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SUPPLEMENTARY MATERIAL FOR:
A PARTIALLY LINEAR FRAMEWORK FOR MASSIVE
HETEROGENOUS DATA

By TI1aNQI ZHAOY, GUANG CHENG® AND HAN Liut

In this supplemental material, we provide the detailed proofs of results
presented in the main text. Appendix A contains theoretical justification
of RKHS extension to the partially linear function space, as defined in
Section 2. Appendix B, C and D present proofs of results in Section 3, 4
and 5 respectively. Appendix E contains proof of lemmas used in proving
main theorems. Appendix F proves an exponential inequality for empirical
processes in a Banach space, and Appendix G provides proofs of auxiliary
lemmas which are used in Appendix E.

APPENDIX A: RKHS EXTENSION TO PARTIALLY LINEAR
FUNCTION SPACE

In this section, we provide detailed theoretical justifications for the RKHS
extension to the partially linear space. We first study the properties of the
inner product (-,-)¢ and its induced kernel K, and then prove Proposition
2.3. In the end we provide technical lemmas for the properties of R, and Py .

A.1. A Collection of Lemmas. The following lemmas are direct con-
sequences of defining the new inner product (-,-)¢. Lemma A.1 proves the
existence of kernel K under the new inner product (-,-)¢, and derives its
closed form. Lemma A.2 justifies the existence of the linear operator W)
and derives its closed form. Lemma A.3 studies the asymptotic limit of the
B — A, where recall A is the Reisz representer of B = E[X | Z] under the
inner product (-, -)¢.

Lemma A.1. The linear evaluation functional E, of H undgr the inner
product (-,-)¢ is bounded. Hence (-, )¢ induces a new kernel K (z,z) with
the form

(A1) Z o A/w

Moreover, we have that ||K.[l¢c < c¢h_1/ 2, where ¢, is the constant specified

in Assumption 3.2. This implies that || f|lsup < cgh™"/?||f|lc for all f € H.
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PROOF. (i) Boundedness of E,: We have for any f € H,

B fl = £ ()] = [0 Kol < Il fllze < A7 2eil|f e,
where the last inequality follows from the relationship A|| f||7, < || f|lc implied
by the definition of (-,-)c. It follows that £, is bounded.
(ii) Existence and exact form of K: By Definition 2.1, we have that (-, )¢

induces a new kernel K (z,2). As K,eHforallze Z , by Fourier expansion,
K, =52 ke¢e. Then we have

Ko = (K., 00) 150 ) = (K, do)e — ME, do)n

= ¢u(z) — Ne/ .

Solving for kg, we have k¢ = ¢(2)/(1 + \/pg). Hence we get the formula for
K.() in (A.1). N

(iii) Uniform bound of K,: By (A.1) and reproducing property, we have
that

K(z, z)

N -1
_; ‘H\/W o

IEC1IE = (K, Ko)e

as desired. Hence for all z € Z,

£ < Ifllel Kelle < esh™ 2 flle,
by Cauchy-Schwarz. This implies that || f|lsup < cgh™/2||f|lc for all f €

H. O]

Lemma A.2. There exists a bounded linear operator Wy : H — H such
that for any f, f € H, we have

(A.2) (Waf, e = Mf, Fin
Moreover, we have for all eigenfunctions ¢p, £ =1,2,...
A3 %%

(A.3) 20e(r) = /\+M¢e()

PRrROOF. The proof for the existence of W) uses Riesz representation
theorem. Define the bilinear form V (f, f) = M/, f)H, for any f, f € H. For
any fixed f, this defines a functional V() = V/(f,-). It is easy to verify that
V; is linear. Moreover, V; is bounded under the inner product (-, -)c, as

ViD= N Py < Al Fllze < X201l Flles

for all fE H. Hence by Riesz representation theorem, there exists an unique
element f; € H such that Vi (f) = (f1, f)c for all f € H. We let W) f = fi,
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and it follows that (Wi f, fic = A(f, [y for all f, f € H. N
We next prove linearity of W). By definition, for any f1, fo, f € H and
a,b € R, we have

(Wi(afir +bf2), fle = Mafi +bf2, flu

= a)\<f1, f>’;-[ + b)\<f27 f>7-£

= (aWf1 + bWy fo, fe,

which implies Wy (af1 + bfg) = aWyf1 + bW fo.
Furthermore,W), is a bounded operator under || - ||c, as for any f € H

IWiflle = sup (Wif, flc
Iflle<1

= sup AAS, f)n
I flle<1

< Alfllw sup [ flln
1Flle<1

< [ flle

where the last inequality follows from the fact that A/2||f||% < ||f|lc implied
by the definition of (-,-)¢. This shows that W) has operator norm bounded
by 1.

To prove the second half of the lemma, we have that (W f, f)c = Af, f)n
Also, by the definition of (-,-)c we have (Wif, fic = (Wrf, f)r,(py) +

AW f, f)n. It follows from the two equations that

(A.4) WAL P Lo,y = Mid = WA f, fiu

for any f, fe H. Wi¢y has a Fourier expansion: Wyx¢y = Y2 | widy. Letting
f=/f=¢¢in (A4) yields wy = /(A + ), and letting f = ¢y and f = ¢,
in (A.4) yields w, = 0 for r # ¢. Hence the conclusion follows. O

Lemma A.3. We have the following equations hold:

(A.5) )l\ii%E[X (B(Z) - A(Z))T] =0
(A.6) lim E[B(Z) (B(Z) - A(Z))T] =0
(A7) lim E [(B(Z) — A(Z)(B(Z) - A(Z))T)] = 0.

The lemma shows that the difference B — A goes to zero as A — 0.
Intuititively, as A — 0, the inner product (-,-)c converges to (-,),p,) by
its definition, hence the the representer A of B converges to B itself. The
following is the formal proof of this lemma.
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PROOF. By reproducing property of I?Z, the definition of Ay and (A.1),
we have

. ~ > B » Pi) Lo Z
(A8)  Ap(z) = (Ag, Ki)e = (Br, K2) 1y, = Z m

i=1

¢i(2)-

By Fourier expansion of By, it follows from the above equation that

i (Bks §i) Lyp )M 1i

(A.9) By(2) — Ax(z) = 1+ A

gbl(z) — 0,

i=1
As ¢; are uniformly bounded and } 72, (B, ¢i) 1, (p,) < 00, it follows from
dominated convergence theorem that By(z) — Ag(z) — 0 for all z € Z.

