)+n−c+Cζ1

√
1 ∨ log(pd/ζ1)+ζ2.

Lastly, we bound Ψ. By (B.18) in the proof of Lemma B.2 and the fact that
elementwise infinity norm is bounded by spectral norm, we obtain

Ψ ≤ max
j∈G
‖Σ̂(j) −Σ‖∞ = oP

(
p
√

(log d)/n
)
.

Hence, choosing ν = p
√

(log d)/n, we get

sup
α

∣∣P(TG ≥ cG(α))− α
∣∣ = o(1),

which concludes the proof.

Lemma B.1. Suppose Assumption 3.1 holds. For any G ⊂ {1, 2, . . . , s} with
d = d, if (log(pdn))7/n ≤ C1n

−c1 for some constants c1, C1 > 0, then we
have

sup
x∈R

∣∣∣P(T0,G ≤ x
)
− P

(
W0,G ≤ x

)∣∣∣ ≤ n−c,
for some constant c > 0.

Proof. As the data size in each Lj is the same, we can relabel {Xi ∈
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Rp}i∈Lj ,j∈G as {X(j)
i ∈ Rp}1≤i≤n,j∈G . Then T0,G = maxj∈G,1≤k≤p n

−1/2
∑n

i=1 ξ
(j)
ik ,

where ξ
(j)
ik = (Σ−1)kX

(j)
i εi. For each i,

{
ξ

(j)
ik

}
1≤k≤p,j∈G can be viewed as a

(p · d)-dimensional vector with covariance matrix
σ2Σ−1 0 . . . 0

0 σ2Σ−1 . . . 0
...

...
. . .

...
0 0 . . . σ2Σ−1

 ∈ R(p·d)×(p·d).

The same thing can be done for Γ which results in the same covariance
matrix. Then we apply Corollary 2.1 of Chernozhukov et al. (2013) to
prove the Gaussian approximation result stated in the lemma. It suffices to

verify Condition (E1) therein. We have E
[
(ξ

(j)
ik )2

]
= (Σ−1)kk is a constant,

and max`=1,2 E
[
|ξ(j)
ik |

2+`/B`
]

+ E
[

exp(|ξ(j)
ik |/B)

]
≤ 4 for some large enough

constant B, by the sub-Gaussianity of ε
(j)
i and the boundedness of X

(j)
i .

Hence Condition (E1) is verified, and by the assumption that (log(pdn))7/n ≤
C1n

−c1 , we get the desired result.

Lemma B.2. Suppose Assumption 3.1 holds. For any G ⊂ {1, 2, . . . , s} with
d = d, suppose p2 log(pd)/

√
n = o(1). Then there exist ζ1 and ζ2 such that

P
(

max
j∈G

1√
n

∥∥∥∑
i∈Lj

(Σ̂(j))−1Xiεi −Σ−1Xiεi

∥∥∥
∞
> ζ1

)
≤ ζ2,

where ζ1

√
1 ∨ log(pd/ζ1) = o(1) and ζ2 = o(1).

Proof. We have

max
j∈G

1√
n

∥∥∥∑
i∈Lj

(Σ̂(j))−1Xiεi −Σ−1Xiεi

∥∥∥
∞

≤ max
j∈G

∥∥(Σ̂(j))−1 −Σ−1
∥∥

1
max
j∈G

∥∥∥ 1√
n

∑
i∈Lj

Xiεi

∥∥∥
∞

≤ max
j∈G

p
∥∥(Σ̂(j))−1 −Σ−1

∥∥max
j∈G

∥∥∥ 1√
n

∑
i∈Lj

Xiεi

∥∥∥
∞
,(B.16)

where ‖ · ‖1 denotes the elementwise L1 norm of matrices. As εi are i.i.d.
sub-Gaussian random variables, we have by Hoeffding’s inequality that for
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any j ∈ G and 1 ≤ k ≤ p

P
( 1√

n

∑
i∈Lj

Xikεi > t |X
)
≤ exp

(
− nt2∑

i∈Lj X
2
ikσ

2

)
≤ exp

(
− t2

c2
xσ

2

)
,

where the second inequality is by the boundedness of Xik. By law of iterated
expectation and union bound we have

P
(

max
j∈G

∥∥∥ 1√
n

∑
i∈Lj

Xiεi

∥∥∥
∞
> t
)
≤ pd exp

(
− t2

c2
xσ

2

)
.

Letting t = 2cxσ
√

log(pd), we get with probability at least 1− (pd)−1 that

(B.17) max
j∈G

∥∥∥ 1√
n

∑
i∈Lj

Xiεi

∥∥∥
∞
≤ 2cxσ

√
log(pd).

By the boundedness of X, we have ‖XiX
T
i − E[XiX

T
i ]‖ ≤ 2‖XiX

T
i ‖ ≤

2‖Xi‖22 ≤ 2pc2
x. Therefore, by Lemma G.3, we have for all j ∈ G that

P
(
‖Σ̂(j) −Σ‖ ≥ t

)
≤ P

(∥∥∥ 1

n

∑
i∈Lj

XiX
T
i − E[XiX

T
i

∥∥∥ ≥ t)
≤ p exp

(
− nt2

32p2c4
x

)
.

and so it follows from union bound that

P
(

max
j∈G
‖Σ̂(j) −Σ‖ ≥ t

)
≤ pd exp

(
− nt2

32p2c4
x

)
.

Choosing t = 64p
√

(log d)/n, we obtain

(B.18) max
j∈G
‖Σ̂(j) −Σ‖ = oP

(
p

√
log d

n

)
.

Thus, by Lemma G.4, we get

(B.19) max
j∈G
‖(Σ̂(j))−1 −Σ−1‖ = oP

(
p

√
log d

n

)
.

Combining (B.16), (B.17) and (B.19), we have

max
j∈G

1√
n

∥∥∥∑
i∈Lj

(Σ̂(j))−1Xiεi −Σ−1Xiεi

∥∥∥
∞

= oP

(
p2 log(pd)√

n

)
We choose ζ1 such that p2 log(pd)/(

√
nζ1) = o(1) and ζ1

√
1 ∨ log(pd/ζ1) =
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o(1), e.g., ζ2
1 = p2 log(pd)/

√
n. Then by the above equation we have

P
(

max
j∈G

1√
n

∥∥∥∑
i∈Lj

(Σ̂(j))−1Xiεi −Σ−1Xiεi

∥∥∥
∞
≥ ζ1

)
< ζ2,

where ζ2 = o(1).

APPENDIX C: PROOFS IN SECTION 4

C.1. Proof of Corollary 4.1.