Therefore (A.7) holds. Moreover,
E[B;(Z)(Bk(Z) — Ax(£))] = (Br, Br — Ak) y(p5)

o0

A i
(A.10) Z 1+/>\/Mz Bj, i) o8 ) Bk i) Ly )

—>0,

where the second equality is by (A.9) and the limit is by dominated conver-
gence theorem. Hence (A.6) holds. Lastly,
o0

E[X;(Bx(Z) — Au(2)] = 3 A

- T3 2/ B i) L2 ELX50:(2)] = O,

again by dominated convergence and the fact that X; and ¢; are uniformly
bounded. Hence (A.5) also holds. O

A.2. Proof of Proposition 2.3. With the theoretical foundations laid
up in the previous section, we are now ready to construct R, and Py, whose
exact forms are presented in Proposition 2.3.

PrOOF. The proof follows similarly as Proposition 2.1 in Cheng and Shang
(2013). We first want to construct R, € A such that it possess the following
reproducing property:

(A.11) (Ru,m)a=BTa + f(2),

for any u = (x,z) and m = (3, f) € A. As R, € A, it has two components:
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R, = (Ly, Ny). Hence the L.H.S. of (A.11) can be written as
(Ruym)a =E[(X" Ly + N(Z2)(XTB+ [(2))] + MNu, f)n
= BTEXXT|L, + BTE[X N, (2)] + LIE[X f(Z)]
+ E[Nu(2)f(Z)] + MNu, f)n
= BT (E[X X"]L, + E[B(Z)Ny(2)]) + L E[B(2) f(Z)] + (Nu, f)c
A12
e = 8" (E[XXT|Ly + E[B(Z)Ny(Z2)]) + (AT Ly + N, f)c

where in the second last inequality we used the definition of (-,-)¢ and in the
last equality we used E[B(Z)f(Z)] = (B, f)r,p,) = (A, f)c. On the other
hand, the R.H.S of (A.11) is

(A.13) Blz+ f(2) =BTz + (K., f).
Comparing (A.12) and (A.13), we have the following set of equations:
o =E[XX"|L, +E[B(Z)N.(Z)]
K,=ATL,+ N,.

From the second equation we get N, = K . — ATL,,. Substitute it into the
first equation, we get

z = E[XX"|L, + E[B(Z)(K.(Z) - A(Z)"L,)]
= (X+E[B(2)B"(2))) L. + E[B(2)K.(Z)] - E[B(2)A(Z)" L]
= (Q+ X)) L, + (B, kz)Lg(]P’Z)
= (Q+ Zo)Lu + (A, Ke)e = (2 + B3) Ly + A(2),
where in the second inequality we used the fact that B(Z) and X — B(Z)
are orthogonal. Therefore it follows that
Ly = (@+3y) (@ — A(2).

This finishes the proof for the construction of R,,.
We next construct Py such that

(A.14) (Pxm, m)a = Af, frns

for any m = (8, f),m = (5, f) € A. As Pym € A, it has two components:
Pym = (Lxf, Nxf). Similar to the derivation of (A.12), the L.H.S. of (A.14)

can be written as
(Pam, )4 = E[(XTLAf + Naf(Z2)(XTB+ )] + MNLL, P
(A.15) = BT (E[X XT|Lyf +E[B(Z)N\f(2)]) + (ATLyf + Nif, fic
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The R.H.S. of (A.14) is
(A.16) M, Py = (Waf, e
Comparing (A.15) and (A.16), we obtain the following set of equations:
0 = E[XX"|L,f + E[B(Z)N\f(2))

Wif = ATL\f + Nyf.

Solving the above two equations, we get
Laf=—(Q+ 3B, Waf)r,e,) and Nxf = Wif — ATL, f,

as desired. 0

A.3. Properties of R, and P5. We first present a lemma that bounds
the A-norm of R,,.

Lemma A.4. There exists a constant ¢, > 0 independent to u such that
|Rulla < erh™1/2. Tt follows that ||m||sup < c-h™/2|/m|| 4 for all m.
PROOF. By Proposition 2.3, we have that for u = (x, 2),
(Ry, Ryya = &' Ly, + Ny(2)
= K.(2) 4 (z — A(2))TL,
(A.17) = K.(2) + (z — A()T(Q+ )z — A(2)).
From Lemma A.1, we have K (z) = HI?H% < cihfl. For the second term

in (A.17), we first show that X is positive definite. Recall the definition of
Sx=E[B(Z)(B(Z) — A(Z))]. (A.10) shows that

A e

(Sl = B[B;(2)(Bi(Z) — A(2))] = T+ Nm

(=1

<Bj7 ¢€>L2 <Bk7 ¢€>L27

which implies that X is positive definite. Indeed, for any & € RP and x # 0,
. p P o N p 2
x 2)\% = szj'rk[z’\]]k = Z m(2$j<3j,¢g>L2) > 0.
j=1k=1 =1 j=1
Therefore, it follows that the second term in (A.17) is bounded by
(= A(2)T(Q+2)) e - A(2) <12+ 5]z - A(2)]3
(A.18) < i (Q) 7l — A(2)]5-

where recall Ty (2) is the minimum eigenvalue of Q. As x is uniformly
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bounded, we are left to bound A(z). By (A.8), we have

= (B 0) 1y (B )
(A.19) Ap(z) = ; I TSV

de(2),

Hence by the assumption that B; € Ly(Pz) for j = 1,...,p and uniform
boundedness of ¢y, we have

o

(A.20) A7(2) <o Y (Brdo)T,my) O (1+ M) < ol BillT,m,h "
=1 =1

Therefore, by (A.17) and (A.18), we have |Ry|la < c¢.h™'/2, where ¢, is
determined by p, ¢, €z, Tmin and || By, Therefore, for any u = (=, 2)
[m(w)| = [{m, Ry)al < |lmllallRulla < e;h™"?|ml|a,

1/2|

which implies that |m|/sup < ¢, h lm|| 4. O

Based on the above lemma, if we have the extra condition that By(z) are
smooth functions, then we can bound the parametric and nonparametric
components of R, and Pymg more precisely.

Lemma A.5. Suppose Assumptions 3.1 - 3.3 hold. Then we have
() ILal} < € where Cf = 2 m4w+%ﬁm>ﬁmm%)wd

INJJ2 < C1h~1 where C) = 20¢<1 INehy ||Bk\|%2(PZ)>;
(ii) Moreover |Lxfoll3 < C4A? and ||[Nyfoll2 < 2[/foll3,A + C2A?, where

— 2 foll3 0, Bl and Cs = 205 S0 Bull2, i,
PRrROOF. (i) By Proposition 2.3,
Ly=(Q+%)) e —A(2)) and N, = K, — ATL,,
By the first equation we have
IZall3 < 12+ 207 2l — A2)]13.
Recall

o0

Z Bka¢€ L2 Z)
— 14+ M '

Hence by Assumption 3.3 it follows that

> (B, 0)7, — do(2)?
A (2)? < 2 < A|B.|? Tr(K
k(%) _;:1 m ;Zluz(lJr)\/W)Q < eyl Brllz Tr(K),

where the first inequality is by Cauchy-Schwarz and the second is by As-
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sumption 3.2 that ¢, are uniformly bounded. Hence for all z € Z,
P
(A.21) 1A(2)3 < e Te(K) D || Bill3,:
k=1

Also, we showed in the proof of Lemma A.4 that [|(Q + )~} is bounded
by 7~ . Finally, by the boundedness of the support of X, we have

p
ILul < 2m2 (2o + 3 Te(B) Y 1B, = O,
k=1
To control N,, we have

(A.22) INW[IZ < 2(1 K112 + I|ILEA|2)

For the first term in (A.22), by Lemma A.1, we have ||I~(Z||% < cih_l. For
the second term, by (A.19) we have

> (B, 0)7,p
1AR]2 = (A Arde = (B AR) oy = 3 22

= 1+ XM
> 1
2 2 2 2 —1
(A.23) < c¢HBkHL2(1p>Z) ; T N C¢HBkHL2(PZ)h _

where the inequality is by Cauchy-Schwartz and uniform boundedness of ¢,.

Hence it follows that
P

p
1LY Alle = 1) (Lu)rAxlle < Y 1Lkl Axlle
k=1 k=1

b 1/2 b 1/2
(A21) <L (Yo 1AKE) T < (@) Zeon 2 (S 1B e,
k=1

k=1
Therefore, by (A.22) we obtain

p
INu12 < 263 (14 € Y IBelE e, )0~ = ik
k=1

(ii) By Proposition 2.3, we have
Lafo=—(Q+ )Y Wi fo, B)L,e,)
Nafo = (Lrfo)" A+ Wrfo
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To control Ly fy, we have by Fourier expansion of fy and (A.3)

> MGy \2
<Bj7W)\f0>%2(Pz) - <Z<Bk7¢e>bﬂ«£+€>\>
(=1
> <Bk7¢e>% = 02
(S Bt 5

2 2 2
< N Brll5ll follx-
Hence by the positive definiteness of ¥y, we have

1L, 113 < 102 + Z2) "M KW fo, B) e 13

P
< Tl ollf D I1BRlI5A* = C30%,
k=1
For N, fo, we have
(A.25) INMfollg = 2II(Lxfo) " AlE + 2WafollE
For the first term (A.25), by the fact that Y, (B, ¢g>%2(ﬂmz) = || Bkl|
we first get an inequality for ||Ag||% that is different than (A.23):

> (Bk, ¢0)% p
IARlIZ = (Ag, Ar)e = (Br, AR) Loy = D 1—%—)\/;(;) < || BillZ,,)-

(=1

2
LQ(]Pz)’

Therefore, following the same derivation as (A.24), we have

p p
I(LASo) T AlE < ILxfoll3 D IARNE < CoN* D 1Bl e,)-
k=1 k=1

For the second term in (A.25) we have

[Wifolle = sup [(Wxfo, flel = sup X(fo, f)ul
I fllc=1 lflle=1

< ow VAFlBA/AF I3, < XV folla
P

where the last equality follows from the fact that A||f||3, < ||f||2. Therefore,
by (A.25), we obtain

p
INAollZ < 2Alfoll, +2C32% Y I BellZye,) = 21 foll3A + C2X?,
k=1

as desired. O

APPENDIX B: PROOFS IN SECTION 3
B.1. Proof of Theorem 3.5.
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PRrROOF. By first order optimality condition, we have
Y xi(Yi-x78Y - f(zi) = 0.
USI
Hence we have

(B.1) B = (ZXiXiT)il > Xi(Yi—- f(Z).

i€L; i€L;
As for i € L; we have Y; = XT,BO + fo( ) + &;, hence
(B.2)  n(BY —Bo) =n"2 Y (BV) ! X

1€l

n—1/2 Z E(J 1X fo( i) — f(ZZ))’

1€l

where the () = 1 = ic L X, X/ is sample covariance of X based on data
from the j-th subpopulatlon For the first term on the R.H.S. of (B.2), it is
the same as the one for ordinary least squares, and so
(B.3) n 23 (B0 XGe; v N(0,0287).

1€L;
For the second term on the R.H.S. of (B.2), by triangular inequality, we have
for all 1 <j < s that

I~ =2 & fo(Z) = F(Z))|ly < 1 = follswn ™2 D 1Z0 X5
ZEL iELj
S Cn1/2||f* fOHSupa
for some constant C' that is related to the dimension p and boundedness of
the support of X. As ||f — follsup < | — mollsup < ¢h ™2 — mgl|4 by

Lemma A.4, it suffices to bound ||m — mgl| 4. Taking average of equations
(7.2) for all j over s, we get

N s
1 ,
—mp = E Ry,e; — Paxmg — B E Rem9)
i=1 =1

By triangular inequality,

N s
1 1 .
(B-4)  [Im—molla <l ; Rueilla+ [1Pxmolla + 1l ;1 RemY)|| 4.

For the first term on the R.H.S., define Q; = {|&;| < log N}. Since ||Ry |4 <
crh~/2, we have that {e;Ry,1 Qi}ﬁil is a sequence of random variables in
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Hilbert space F that are i.i.d. with mean zero and bounded by ¢,h~/21log N.
Therefore by Lemma G.1 we have

N
1 _
IP’(||N 3" iRy, 4 > e log? N(Nh) 1/2)
=1

N
1
< P({ i Qi} 0 {ll5 D eiBulla > e log? N(Nh)*l/Q}) +P((M:Q:)°)
i=1
(B.5)
< 2exp(—log? N) + 2N exp(—log? N) — 0.