Proof. We begin by computing h. As µi = 0 for i > r, we have that
h−1 =

∑r
i=1

1
1+λ/µi

� r. Hence h � r−1.

Therefore by Theorem 3.4, λ = o
(
(Nh)−1/2∧n−1/2

)
= o(N−1/2). We next

calculate the asymptotic covariance.

Ak(z0) = 〈Ak, K̃z0〉C = 〈Bk, K̃z0〉L2(PZ)

=
r∑
i=1

〈Bk, φi〉L2(PZ)

1 + λ
µi

φi(z0)→
r∑
i=1

〈Bk, φi〉L2(PZ)φi(z0).

Hence γz0 = h1/2
∑r

i=1〈Bk, φi〉L2(PZ)φi(z0). The formula for Σ∗12 and Σ∗22

then follows from Theorem 3.4.
We next calculate the entropy integral ω(F , δ) for finite rank RKHS and

the upper bound for s. Define F̃2 = {f ∈ H : ‖f‖sup ≤ 1, ‖f‖H ≤ 1}. By
Carl and Triebel (1980), for finite rank RKHS,

logN (F̃2, ‖ · ‖sup, δ) � r log δ−1.

We have thatN (F , ‖·‖sup, δ) ≤ N (F1, ‖·‖sup, δ)N (F2, ‖·‖sup, δ). AsN (F1, ‖·
‖sup, δ) is dominated by N (F2, ‖·‖sup, δ), it suffices to bound N (F2, ‖·‖sup, δ).
Now by Van Der Vaart and Wellner (1996), we have that

N (F2, ‖ · ‖sup, δ) ≤ N (h1/2λ−1/2F̃2, ‖ · ‖sup, δ)

= N (F̃2, ‖ · ‖sup, h
−1/2λ1/2δ).

Hence

ω(F , δ) ≤
∫ δ

0

√
logN (F̃2, ‖ · ‖sup, h−1/2λ1/2ε)dε

�
∫ δ

0

√
r log(h1/2λ−1/2ε−1)dε

�
√
rδ
√

log(h1/2λ−1/2δ−1)

Now we are ready to calculate the upper bound for s. We plug in n = N/s

and h � r−1 into (3.6) and (3.7), and by the condition λ = o
(

1√
N

)
, we get
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s = o
(

N√
log λ−1 log6N

)
. This upper bound needs to allow the case that s = 1,

which yields the lower bound for λ:
√

log(λ−1) = o
(
N log−6N

)
.

C.2. Proof of Corollary 4.2.

Proof. Recall that we have h � r−1. To optimize the rate, we choose λ
such that 1

Nh � λ, which yields λ = r
N . By Theorem 3.1 we have

E
[
‖f̄N,λ − f0‖2L2(PZ)

]
≤ Cr/N + s−1a(n, s, h, λ, ω).

For the remainder term to be small, we need s−1a(n, s, h, λ, ω) . N−1.
Plugging in a(n, s, h, λ, ω), h and λ, we get the upper bound for s.

C.3. A Lemma for Exponentially Decaying RKHS.

Lemma C.1. Let h = (− log λ)−1/p. For all t > 0, p ≥ 1 and some positive
constants c, α, we have

lim
λ→0

∞∑
`=1

1

(1 + λc exp(α`p))t
= α−1/p.

Proof. We have by convexity that
∞∑
`=1

1

(1 + λc exp(α`p))t
≤
∫ ∞

0

1

(1 + λc exp(αxp))t
dx.

We then approximate the integral by∫ ∞
0

dx

(1 + λc exp(αxp))t

=

∫ (α−1 log(1/λ))1/p

0

dx

(1 + λc exp(αxp))t

+

∫ ∞
(α−1 log(1/λ))1/p

dx

(1 + λc exp(αxp))t

≤ (α−1 log(1/λ))1/p +

∫ ∞
(α−1 log(1/λ))1/p

(cλ)−t exp(−tαxp)dx

= (α−1 log(1/λ))1/p + o(1),(C.1)

where the last equality is by L’Hospital’s Rule for λ→ 0.
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Moreover, we have for any ε ∈ (0, 1) that
∞∑
`=1

1

(1 + λc exp(α`p))t
≥
∫ ∞

1

1

(1 + λc exp(αxp))t
dx

≥
∫ (εα−1 log(1/λ))1/p

1

1

(1 + λc exp(αxp))t
dx

≥ 1

(1 + cλ1−ε)t

(
(εα−1 log(1/λ))1/p − 1

)
=

1

(1 + cλ1−ε)t

(
(εα−1 log(1/λ))1/p

)
+O(1).(C.2)

Combining (C.1) and (C.2), we get( ε
α

)1/p
≤ lim

λ→0

∞∑
`=1

h

(1 + λc exp(α`p))t
≤
( 1

α

)1/p
.

for any ε ∈ (0, 1). Lastly, letting t→ 1, we get the desired result.

C.4. Proof the Corollary 4.3.

Proof. As before, we start by calculating h. By Lemma C.1 with t = 1,
we have h � (− log λ/c)−1/p.

As h→ 0, Theorem 3.4 shows that αz0 = γz0 = 0. Moreover,

|Wλf0(z0)| = λ|
∞∑
`=1

θ`
λ+ µ`

φ`(z0)|

≤ λ
∞∑
`=0

|φ`(z0)〈f0, φ`〉H| = O(λ).

Therefore, by Theorem 3.4, we can completely remove the asymptotic bias by
choosing λ = o((Nh)−1/2 ∧ n−1/2) = o

(
N−1/2 log1/(2p)N ∧ n−1/2

)
. We next

calculate the entropy integral. We have that for RKHS with exponentially
decaying eigenvalues, by Proposition 17 in Williamson et al. (2001) with
p = 2,

logN (F̃2, ‖ · ‖sup, δ) �
(

log
1

δ

) p+1
p
.
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Then following the deduction in the proof of Corollary 4.1, we have

ω(δ) ≤
∫ δ

0

√
log(1 +N (F̃2, ‖ · ‖sup, (c

−2
r hλ−1)−1/2ε))dε

�
∫ δ

0

√(
log

1

(c−2
r hλ−1)−1/2ε

) p+1
p
dε

� δ log
p+1
2p (h1/2λ−1/2δ−1).

For the range on s, we plug in n = N/s and h � (− log λ/c)−1/p into (3.6)
and (3.7), and we get that it suffices to take

s = o
( N

log6N log(p+4)/p λ−1

)
.

Again the upper bound must allow the case that s = 1, which yields the
lower bound for the choice of λ.