Therefore, we have ||+ Zf\il iRy, || = op(log? N(Nh)*1/2). Moreover, by
(A.26), we have ||Pxmg|la = O(A~/2). Furthermore, by Lemma 7.3, when s
satisfies Condition (3.17) , we have |1 > =1 RemY| 4 = op(s~ /2D, s log N).
By the definition of by, 5, we have if s satisfies (3.18), then ||2 > i1 RemW)|| 4 =
op((Nh)~Y/?). Therefore, by (B.4), we have

[ — mol|.4 = op (log? N(NR)™Y2 4+ A1/2).

Hence we have

max H;ﬁ%j (DX (fo(Zi) — F(Z0)) 2

1<j<s

(B.6) =op (TLl/zh_l/Q(log2 N(Nh)~Y2 4+ )\1/2))_

Plugging the relationship n = N/s, we have when s > h~2log? N and
A=O((Nh)™),

1 e _
I—= " (B9 Xi(fo(Zi) — F(Z)) 2 = op(1).
vn
ZELJ'
Hence by (B.2) and (B.3),
\/E(B - BO) ~ N(0702E_1)7
as desired. 0
B.2. Proof of Theorem 3.6.

PRrOOF. (i) By (7.3), we have for the jth sub-population

. N1 .
(B.7) BY) — ﬁ(()j) = Z Ly,e; — Lafo — Rem(gj),
i€l

where Remg) =1/n ZZELJ_ (LUiAm(j)(Ui) - EU[LUAm(j)(U)D. Equation
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. j k
(B.7) also holds for the k-th sub-population. Hence under Hj : B((]] ) = (() ),
we have

(B.8) BY) — Z Lye;i — — Z Ly,e; — Remg) — Rem(ﬁk)),
’LEL ’LGLk

By independence between two sub-populations, we have %Zze L Ly,e; —

% ZieLk Ly,ei ~ N(0,202Q71). Moreover, when the conditions in Theorem

3.4 are satisfied, we have \/HHQHHRemg) - Remg)HQ = op(1) by triangular
inequality. Therefore the result follows.
(ii) By (B.2), we have

B9) VAP -8 = =(E0) Y X
0 \/ﬁ( ) Z; &

+7§' ZX folZi) = £(Zi)),

i€l

where 20) = %Zz‘eLJ- X,;XI. The above equation is also true for k-th
sub-population. So if s satisfies Condition (3.16), (3.17) and (3.18), we have

= C) ™ S X2 - 1(2) |, = o (1)

i€l

We have another equation that is same as (B.9) with j replaced by k. Hence

subtracting the two equatlons we have under Hy : Bé] ) = (()k),
Vn(BY) — gy = ZX.E%—— Z(k ZXEZ
ZGL €Ly,
+ Op(l).

Hence the conclusion follows from CLT and independence of sub-populations
j and k. O

B.3. Proof of Theorem 3.7. Before presenting the proof, we define
the following preliminaries: for any g c{1,2 3} with |G| = d, let

Tog = X
0,G ]Gg 1<k<p f Z i€is

where (2*1) ., denotes the k-th row of the precision matrix »-! of X.

Furthermore, let
Wog:= max n*1/2§ Tk,
’ J€G,1<k<p : ’
lELj
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where {I'; = (I';1,...I';p) } for each i € L;, j € G is a sequence of mean zero
independent Gaussian vector with E[I;I'7] = (3)~1o2. Lastly, it is useful to
recall

1 o
= e GN—1w. .
Wg : jeGaSh<p \/ﬁzeZL (V) Xes,

and cg(a) =inf{t e R: P(Wg < ¢|X) >1— a}.

The proof strategy is similar to that of Theorem 3.2 in Chernozhukov
et al. (2013). Specifically, we first approximate Tg by Tp g, and then apply
Gaussian approximation to Tp g and Wy g. Then, we argue that Wy g and
W are close. Hence we can approximate the quantiles of T by those of Wg.
The detailed proof is presented as follows.

ProoF. By (B.2), we have
(B.10) V(B — gu)y = =1/ Z(f;(j))*lxigi + AU,
1€L;
where ‘ o
AV = n 2N SO X (fo(Zi) - F(Z))-
i€l
By (B.6) in the proof of Theorem 3.5, we have

ex 1AW o = 01E>(nl/2h_1/2(log2 N(Nh)™/% 4 >\1/2))‘
Jj€

and when s > h~2log(pd)log* N and A = O((Nh)~!), we have
max | Al = op(log™"/*(pd)).
JEG

By the definitions of Tg and Tp g and (B.10), we have

1 . ,

Ts —Tog| < max—H SOV Xe — S Xe|| 4+ max |AD)|,

g O’Q‘_jeg\/ﬁ Z( ) 14 Eill o TG I oo
i€l

where we used the fact that max; a; — max; b; < max;|a; — b;| for any two

finite sequences {a;}, {b;}. By the above inequality and Lemma B.2, there

exist (1 and (o such that

(B.11) P(|Tg — Tog| > ¢1) < Co,

where (11/1 Vlog(pd/¢1) = o(1) and (2 = o(1).

We next turn to bound the distance between quantiles of Wg and Wy g.
Let cog(a) :=inf{t € R: P(Wyg <t) >1—a}, and let w(v) := Cov'/3(1 Vv
log(pd/v))?/3 with Cy > 0, and

U= max o2|(Z9) — ).

1<k,t<p
Jj€g
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As the data size in each L; is the same, we can relabel {X; € RP}icr; jeg as
(XY € RP}i<icn jeg and {T; € RP}i<icnjeg as {TV) € RP}1<i<p jeg- Then
we can re-write Wo g = maxjcg 1<k<p U,g]), and Wg = maxXjeg 1<k<p Vk(]),
where

G _ 1 =) G _ 1 G- v 0) ()
U, —ﬁ;% and V) _ﬁ;(zﬁ)k x\el?).