C.5. Proof of Corollary 4.4.

Proof. Recall that we have h � (− log λ/c)−1/p. To balance variance and

bias, we choose λ = (logN)1/p

N . By Theorem 3.1 we have

E
[
‖f̄N,λ − f0‖2L2(PZ)

]
≤ C(logN)1/p/N + s−1a(n, s, h, λ, ω).

For the remainder term to be small, we need s−1a(n, s, h, λ, ω) . (logN)1/p/N .
Plugging in h, λ and ω(F , 1), we get the upper bound for s.

C.6. Proof of Corollary 4.5.

Proof. Again, we begin by calculating h. As µj ≤ cj−2ν , we approximate
h using integration. For simplicity, let c = 1 here. We have

h−1 ≤
∫ ∞

0

1

1 + λx2ν
dx =

∫ λ−
1
2ν

0

1

1 + λx2ν
dx+

∫ ∞
λ−

1
2ν

1

1 + λx2ν
dx

≤
(

1 +
1

1− 2ν

)
λ−

1
2ν .

On the other hand, we also have

h−1 ≥
∫ ∞

1

1

1 + λx2ν
dx =

∫ λ−
1
2ν

1

1

1 + λx2ν
dx+

∫ ∞
λ−

1
2ν

1

1 + λx2ν
dx

≥
(

2 +
1

2− 4ν

)
λ−

1
2ν .

Hence we conclude that h−1 � λ−
1
2ν and thus h � λ

1
2ν .
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As h → 0, Theorem 3.4 shows that αz0 = γz0 = 0. Similar to proof of
Corollary 4.3, we get |Wλf0(z0)| = o(λ), and by Theorem 3.4, we can remove

the asymptotic bias by choosing λ = o
(
(Nh)−1/2 ∧ n−1/2

)
= o

(
N−

2ν
4ν+1 ∧

n−1/2
)
. We next calculate the entropy integral. We have that for RKHS with

polynomially decaying eigenvalues, by Proposition 16 in Williamson et al.
(2001),

logN (F̃2, ‖ · ‖sup, δ) �
(1

δ

) 1
ν
.

Then following the deduction in the proof of Corollary 4.1, we have

ω(F , δ) ≤
∫ δ

0

√
logN (F̃2, ‖ · ‖sup, h−1/2λ1/2ε)dε

�
∫ δ

0

√( 1

hλ−1)−1/2ε

) 1
ν
dε

� (hλ−1)
1
4ν δ1− 1

2ν .

For the range on s, we plug in n = N/s and h � λ
1
2ν into (3.6) and (3.7),

and it follows that s needs to satisfy

s = o
(
λ

10ν−1

4ν2 N log−6N
)
.

Again the upper bound must allow the case that s = 1, which yields the

lower bound for the choice of λ: λ−1 = o
(
N

4ν2

10ν−1
)
.

C.7. Proof of Corollary 4.6 .

Proof. Recall that we have h � λ1/2ν . To optimize the rate, we choose

λ such that 1
Nh � λ, which yields λ = N−

2ν
2ν+1 . By Theorem 3.1 we have

E
[
‖f̄N,λ − f0‖2L2(PZ)

]
≤ CN−

2ν
2ν+1 + s−1a(n, s, h, λ, ω)

For the remainder term to be small, we need s−1a(n, s, h, λ, ω) . N−
2ν

2ν+1 .
Plugging in an, h and λ, we get the upper bound for s.
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C.8. Proof of Lemma 4.1. Recall that λ = h2ν . By Theorem 3.3 for
the asymptotic variance, we compute that

h‖K̃z0‖2L2(PZ) = h
∞∑
`=1

( φ`(z0)

1 + λ/µ`

)2
= h

(
1 +

∞∑
`=1

2cos2(2`πz0) + 2sin2(2`πz0)

(1 + λ(2`π)2ν)2

)
= h

(
1 +

∞∑
`=1

2

(1 + (2`πh)2ν)2

)
And we have that

∞∑
`=0

2πh

(1 + (2`πh)2ν)2
≤

∞∑
`=1

∫ 2πh`

2πh(`−1)

1

(1 + x2ν)2
dx

→
∫ ∞

0

1

(1 + x2ν)2
dx

and similarly
∞∑
`=1

2πh

(1 + (2`πh)2ν)2
≥

∞∑
`=1

∫ 2πh`

2πh(`−1)

1

(1 + x2ν)2
dx

→
∫ ∞

0

1

(1 + x2ν)2
dx

The two inequalities yield

h‖K̃z0‖2L2(PZ) →
∫ ∞

0

1

π(1 + x2ν)2
dx

and so

(C.3) σ2
z0 =

∫ ∞
0

1

π(1 + x2ν)2
dx.

APPENDIX D: PROOF OF RESULTS IN SECTION 5

D.1. Proof of Proposition 5.1.

Proof. The proof follows similarly as the proof for Theorem 3.1.

D.2. Proof of Proposition 5.2.

Proof. Recall (7.2) from proof of Theorem 3.1 in Section 7.2

m̂(j) −m0 =
1

n

∑
i∈Lj

RUiεi − Pλm0 −Rem(j).
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Also recall m∗0 = m0 − Pλm0. Taking average of the above equation for all j
over s, we have

(D.1) m̄−m∗0 =
1

N

N∑
i=1

εiRUi +
1

s

s∑
j=1

Rem(j),

which decomposes into

(D.2) β̄ − β∗0 =
1

N

N∑
i=1

LUiεi −
1

s

s∑
j=1

Rem
(j)
β ,

and

(D.3) f̄ − f∗0 =
1

N

N∑
i=1

NUiεi −
1

s

s∑
j=1

Rem
(j)
f .

Similar to proof in Section 7.2, we can show that the first term weakly
converges to a normal distribution, and the remainder term is asymptotically
ignorable. Recall the definition of m∗0 = (id− Pλ)f0.

Therefore, we deduct that(
xT , 1

)( √
N(β̄ − β∗0)√

Nh
(
f̄(z0)− f∗0 (z0)

) )(D.4)

=
√
NxT (β̄ − β∗0) + (Nh)

1
2 (f̄(z0)− f∗0 (z0))

≤ 1√
N

N∑
i=1

(εix
TLUi + h1/2εiNUi)

1

s

s∑
j=1

√
NxTRem

(j)
β −

1

s

s∑
j=1

√
NhRem

(j)
f (z0).

We can show that the first term is asymptotic normal by central limit theorem:
first note that the summands are i.i.d. and with mean zero. Moreover, by
Proposition 2.3,

xTLU + h1/2NU (z0) = xTLU + h1/2(K̃Z(z0)−A(z0)TLU )

= (x− h1/2A(z0))TLU + h1/2K̃Z(z0)
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We compute

E
[
(xTLUi + h1/2NUi(z0))2

]
= E

[
(x− h1/2A(z0))TLUL

T
U (x− h1/2A(z0))

]︸ ︷︷ ︸
(I)

(D.5)

+ E
[
hK̃Z(z0)2

]︸ ︷︷ ︸
(II)

+E
[
2h1/2K̃Z(z0)(x− h1/2A(z0))TLU

]︸ ︷︷ ︸
(III)

.

For the second term in (D.5), we have

(D.6) (II) = E
[
hK̃Z(z0)2

]
= h‖K̃z0‖2L2(PZ) → σ2

z0 .

For the first term in (D.5), recall from Section 7.2 that E[LUL
T
U ] → Ω−1,

h1/2A(z0)→ −γz0 . Hence we have

(D.7) (I)→ (x+ γz0)TΩ−1(x+ γz0).

Moreover, recall from Section 7.2 that

h1/2E
[
K̃Z(z0)LU

]
→ Ω−1αz0 .

Therefore it follows that

(D.8) (III)→ 2(x+ γz0)TΩ−1αz0 .

Hence combining (D.7), (D.6) and (D.8), the limit of (D.5) is

E
[
(xTLUi + h1/2NUi(z0))2

]
→ xTΩ−1x+ 2xTΣ12 + Σ22,

for any x ∈ Rp. Therefore the limit distribution follows by central limit
theorem. Now for the remainder terms, by Lemma 7.3, if Condition (3.6) is
satisfied, we have

|1
s

s∑
j=1

√
NxTRem

(j)
β | ≤ C

√
N‖1

s

s∑
j=1

Rem
(j)
β ‖2

= oP (N1/2s−1/2bn,s log n).

and

|1
s

s∑
j=1

√
NhxTRem

(j)
f (z0)| ≤ C

√
Nh‖1

s

s∑
j=1

Rem
(j)
f ‖sup

≤ C ′N1/2‖1

s

s∑
j=1

Rem
(j)
f ‖C

= oP (N1/2s−1/2bn,s log n).

where in the second inequality we used Lemma A.1. Then if Condition (3.7)
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is satisfied, we have N1/2s−1/2bn,s log n→ 0. Hence by (D.4), it follows that(
xT , 1

)( √
N(β̄ − β∗0)√

Nh
(
f̄(z0)− f∗0 (z0)

) )→ N
(
0, σ2(xTΩ−1x+ 2xTΣ12 + Σ22)

)
.

Hence the conclusion follows by the arbitrariness of x using Wold device.

APPENDIX E: PROOFS OF LEMMAS IN SECTION 7

E.1. Proof of Lemma 7.1.

Proof. Recall from Section 7.3 that

Zn(m̃) =
1

2
h1/2n1/2d−1

n,sRem
(j) =

1

2
c−1
r hn1/2r−1

n,sRem
(j)

We showed in Section 7.3 that Zn(m) is a sub-Gaussian process. Letting
U(j) = (X(j),Z(j)), where X(j) and Z(j) are designs on j-th sub-population.
Without causing any confusion, we can remove the the superscript (j). We
have

E[‖Rem(j)‖2A] = E
[
E[‖Rem(j)‖2A |U]

]
= E

[
E[‖Rem(j)‖2A |U]IE

]
+ E

[
E[‖Rem(j)‖2A |U]IEc

]
,(E.1)

where E is the event defined in Section 7.3. For the first term in (E.1), we
have

E
[
E[‖Rem(j)‖2A |U]IE

]
= 4c2

rh
−2n−1r2

n,sE
[
E[‖Zn(m̃)‖2A |U]IE

]
= 4c2

rh
−2n−1r2

n,s

∫ ∞
0

P
(
E[‖Zn(m̃)‖2A |U]IE ≥ x

)
dx

= 4c2
rh
−2n−1r2

n,s

{∫ ω(F ,1)2

0
P
(
E[‖Zn(m̃)‖2A |U]IE ≥ x

)
dx

+

∫ ∞
ω(F ,1)2

P
(
E[‖Zn(m̃)‖2A |U]IE ≥ x

)
dx
}

≤ 4c2
rh
−2n−1r2

n,s

{
ω(F , 1)2 +

∫ ∞
0

P
(
E[‖Zn(m̃)‖2A |U]IE ≥ x+ ω(F , 1)2

)
dx
}
.

In Section 7.3 we proved that E ⊂ {m̃ ∈ F}. Therefore we have

E[‖Zn(m̃)‖2A |U]IE ≤ sup
m∈F
‖Zn(m)‖2A.

and by Lemma F.1 and the fact that diam(F) ≤ 1, we have

P
(

sup
m∈F
‖Zn(m)‖2A ≥ x+ ω(F , 1)2

)
≤ P

(
sup
m∈F
‖Zn(m)‖A ≥ (

√
x+ ω(F , 1))/2

)
≤ C exp

(
− x/C

)
.
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Hence it follows that

E
[
E[‖Rem(j)‖2A |U]IE

]
≤ 2c2

rh
−2n−1r2

n,s

(
ω(F , 1)2 +

∫ ∞
0

C exp(−x/C)dx
)

= 2c2
rh
−2n−1r2

n,s

(
ω(F , 1)2 + C2

)
.(E.2)

We now turn to control the second term in (E.1). By Lemma G.2, we
get that E

[
‖∆f (j)‖2H |U

]
≤ 2σ2/λ+ 4‖f0‖2H. Also by first order optimality

condition with respect to β̂,

β̂(j) − β(j)
0 = (XTX)−1XT (f0(Z)− f̂ (j)(Z) + ε(j)),

where we omitted the superscript of (j) for the designs X(j) and Z(j). Hence

‖β̂ − β‖22 ≤ 2‖(XTX)−1XTε(j)‖22 + 2‖(XTX)−1XT (f0(Z)− f̂ (j)(Z))‖22,
Taking conditional expectation yields

E[‖β̂(j) − β(j)
0 ‖

2
2 |U] ≤ 2E

[
‖(XTX)−1XTε(j)‖22 |U

]
(E.3)

+ 2E
[
‖(XTX)−1XT (f0(Z)− f̂ (j)(Z))‖22 |U

]
.

Denote Σ̂(j) = XTX, we first control the first term (E.3). Note that

(XTX)−1XTε(j) =
1

n

∑
i∈Lj

(Σ̂(j))−1Xiεi.