(egj) is defined in the similar way). Notice that U = {Uéj)}lgkgp’jeg can be
viewed as an (p - d)-dimensional Gaussian random vector with mean zero
and covariance

o211 0 . 0
2y1—1
0 ox 0 c RPDx (@ d).
0 0 o’y

Conditionedon X, V' = {Vk(j)}lgkgp,jeg can be viewed as an (p-d)-dimensional
Gaussian random vector with mean zero and covariance

o2(=m)~ 0 0
S(2)) 1
0 02(2‘(2)) . 0 « RDX(d)
0 0 . o2(B@)

Using Gaussian comparison (Lemma 3.1 in Chernozhukov et al. (2013)) and
applying the same argument as in the proof of Lemma 3.2 in Chernozhukov
et al. (2013), we obtain for any v > 0

(B.12) P(Co,g(a) <cgla+ 7T(1/)))
(B.13) P(CQ(Q) <cogla+ W(V)))
By Lemma B.1, we have

(B.14) sup |P(Tog > cg(a)) —a| < sup |P(Wog > cg(e)) —af +n~"
ae(0,1) a€(0,1)

To further control P(Wy g > cg(e)), we define €1 = {cog(a—n(v)) < cg(a)},
& ={cg(a) < cogla+m(v))}. We have
P(ng > Cg(a)) = P(ng > Cg(()é),(%) + P(W()’g > Cg(a),glc)
<P(Wog > cogla—m(v))) + P(&Y)
<a-—7v)+PT>v),

P(U > v),

>1-
>1—-P(¥ >v).

where the last inequality is by the definition of ¢ () and (B.12). Similarly,
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we have
P(W(]yg > cQ(a)) =1- P(Wog < Cg(a))
=1-P(Wog < cgla),&) —P(Wog < cgla), &)
>1-P(Wog < cogla+n(v))) —P(Es)
>a+7w(v) —P(¥ >v),

where the last inequality is by the definition of ¢y g(a) and (B.13). Hence it
follows from (B.14) that

(B.15) sup |P(Tog > cg(a)) —a| <7(v) + P(¥ > v) +n~°
a€e(0,1)

Define the event & = {|Tog — Tg| < (1}. By (B.11), we have P(&5) < (o.
Hence, we deduce that for any «

P(Ty > cola) — a < P(Ty > cala), &) + P(ES) — a
<P(Tog = cala) = Q) + & —a,
<P(Tog > ca(a)) + CG/1Viog(ps/Ci) + ¢ —
<)+ PV >v)+n"+CCy/1Vlog(ps/C1) + (o,

where the second last inequality is by Corollary 16 of Wasserman (2014)
(Gaussian anti-concentration). By similar arguments, we get the same bound
for « — P(Tg > cg(a)), so we have

sup ’P(Tg > Cg(a))—()é‘ <7W)+P(V > v)+n “+CGA\1Vlog(pd/(1)+Co.

Lastly, we bound . By (B.18) in the proof of Lemma B.2 and the fact that
elementwise infinity norm is bounded by spectral norm, we obtain

< ) _ - )
‘I/_r]neangE )| s 0p<p (10gd)/n>

Hence, choosing v = p/(logd)/n, we get
sup [B(Tg > cg(a)) — a] = o(1),

which concludes the proof. ]

Lemma B.1. Suppose Assumption 3.1 holds. For any G C {1,2,..., s} with
d = d, if (log(pdn))”/n < C1n~ for some constants c1,C; > 0, then we
have

sup IP’(TO,g < :U) — P(Wo,g < $)‘ <n” ¢

zeR

for some constant ¢ > 0.

PROOF. As the data size in each L; is the same, we can relabel {X; €
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RP}ier,; jeg as (XY € RP}1<jcn jeg- Then Ty g = maxjegi<nepn /2 30 €7,

where 51‘(11) = (2*1)kXi(j)5i. For each ¢, {glgljf‘)}lgkgp,jeg can be viewed as a
(p - d)-dimensional vector with covariance matrix
o?xt 0 ... 0
23 1—1
0 0% 0 c REDXPD)
0 0 ... o?x7!

The same thing can be done for I' which results in the same covariance
matrix. Then we apply Corollary 2.1 of Chernozhukov et al. (2013) to
prove the Gaussian approximation result stated in the lemma. It suffices to
verify Condition (E1) therein. We have ]E[(f(,i))Q] = (X7 1)g is a constant,

and man:LgE[|§g)|2+£/Bq + E[exp(|§i(,?|/3)] < 4 for some large enough
constant B, by the sub-Gaussianity of egj ) and the boundedness of XZ-(j ),
Hence Condition (E1) is verified, and by the assumption that (log(pdn))”/n <
Cin=“, we get the desired result. O

Lemma B.2. Suppose Assumption 3.1 holds. For any G C {1,2,..., s} with
d = d, suppose p*log(pd)/+/n = o(1). Then there exist ¢; and (s such that

1 o
P —H SOV Xe -3 X >a) <,
(15 Gl S x> a) =
J
where (11/1 V log(pd/¢1) = o(1) and (2 = o(1).
Proor. We have
1 y
— SUNV1x.c -1 X.c.
e nH GXL:( )7 X 1]
J
~ 1
-1 -1
< e[ B) =37 ma | 7 32 e
ZELj
~ 1
B.16 < SOY-1 _ 3y Hf Xl
(B.16) < I}leagXpH( ) H%leégi \/EZZL: i€i|
J
where || - [|1 denotes the elementwise L; norm of matrices. As ¢; are i.i.d.

sub-Gaussian random variables, we have by Hoeffding’s inequality that for
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any j€eGand 1 <k<p

1 nt
IP’(— Xik€¢>t|X> §exp(—7>
v zeZL] Yier,; Xixo?

(2

2

2
<ew (- ),
T

where the second inequality is by the boundedness of X;,. By law of iterated
expectation and union bound we have

1
]P’(max H— X;e;
jeg \/ﬁzg o
Letting t = 2c,0+/log(pd), we get with probability at least 1 — (pd)~! that
1
B.17 H— Xiei| < 2e00/10g(pd).
(B.17) max \/ﬁg; i€i|| < 2e:0/log(pd)
J

By the boundedness of X, we have || X; X! — E[X; XT]|| < 2| X; X[ || <
2||X;|13 < 2pc2. Therefore, by Lemma G.3, we have for all j € G that

> 1)

oo>t> §pdexp(—tQ).

252
cio

P<||§;(j> ST t) < [P’(H% S xxT -Ex;xT

el

nt?

= pexp ( - 32p2c4)'
T

and so it follows from union bound that

P(I}lélé(“i(j) - X[ > t) Spdexp(— i )

32p2ci
Choosing t = 64p+/(log d)/n, we obtain

. log d
B.1 s0) 3| = .
(B.18) max| | = or(py/ =)
Thus, by Lemma G.4, we get
S _ log d
B.1 SO s = .
(B.19) max |(29) | = or(py/ =)

Combining (B.16), (B.17) and (B.19), we have

e LH Y EV) ' Xiei -7 Xei|| =op <P2M>
iEL]' fo%)

J€G V/n vn
We choose (1 such that p?log(pd)/(v/n¢1) = o(1) and (14/1V log(pd/(1) =
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o(1), e.g., ¢} = p*log(pd)/+/n. Then by the above equation we have

1 .
P 7H SO 1Xe - 21X > ) < G
(sl o 8- 37xe 20) <
J
where (2 = o(1). O

APPENDIX C: PROOFS IN SECTION 4
C.1. Proof of Corollary 4.1.

ProOOF. We begin by computing h. As u; = 0 for ¢ > r, we have that
=3, ﬁ = r. Hence h < r~L.
Therefore by Theorem 3.4, A = o((Nh)~/2 An=1/2) = o(N~1/2). We next

calculate the asymptotic covariance.
Ap(z0) = (Ar K)o = (Br Kao)aey)
~ (B, $i) L,(p :
= 2 TAZ(Z)@(ZO) =) (B, $i) 1P ) Bi(20)-
i=1 i i=1

Hence 7., = hl/2 > i—1(Br; ®i) Lo(p ) Pi(20). The formula for ¥j, and 33,
then follows from Theorem 3.4.

We next calculate the entropy integral w(F,d) for finite rank RKHS and
the upper bound for s. Define Fo = {f € H : || fllsup < 1, If|l < 1}. By
Carl and Triebel (1980), for finite rank RKHS,

log N (Fa, || - [lsup; 8) =< rlog 6.

We have that N'(F, || [sup, 6) < N(F1, || lsup; SN (F2, || [sup, 6)- As N (F1, |-
llsup, 6) is dominated by N (Fz, || ||sup, ), it suffices to bound N (Fa, ||-[|sup, 0)-
Now by Van Der Vaart and Wellner (1996), we have that

N(Fay || llsups 8) < N(REATV2E |- [lsup, 6)
= N(Fa, || llsups B H2NM25).

Hence

w(F,0)

IN

6 o~
| o N o g 201 26) e
0
)
= /\/rlog(hl/Q)\l/?gl)dg
0

= /oy [log(h1/2A-1/25-1)
Now we are ready to calculate the upper bound for s. We plug in n = N/s

and h < r~! into (3.6) and (3.7), and by the condition \ = 0(\/%)’ we get
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_ N : _
s = O(WlogﬁN)' This upper bound needs to allow the case that s =1,
which yields the lower bound for A: y/log(A~1) = o(N log™® N). O

C.2. Proof of Corollary 4.2.

PROOF. Recall that we have h < r~!. To optimize the rate, we choose A
such that ﬁ = A, which yields A = . By Theorem 3.1 we have
Elllfva = foll,@,] < Cr/N+s a(n, s, b, A w).
For the remainder term to be small, we need s~ 'a(n,s,h,\,w) < N~1
Plugging in a(n, s, h, A\,w), h and A\, we get the upper bound for s. O
C.3. A Lemma for Exponentially Decaying RKHS.

Lemma C.1. Let h = (—log\)~*/?. For all t > 0, p > 1 and some positive
constants ¢, a, we have

- 1
li —a P,
W2 T eesplai)
ProoF. We have by convexity that
. 1 /°° 1
5 < i
— (1 + Acexp(atp))t o (14 Acexp(azP))t

We then approximate the integral by

* dx
/0 (1 4+ Acexp(azxP))t
(o log(1/A))/? dx
B /0 (14 Acexp(azxP))!

& dx
+
/(a_1 log(1/x)1/» (1 + Acexp(az?))*

< (a Mlog(1/X)MP + /OO (eA) "t exp(—taxP)dzx
(a1 log(1/A))1/P
(C.1) = (a 1og(1/A))YP + o(1),

where the last equality is by L’Hospital’s Rule for A — 0.
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Moreover, we have for any € € (0, 1) that

= 1 o 1
> d
pt (14 Acexp(afp))t — /1 (14 Acexp(azxP))t v
(ea™ " log(1/X))"/P 1
> d
- /1 (1 4+ Acexp(azP))t v
1 1 1/
> - 000 p_
Z T ooy ((ea log(1/X)) 1)
(C.2) = e (e log(1/A) ) + 0.
(14 cAt=e)t
Combining (C.1) and (C.2), we get
e\1/p = h 1\1/p
— < li < (= .
(a) =350 — (1 + Acexp(atr))t — (a)
for any € € (0,1). Lastly, letting ¢t — 1, we get the desired result. O

C.4. Proof the Corollary 4.3.

PRrROOF. As before, we start by calculating h. By Lemma C.1 with t =1,
we have h < (—log\/c)~1/P.
As h — 0, Theorem 3.4 shows that a,, = v,, = 0. Moreover,

oo 0,
Wafolz0)] = Al D
= At

be(20)|

o0
<A 16e(20){fo, e)ul = O(N).
=0
Therefore, by Theorem 3.4, we can completely remove the asymptotic bias by
choosing A\ = o((Nh)~Y/2 An=1/2) = o(N_l/2 log!/(?P) N' A n~1/2). We next
calculate the entropy integral. We have that for RKHS with exponentially
decaying eigenvalues, by Proposition 17 in Williamson et al. (2001) with

p=2
1 p+1

log N (Fo, |- llsup, ) = (Tog 5) 7 -
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Then following the deduction in the proof of Corollary 4.1, we have

6 o~
w0) < [ \flogl+ Mo g (e BN~ 2
0

) 1 p+1
= 1 P
/0 (1o (cr—?hA—l)—l/%) *

= Slog'z (RM2A"1/2571),

For the range on s, we plug in n = N/s and h =< (—log A/c)~V/P into (3.6)
and (3.7), and we get that it suffices to take

_ ( N
5= logh N log®+4)/p )\—1)'
Again the upper bound must allow the case that s = 1, which yields the
lower bound for the choice of A. O

C.5. Proof of Corollary 4.4.