Taking conditional expectation and by independence, we have

E
[
‖(XTX)−1XTε(j)‖22 |U

]
= E

[
‖ 1

n

∑
i∈Lj

(Σ̂(j))−1Xiεi‖22 |U
]

=
1

n2

∑
i∈Lj

E
[
(Σ̂(j))−1Xiεi‖22 |U

]
=

1

n2

∑
i∈Lj

σ2‖(Σ̂(j))−1Xi‖22.(E.4)

For the second term in (E.3), we have similar to above that

(XTX)−1XT (f0(Z)− f̂ (j)(Z)) =
1

n

∑
i∈Lj

(Σ̂(j))−1Xi(f0(Zi)− f̂ (j)(Zi)).
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Taking conditional expectation, we have

E
[
‖(XTX)−1XT (f0(Z)− f̂ (j)(Z))‖22 |U

]
= E

[
‖ 1

n

∑
i∈Lj

(Σ̂(j))−1Xi(f0(Zi)− f̂ (j)(Zi))‖22 |U
]

≤ 1

n

∑
i∈Lj

E
[
‖(Σ̂(j))−1Xi(f0(Zi)− f̂ (j)(Zi))‖22 |U

]
,

where the inequality is by (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i . Hence we have

E
[
‖(XTX)−1XT (f0(Z)− f̂ (j)(Z))‖22 |U

]
≤ 1

n

∑
i∈Lj

E
[
(f0(Zi)− f̂ (j)(Zi))

2 |U
]
‖(Σ̂(j))−1Xi‖22

≤ 1

n

∑
i∈Lj

E
[
‖f0 − f̂ (j)‖2sup |U

]
‖(Σ̂(j))−1Xi‖22

≤ 1

n

∑
i∈Lj

ckE
[
‖f0 − f̂ (j)‖2H |U

]
‖(Σ̂(j))−1Xi‖22

≤ 1

n

∑
i∈Lj

ck(2σ
2/λ+ 4‖f0‖2H)‖(Σ̂(j))−1Xi‖22,(E.5)

where ck = supzK(z, z). The second last inequality follows from the fact

that ‖f‖sup ≤ supz ‖Kz‖H‖f‖H = c
1/2
k ‖f‖H and the last inequality is by

Lemma G.2. Combing (E.4) and (E.5), we have by (E.3) that

E[‖β̂(j) − β(j)
0 ‖

2
2 |U] ≤ Cλ−1 1

n

∑
i∈Lj

‖(Σ̂(j))−1Xi‖22

holds almost surely for some constant C As we have

‖β̂(j) − β(j)
0 ‖

2
L2(PX) = (β̂(j) − β(j)

0 )TΣ(β̂(j) − β(j)
0 ) ≤ ‖Σ−1/2‖‖β̂(j) − β(j)

0 ‖
2
2,

it follows that

(E.6) E[‖β̂(j) − β(j)
0 ‖

2
L2(PX) |U] ≤ Cλ−1 1

n

∑
i∈Lj

‖(Σ̂(j))−1Xi‖22,

for a constant C that is different from above. Lastly, we have ‖f̂ (j) −
f0‖L2(PZ) ≤ ‖f̂ (j) − f0‖sup ≤ c1/2

k ‖f̂
(j) − f0‖H, and it follows that

(E.7) E
[
‖f̂ (j) − f0‖2L2(PZ) |U

]
. λ−1.

Note that for any m = (β, f), ‖m‖2A = ‖XTβ + f(Z)‖2L2(PU ) + λ‖f‖2H ≤
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2‖β‖2L2(PX) + 2‖f‖2L2(PZ) +λ‖f‖2H. Hence by (E.6), (E.7) and (G.1), we have

E
[
‖∆m(j)‖2A |U

]
≤ Cλ−1n−1

∑
i∈Lj

‖(Σ̂(j))−1Xi‖22.

Moreover,

‖Rem(j)‖A ≤ ‖
1

n

∑
i∈Lj

∆m(j)(Ui)RUi‖A + ‖EU [∆m(j)(U)RU ]‖

=
1

n

∑
i∈Lj

‖∆m(j)(Ui)RUi‖A + EU
[
‖∆m(j)(U)RU‖

]
≤ 2h−1‖∆m(j)‖A,

where in the last inequality we used |∆m(j)(U)| ≤ h−1/2‖∆m(j)‖A and
‖RU‖A ≤ h−1/2. Hence

E
[
‖Rem(j)‖2A |U

]
≤ 4h−2E

[
‖∆m(j)‖2A |U

]
≤ Ch−2λ−1n−1

∑
i∈Lj

‖(Σ̂(j))−1Xi‖22.

Hence, we have that the second term in (E.1)

E
[
E[‖Rem(j)‖2A |U]IEc

]
≤ Ch−2λ−1n−1

∑
i∈Lj

E
[
‖(Σ̂(j))−1Xi‖22IEc

]
≤ Ch−2λ−1n−1P(Ec)

∑
i∈Lj

E
[
‖(Σ̂(j))−1Xi‖42

]
≤ C ′h−2λ−1P(Ec),(E.8)

where the second last inequality is by Holder’s inequality and the last one by
assumption on the design. By (E.8) and Lemma 7.4, we obtain

(E.9) E
[
E[‖Rem(j)‖2A |U]IEc

]
. h−2λ−1n exp(−c log2N).

Finally, plugging (E.2) and (E.9) into (E.1), we have for sufficiently large n,
(E.10)
E
[
‖Rem(j)‖2A

]
≤ 2c2

rh
−2n−1r2

n,s

(
ω(F , 1)2 +C

)
+C ′h−2λ−1n exp(−c log2N),

as desired.
We can apply similar arguments as above to bound ‖Rem(j)

f ‖C and

‖1/s
∑s

j=1Rem
(j)
f ‖C, by changing ω(F , 1) to ω(F2, 1), which is dominated

by ω(F , 1). The bounds of ‖Rem(j)
β ‖2 and ‖1/s

∑s
j=1Rem

(j)
β ‖2 then follow

from triangular inequality.

E.2. Proof of Lemma 7.2.
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Proof. The main term (I) can be rearranged as follows:

(I) =
1√
n

∑
i∈Lj

εi

(
xTLUi + s−1/2h1/2NUi(z0)

)
︸ ︷︷ ︸

(III)

+
1√
N

∑
i/∈Lj

h1/2NUi(z0)εi︸ ︷︷ ︸
(IV )

When analyzing (I), we consider two cases: (1) s→∞ and (2) s is fixed.
Case 1: s→∞. We first apply CLT to the first component of term (III),

i.e., 1√
n

∑
i∈Lj εix

TLUi . The summands are i.i.d. with mean zero. Moreover,

E
[
(εxTLU )2

]
= σ2xTE[LUL

T
U ]x.