PROOF. Recall that we have h =< (—log A\/¢)~'/P. To balance variance and

. log N)1/p
bias, we choose A = (Og%

Ell|fna — foH%Q(PZ)] < C(log N)YP/N + s™ta(n, s, h, A\, w).

For the remainder term to be small, we need s~'a(n, s, h, \,w) < (log N)/?/N.
Plugging in h, A and w(F, 1), we get the upper bound for s. O

. By Theorem 3.1 we have

C.6. Proof of Corollary 4.5.

PROOF. Again, we begin by calculating h. As p; < cj =%, we approximate

h using integration. For simplicity, let ¢ = 1 here. We have

1
[e%S) 1 AT 2w 1 [e%S) 1
ht< ————dzr = ——d ——d
_/0 1+ \aZv . /0 1+ \z2v x—’_/)\r}l,l—i—)\:ﬁ” v

On the other hand, we also have

1
o) 1 AT 2v 1 o 1
ht > ——dx = ——d ——d
_/1 1+)\l'2”x /1 1+ \z2v x+/)\211,1—|—)\x2”x

>(2+ L )xi
2v
- 2 —4v

Hence we conclude that h—! = )Fi and thus h < )\i .
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As h — 0, Theorem 3.4 shows that a,, = v,, = 0. Similar to proof of
Corollary 4.3, we get |Wy fo(20)] = o(A), and by Theorem 3.4, we can remove
the asymptotic bias by choosing A = 0((Nh)_1/2 A n_l/z) = O(N_ﬁ A
n~Y 2). We next calculate the entropy integral. We have that for RKHS with
polynomially decaying eigenvalues, by Proposition 16 in Williamson et al.
(2001),

~ 1\ %
og N (Fa, | - lawps 9) = (5) -
Then following the deduction in the proof of Corollary 4.1, we have

6 ~
W(F,8) < / VIOEN (B, |- loups h=1/271/26) de

= /\/h)\ 1/25 de

= )4u51

For the range on s, we plug inn=N/sand h < A2 into (3.6) and (3.7),
and it follows that s needs to satisfy

10v—1
s = o()\ %7 Nlog™® N).

Again the upper bound must allow the case that s = 1, which yields the
2
lower bound for the choice of A: A1 = O(N 13'/*1). O

C.7. Proof of Corollary 4.6 .

PROOF. Recall that we have h < A\/2”. To optimize the rate, we choose
2v
A such that ﬁ = A, which yields A = N 2v+1. By Theorem 3.1 we have

- __2v _
E[HfN,)\ — fOHQLQ(PZ)] < CON ™ 241 + g 1a(n,s,h,)\,w)

For the remainder term to be small, we need s~ ta(n, s, h, A\, w) < N_%.
Plugging in a,, h and A, we get the upper bound for s. O
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C.8. Proof of Lemma 4.1. Recall that A = h?”. By Theorem 3.3 for
the asymptotic variance, we compute that

=~ 2 e Pel20) 2
ME7,@,) = h;(HA/w)

2. 2c052(20m20) 4 2sin? (207 2)
= h(l + ; )

(1 + \(20m)2)2

o0

1+; 1+ 2€7rh2V) )

And we have that

o o

2mh

2mwht 1
< ———dr
(1 + Qi = 2 foe T

*° 1
——d
/0 1+ 22)? v
and similarly

> 2h > /27’rhf 1
> ———dx
; 1+ (20mh)?)? ; arh(e—1) (1 +2%)?
1

— /0 7(1 n a:QV)de

(\

=0

1

The two inequalities yield

~ oo 1
2
Kz L) —>/0 w0t 2
and so
o0 1
2
. - 4
(C.3) T /0 71+ 22)2 z

APPENDIX D: PROOF OF RESULTS IN SECTION 5
D.1. Proof of Proposition 5.1.

PROOF. The proof follows similarly as the proof for Theorem 3.1. O
D.2. Proof of Proposition 5.2.

PROOF. Recall (7.2) from proof of Theorem 3.1 in Section 7.2

. 1 .
ﬁl(]) —mgy = — Z RUiei - P>\m0 - Remm.
" iGLj
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Also recall m§ = mg — Pymy. Taking average of the above equation for all j
over s, we have

N
1 1 .
T —mt = — , s ©)
(D.1) m—my = g e Ry, + . E RemY’,

N
3 a1 L ()
(D.2) ﬂ—ﬂo—N;LUﬁi—S;Remﬁ ’
and
NS LN g )
— ;
(D.3) f—fo= NZNUZ'& — EZRemf

Similar to proof in Section 7.2, we can show that the first term weakly
converges to a normal distribution, and the remainder term is asymptotically
ignorable. Recall the definition of m§ = (id — Py) fo.

Therefore, we deduct that

VN(B - B5)
(D4) (27,1) < VNR(F(z0) — £§(0)) )

= VNaT (ﬂ B) + (Nh)2(f(20) = f5 (20))

< Ei a:TLU + hl/QEZNU
7~ ; )

- Z \ﬁwTRemB Z VNhRem ])(zo)

We can show that the ﬁrst term is asymptotic normal by central limit theorem:
first note that the summands are i.i.d. and with mean zero. Moreover, by
Proposition 2.3,
Ly + B2 Ny(20) = 2T Ly + hY*(Kz(20) — A(20)" Lv)
(x — W2 A(20)) " Ly + B2 K 7(20)
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We compute
E[(z” Ly, + h'/* Ny, (20))?]
(D.5) = E[(x — h'/? A(20))" Ly L (x — B2 A(2))]
(1)
+ E[hK7(20)?] +E[2hY2K 7 (20)(x — h*/? A(20)) T Lys] -

-~

(IT) (IIT)

For the second term in (D.5), we have
(D.6) (I1) = E[hKz(20)?] = bl Kzl e, — 0%

For the first term in (D.5), recall from Section 7.2 that E[LyLL] — Q7L
h'/2 A(z9) — —72,- Hence we have