By Proposition 2.3,

E[LUL
T
U ] = (Ω + Σλ)−1E[(X −A(Z))(X −A(Z))T ](Ω + Σλ)−1

By Lemma A.3 in Section A.1, we have that Σλ = EZ
[
B(Z)

(
B(Z) −

A(Z)
)T ]→ 0, and also

E
[
(X −A(Z))(X −A(Z))T

]
= E[(X −B(Z))(X −B(Z))T ] + E[(B(Z)−A(Z))(B(Z)−A(Z))T ]

+2E[(X −A(Z))(B(Z)−A(Z))T ]→ Ω−1

This implies E[LUL
T
U ]→ Ω−1. Therefore by CLT, we have

(E.11)
1√
n

∑
i∈Lj

εix
TLUi  N(0, σ2xTΩ−1x).

We next consider 1√
n

∑
i∈Lj s

−1/2h1/2NUi(z0)εi which is the second compo-

nent in (III). Again the summands are i.i.d. with mean zero. By Proposition
2.3 we have

E
[
(h1/2εNU (z0))2

]
(E.12)

= σ2hE
[
(K̃Z(z0)− LTUA(z0))2

]
= σ2hE

[
K̃Z(z0)2] + σ2hA(z0)TE[LUL

T
U ]A(z0)

−2σ2hE[K̃Z(z0)LTUA(z0)].

For the first term in (E.12), by condition in the lemma, we have

σ2hE
[
K̃Z(z0)2

]
= h‖K̃z0‖2L2(PZ) → σ2σ2

z0

For the second term in (E.12), as h1/2A(z0)→ −γz0 , and E[LUL
T
U ]→ Ω−1,

we have
σ2hA(z0)TE[LUL

T
U ]A(z0)→ σ2γTz0Ω−1γz0 .
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For the last term in (E.12), we consider

h1/2E
[
K̃Z(z0)LU

]
= h1/2(Ω + Σλ)−1E[K̃Z(z0)(X −A(Z))].

We have (Ω + Σλ)−1 → Ω−1 and

E[K̃Z(z0)(X −A(Z))] = h1/2(〈B, K̃z0〉L2(PZ) − 〈A, K̃z0〉L2(PZ))

= h1/2(〈A, K̃z0〉C − 〈A, K̃z0〉L2(PZ))

= h1/2λ〈A, K̃z0〉H
= h1/2〈WλA, K̃z0〉C
= h1/2WλA(z0)→ αz0

Hence h1/2E
[
K̃Z(z0)LU

]
→ Ω−1αz0 and so hE[K̃Z(z0)LTUA(z0)]→ γTz0Ω−1αz0 .

In summary, we have

E
[
(h1/2εNU (z0))2

]
→ σ2

(
σ2
z0 + γTz0Ω−1γz0 + 2γTz0Ω−1αz0

)
= Σ22.

By central limit theorem, it follows that

(E.13)
1√
n

∑
i∈Lj

εih
1/2NUi(z0) N(0, σ2Σ22).

As s→∞, we have 1√
n

∑n
i=1 εis

−1/2h1/2NUi(z0)→ 0. So the second compo-

nent in (III) is asymptotically ignorable. Therefore by (E.11), we obtain

(III) N
(
0, σ2xTΩ−1x

)
.

As for (IV), we apply similar arguments as in the previous paragraph and
consider s→∞. It follows that

(IV ) =
√

1− s−1
{ 1√

N − n

∑
i/∈Lj

h1/2NUi(z0)εi

}
 N(0, σ2Σ22).

Lastly, note that (III) and (IV ) are independent, so are their limits. There-
fore, it follows that

(I) N(0, σ2(xTΩ−1x+ Σ22)).

Case 2: s fixed. Instead of decomposing (III) into two components as
in previous case, we apply CLT to term (III) as a whole. Note that the
summands in (III) are i.i.d. with mean zero. Moreover,

E
[
ε2
(
xTLU + s−1/2h1/2NU (z0)

)2]
= σ2E

[
(xTLU )2

]
+ s−1σ2E

[
(h1/2NU (z0))2

]
+ 2s−1/2σ2E

[
h1/2xTLUNU (z0)]
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The first two terms are considered in Case 1. For the third term, we have

E
[
xTLUh

1/2NU (z0)] = E
[
h1/2xTLU

(
K̃Z(z0)− LTUA(z0)

)]
From Case 1, we have h1/2E

[
K̃Z(z0)LU

]
→ αz0 , E[LUL

T
U ] → Ω−1, and

h1/2A(z0)→ −γz0 . It follows that

(E.14) E
[
h1/2xTLUNU (z0)]→ xTΩ−1(αz0 + γz0).

Therefore, we have

E
[
ε2
(
xTLU + s−1/2h1/2NU (z0)

)2]→ σ2(xTΩ−1x+ s−1Σ22 + 2s−1/2xTΣ12).

Hence by central limit theorem, we have

(III) N(0, σ2(xTΩ−1x+ s−1Σ22 + 2s−1/2xTΣ12)).

Similarly, we have

(IV ) N
(
0, (1− s−1)σ2Σ22

)
.

As (III) and (IV) are independent, so are their limits. Therefore in the case
that s is fixed, we have

(I) N(0, σ2(xTΩ−1x+ Σ22 + 2s−1/2xTΣ12)).

This finishes the proof.

E.3. Proof of Lemma 7.4.

Proof. Recall that ∆m(j) = m̂(j) −m(j)
0 . As ∆m(j) minimizes the objec-

tive function (3.2), we have

1

n

∑
i∈Lj

(m̂(j)(Ui)− Yi)2 + λ‖f̂‖2H ≤
1

n

∑
i∈Lj

(m0(Ui)− Yi)2 + λ‖f0‖2H,

On the j-th sub-population, we have Yi = m
(j)
0 (Ui) + εi, hence it follows that

1

n

∑
i∈Lj

(m̂(j)(Ui)−m(j)
0 (Ui))

2+
2

n

∑
i∈Lj

εi(m̂
(j)(Ui)−m(j)

0 (Ui))+λ‖f̂ (j)‖2H ≤ λ‖f0‖2H.

Adding and subtracting EU [∆m(j)(U)2], we transform the above inequality
to
1

n

∑
i∈Lj

∆m(j)(Ui)
2 − EU [∆m(j)(U)2] + EU [∆m(j)(U)2] + λ‖∆f (j)‖2H

+
2

n

∑
i∈Lj

εi∆m
(j)(Ui)− 2λ‖f0‖2H + 2λ〈f̂ (j), f0〉H ≤ 0.

As we have EU [∆m(j)(U)2] + λ‖∆f (j)‖2H = ‖∆m(j)‖2L2(PU ) + λ‖∆f (j)‖2H =
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‖∆m(j)‖2A. It follows that

‖∆m(j)‖2A ≤ −2
( 1

n

∑
i∈Lj

εi∆m
(j)(Ui)− λ〈∆f (j), f0〉H

)
− 1

n

∑
i∈Lj

〈∆m(j)(Ui)RUi − EU [∆m(j)(U)RU ],∆m(j)〉A

= −2〈 1
n

∑
i∈Lj

εiRUi − Pλm
(j)
0 ,∆m(j)〉A − 〈Rem(j),∆m(j)〉A.(E.15)

Define the following two events:

B1 :=
{
‖ 1

n

∑
i∈Lj

εiRUi‖ ≤ C log2N(nh)−1/2
}
,

B2 :=
{
‖Rem(j)‖A ≤ 2crh

−1n−1/2
(
Cω(1) + logN

)
‖∆m(j)‖A

}
.

We bound the two terms in (E.15) respectively. First, note that

‖Pλm
(j)
0 ‖ = sup

‖m‖A=1
|〈Pλm

(j)
0 ,m〉A| = sup

‖m‖A=1
λ|〈f0, f〉H|

≤ sup
||m||=1

√
λ‖f0‖2H

√
λ‖f‖2H ≤ λ

1/2‖f0‖H,

where the last inequality follows from the fact that λ‖f‖2H ≤ ‖m‖2A = 1.
Therefore on event B1, the first term in (E.15) can be bounded by∣∣∣〈 1
n

∑
i∈Lj

εiRUi − Pλf0,∆m
(j)〉A

∣∣ ≤ ∥∥ 1

n

∑
i∈Lj

εiRUi − Pλf0

∥∥
A‖∆m

(j)‖A

≤ C
(

log2N(nh)−1/2 + λ1/2
)
‖∆m(j)‖A.(E.16)

Furthermore, on the event B2, the second term in (E.15) can be bounded by∣∣∣ 1
n

∑
i∈Lj

〈Rem(j),∆m(j)〉A
∣∣∣ ≤ ‖∆m(j)‖A‖Rem(j)‖A

≤ 2crh
−1n−1/2

(
Cω(F , 1) + logN

)
‖∆m(j)‖2A.(E.17)

Therefore, by (E.15), (E.16) and (E.17), it yields that on the event B1 ∩ B2

there exists a constant C,

‖∆m(j)‖2A ≤ C ′
(
(nh)−1/2 log2N + λ1/2

)
‖∆m(j)‖A

+ 2crh
−1n−1/2

(
Cω(F , 1) + logN

)
‖∆m(j)‖2A.

If Condition (3.6) is satisfied, it implies that

h−1n−1/2
(
Cω(1) + logN

)
≤ Cs1/2N−1/2h−1

(
ω(1) + logN

)
= o(1).
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Therefore it follows that

‖∆m(j)‖A ≤ C1

(
(nh)−1/2 log2N + λ1/2

)
+ o(1)‖∆m(j)‖A

which implies that for sufficiently large n,

‖∆m(j)‖A ≤ C(log2N(nh)−1/2 + λ1/2).

Now we are left to bound the probability of Bc1 ∪ Bc2. For B1, define
Qi = {|εi| ≤ logN}. Since ‖RU‖ ≤ crh

−1/2, we have that on the event of
∩i∈LjQi,

{
εiRUi

}
i∈Lj

is a sequence of random variables in Hilbert space A
that are independent with mean zero and bounded by ch−1/2 logN . Therefore
we have

P(Bc1) = P
(
‖ 1

n

∑
i∈Lj

εiRUi‖A > C log2N(nh)−1/2
)

≤ P
(
∩i∈Lj Qi, ‖

1

n

∑
i∈Lj

εiRUi‖A > C log2N(nh)−1/2
)

+ P
(
(∩iQi)c

)
≤ 2 exp(− log2N) + 2n exp(− log2N),(E.18)

where the first term in the last inequality is by Lemma G.1, and the second
term is by union bound and the fact that εi are i.i.d. sub-Gaussian.

Now we turn to B2. Define m̃ := (2cr)
−1h1/2 ∆m(j)

‖∆m(j)‖A
. Then it follows that

‖m̃‖sup ≤ crh−1/2‖m̃‖A ≤ 1/2.

By the same argument as in Section 7.3, it follows that ‖∆f (j)‖sup ≤ 1/2
and |xT∆β| ≤ 1 for all x. Moreover, we have

‖f̃‖H ≤ λ−1/2‖m̃‖A ≤ (2cr)
−1h1/2λ−1/2.

Hence we proved that m̃ ∈ F . By Lemma F.1, it follows that

P
(
‖Zn(m̃)‖A ≥ Cω(1, diam(F)) + logN

)
≤ C exp

(
− log2N/C

)
.

By definition of Zn(m) and m̃, we have Zn(m̃) = (2cr)
−1hn1/2‖∆m(j)‖−1

A Rem(j).
Hence it follows that

P(Bc2) = P
(
‖Rem(j)‖A ≥ 2crh

−1n−1/2
(
Cω(1) + logN

)
‖∆m(j)‖A

)
≤ C exp

(
− log2 n/C

)
.(E.19)

Combining (E.18) and (E.19), we have that for some universal constants c, C



STATISTICAL INFERENCE FOR MASSIVE HETEROGENEOUS DATA 35

and sufficiently large n,

P
(
‖∆m(j)‖A ≥ C

(
(nh)−1/2 log2N + λ1/2

))
≤ P(Bc1) + P(Bc2)

. n exp(−c log2N).(E.20)

This finishes the proof.

APPENDIX F: EMPIRICAL PROCESS LEMMA

Lemma F.1 (Local chaining inequality). If Zn(m) ∈ A is a separable
process on the metric space (F , ‖ · ‖sup) and satisfies (7.15):

P
(
‖Zn(m1)− Zn(m2)‖A ≥ t

)
≤ 2 exp

(
− t2

8‖m1 −m2‖2sup

)
Then for all m0 ∈ F and x ≥ 0, we have
(F.1)

P
(

sup
m∈F
‖Zn(m)−Zn(m0)‖A ≥ Cω(F ,diam(F))+x

)
≤ C exp

(
−x2/Cdiam(F)2

)
,

where C is a generic constant.

Proof. The proof follows by modifying the proof of Theorem 5.28 in
van Handel (2014). Let k0 be the largest integer such that 2−k0 ≥ diam(F).
Then N(F , d, 2−k) = 1 for all k ≤ k0. We employ a chaining argument, and
start at the scale 2−k0 . For every k > k0, let Nk be a 2−k net such that
|Nk| = N(T, d, 2−k). We define the singleton Nk0 = {m0}. We claim that

Zn(m) = lim
k→∞

Zn(πk(m))− Zn(m0)

=
∑
k>k0

{
Zn(πk(m))− Zn(πk−1(m))

}
a.s.

where πk(m) is the closes point in Nk to m. To prove this identity, note that
the sub-Gaussian property of {Zn(m)}m∈F implies that Zn(m)− Zn(πk(m))
is d(m,πk(m))-sub-Gaussian. Thus

∞∑
k=k0

E
[
‖Zn(m)− Zn(πk(m))‖2A

]
≤

∞∑
k=k0

d(m,πk(m))2 ≤
∞∑

k=k0

2−k <∞.

It follows that ‖Zn(m)−Zn(πk(m))‖A → 0 a.s. as k →∞, and the chaining
identity follows readily using the telescoping property of the sum. By the
chaining identity and separability of F , we obtain

sup
m∈F
‖Zn(m)− Zn(m0)‖A ≤

∑
k>k0

sup
m∈F
‖Zn(πk(m))− Zn(πk−1(m))‖A.
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By union bound and sub-Gaussian property, it follows that

P
(

sup
m∈F
‖Zn(πk(m))− Zn(πk−1(m))‖A > t

)
≤ 2|Nk| exp

(
− t2

8 · 2−2k

)
= 2 exp

(
log |Nk| −

t2

8 · 2−2k

)
.

For large enough t, let u = t2

8·2−2k − log |Nk|, and we have

P
(

sup
m∈F
‖Zn(πk(m))−Zn(πk−1(m))‖A > 2

√
2·2−k(

√
log |Nk|+u)

)
≤ 2 expu

2/2,

which implies the link ‖Zn(πk(m))− Zn(πk−1(m))‖A at scale k is small. To
show that the links at all scale of k are small simultaneously, we again use
the union bound. Define the event D :=

{
∃k > k0 s.t. supm∈F ‖Zn(πk(m))−

Zn(πk−1(m))‖A > 2
√

2 · 2−k(
√

log |Nk| + uk)
}
, where uk = x +

√
k − k0.

Then

P(D)

≤
∑
k>k0

P
(

sup
m∈F
‖Zn(πk(m))− Zn(πk−1(m))‖A > 2

√
2 · 2−k(

√
log |Nk|+ uk)

)
≤
∑
k>k0

exp(−u2
k/2) ≤ exp(−x2/2)

∑
k>0

exp(−k/2) ≤ C exp(−x2/2).

Moreover, by the fact that 2−k0 ≤ 2diam(F) and

2−k0 ≤ C2−k0−1
√

logN(F , d, 2−k0−1) ≤ C
∑
k>k0

√
log |Nk|,

we have on the event Dc,
sup
m∈F
‖Zn(m)− Zn(m0)‖A

≤
∑
k>k0

sup
m∈F
‖Zn(πk(m))− Zn(πk−1(m))‖A

≤ 2
√

2
∑
k>k0

2−k(
√

log |Nk|+ uk)

≤ 2
√

2
∑
k>k0

2−k
√

log |Nk|+ 2
√

2 · 2−k0
∑
k>k0

2−k
√
k + 2

√
2
∑
k>k0

2−kx

≤ C
∫ diam(F)

0

√
logN(F , d, ε)dε+ Cdiam(F)x

= Cω(F ,diam(F)) + Cdiam(F)x.
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Therefore

P
(

sup
m∈F
‖Zn(m)− Zn(m0)‖A ≥ Cω(F , diam(F)) + Cdiam(F)x

)
≤ P(D) ≤ C exp(−x2/2).

Replacing Cdiam(F)x with a new variable x, we reach the conclusion of the
lemma.

APPENDIX G: AUXILIARY LEMMAS

Lemma G.1. (Pinelis, 1994) If Ξ1, . . . ,Ξs are zero mean independent ran-
dom variables in a separable Hilbert space and ‖Ξi‖ ≤ M for i = 1, . . . , n,
then

P
(∥∥∥ 1

n

n∑
i=1

Ξi
∥∥ > t

)
< 2 exp

(
− nt2

2M2

)
.

Lemma G.2. We have for all j = 1, . . . , s,

(G.1) E
[
‖∆f (j)‖2H |U

]
≤ 2σ2/λ+ 4‖f0‖2H.

Proof. By the zero order optimality condition, we have

λ‖f̂ (j)‖2H ≤
1

n

∑
i∈Lj

(Yi − m̂(j)(Ui))
2 + λ‖f̂ (j)‖2H

≤ 1

n

∑
i∈Lj

(Yi −m(j)
0 (Ui))

2 + λ‖f0‖2H

=
1

n

∑
i∈Lj

ε2
i + λ‖f0‖2H.

Hence taking expectation conditioned on U, we get

λE[‖f̂ (j)‖2H |U] ≤ σ2 + λ‖f0‖2H.
Then, applying triangular inequality along with the inequality (a + b)2 ≤
2a2 + 2b2, we have

E[‖∆f (j)‖2H |U] ≤ 2‖f0‖2H + 2E[‖f̂ (j)‖2H |U]

≤ 2σ2

λ
+ 4‖f0‖2H,

as desired.

Lemma G.3 (Matrix Heoffding in Tropp (2012)). Consider a finite sequence
{Ai}ni=1 of independent, random, symmetric matrices with dimension p.
Assume that each random matrix satisfies

E[Ai] = 0 and ‖A2
i ‖ ≤M almost surely.
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Then, for all t > 0,

P
(∥∥∥ 1

n

n∑
i=1

Ai

∥∥∥ ≥ t) ≤ p exp
(
− nt2

8M

)
.

Lemma G.4. Let A,E ∈ Rk×k be given. If A is invertible, and ‖A−1E‖ < 1,
then Ã := A + E is invertible, and

‖Ã−1 −A−1‖ ≤ ‖E‖‖A
−1‖2

1− ‖A−1E‖

Proof. See Theorem 2.5, p. 118 in Stewart and Sun (1990).
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