(D.7) (1) = (@ +720) "2 (@ + 7).
Moreover, recall from Section 7.2 that
WPE[Kz(20)Lu] — Q@ tas,.
Therefore it follows that
(D.8) (ITI) = 2(x + 7,,) T ay,.
Hence combining (D.7), (D.6) and (D.8), the limit of (D.5) is
E[(x” Ly, + h'/* Ny, (20))?] — 27Q e 4+ 227515 + o,

for any x € RP. Therefore the limit distribution follows by central limit
theorem. Now for the remainder terms, by Lemma 7.3, if Condition (3.6) is
satisfied, we have

BN Tp () LN po )
lsjglx/ﬁw Remy \SC\/N\\Sj;Remﬁ l|2

= op(NY2571/2p, Jlogn).

and
1o : 1o :
|g Z \/]\TthRemgf)(zoﬂ < C\/NihH; Z R@mgc])”sup
j=1 J=1
1< ;
< C'N/?| 2 Rem W)
= ”s ; €m ¢ le

= 0p(N1/25_1/2bn7s logn).

where in the second inequality we used Lemma A.1. Then if Condition (3.7)
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is satisfied, we have N1/28_1/2bn’5 logn — 0. Hence by (D.4), it follows that
T VN(B - 3}) ) 2/ T—1 T
xz' 1 = ’ = N(0,0%(x" Q" x+ 2" 1o+ X .
) (i ey ) 7 VO o+ E)

Hence the conclusion follows by the arbitrariness of « using Wold device. [

APPENDIX E: PROOFS OF LEMMAS IN SECTION 7
E.1. Proof of Lemma 7.1.

PRrROOF. Recall from Section 7.3 that
~ 1 N | ,
Zn(m) = §h1/2n1/2d;7lsRem(3) = icr_lhnlﬂr;}qRemm
We showed in Section 7.3 that Z,(m) is a sub-Gaussian process. Letting
U = (X(j),Z(j)), where X and ZU) are designs on j-th sub-population.

Without causing any confusion, we can remove the the superscript (j). We
have

E[||[Rem %] = E[E[|| Rem™ |15 | U]]
(E.1) = E[E[||Rem||% | Ulle] + E[E[|Rem™|% | Ullee].,
where &€ is the event defined in Section 7.3. For the first term in (E.1), we
have
E[E[|| RemP||% | U] Le]
— 42h 22 B[R] Za() |2 | U)Te]

n,s

e /0 P(E[| Zn ()% | Ule > )dx

n,s

n,s

w(F,1)2
et { [ PENZU @ e 2 0)do
0
[T PEIZEIE O > 2)ar)
w(F,1)2
< 4c$h_2n_lrﬁ,s{w(}", 1) +/ P(E[| Zo(f)|% | Ulle > 2 + w(F, 1)2)dx}.
0
In Section 7.3 we proved that & C {m € F}. Therefore we have
E[||Zn(m)|% | Ul < SléF}HZn(m)”?m
and by Lemma F.1 and the fact that diam(F) < 1, we have
P sup || Za(m)I% = @+ w(F,1)?) < P( sup |1 Zu(m)la = (V& +w(F,1))/2)
meF meF

< Cexp(—z/C).
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Hence it follows that
E[E[HRemU)Ha |Ullg] < 2ch*n '} (w(]—“,l)2 +/ C’exp(—x/C)da:)
0

n,s

(E.2) = 2012”117271*1732173 (w(F,1)*+C?).
We now turn to control the second term in (E.1). By Lemma G.2, we
get that E[HAf(j)H%{ | U] <202/ + 4| foll3,- Also by first order optimality

condition with respect to 3,
BY - ) = (X"X) 'K (fo(2) - JV(Z) + V),
where we omitted the superscript of (5) for the designs X() and ZU). Hence
18 - B3 < 20(X"X) ' XTeD3 + 2| (X"X) X (fo(2) - FV(2@)]5,
Taking conditional expectation yields
(B.3) E[I3Y — 853 U] < 2E[|(X7X) "X W3 | U]
+2E[|(X"X) X (fo(2) ~ TV @)I3 U]
Denote () = XTX, we first control the first term (E.3). Note that
Ty 1xTel) — L S (S0 -1 x..
(XTX) X el = - g;j(z )1 X
Taking conditional expectation and by independence, we have

e (] 1 o)
E[I(X"X) ' x"eW)|3 | U] =E[l~ > (BT Xe 3| U]

S
1 SO 2
= — Y E|ED) ' Xi)3| U]
i€L;
1 i
(E.4) =3 > (ED) x5,
icL;

For the second term in (E.3), we have similar to above that

(K0 (fo(2) - FO@) = - S0 Xi(o(Z0) - FO2).
i€L;



28 T. ZHAO, G. CHENG AND H. LIU

Taking conditional expectation, we have
E[|(X7X) X7 (fo(z) — f9(2))|I3| U]
= E[l S E X (fo(2) — TO(Z) V)
icL;
< = SE[IED) Xi(fo(2) - FO@) U],

i€l

3

where the inequality is by (3, a;)? <n ., a?. Hence we have
E[l!(XTX)_le(fo( ) — f(” (Z)]3 U]

< =S E[(o(2) — T2 U] IED) T X3
ZEL
1
< = S E[llfo— F I U] IED) X3
1€l
< =37 aE[lfo — FO 1 U]IED) X3
S
(E.5) < 3 ae A+ AlRIBIIEY) " XB,
1€L;

where ¢, = sup, K(z,z). The second last inequality follows from the fact

that || f|lsup < sup, || K ||lull flln = 01/2Hf||y and the last inequality is by
Lemma G.2. Combing (E.4) and (E.5), we have by (E 3) that

E[||39 — g \\2|U]<0A1 STIED) X3

ZGL

holds almost surely for some constant C' As we have

189 — 85 17,) = (BY = B7) S(BY — 55") < =718 — 85”3
it follows that

s ‘ 1 o
(86)  E[IBY = B I, U < CAT'= ST IED) X3,
’iELj

for a constant C that is different from above. Lastly, we have Hf(j) —
follLae,) < ||f(j) — follsup < 01/2Hf(3) — folln, and it follows that

(E.7) E[IfY ~ foll2 e, U] S A"
Note that for any m = (8, ), [lm|% = X8 + f(2)II, @, + A fI5 <
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2812 2(Px) +2[| )12 2(P2) + Al f||3,- Hence by (E.6), (E.7) and (G.1), we have
E[|amP |5 U] < At Y0 I(E9) XG5,
USI
Moreover,
A 1 : .
[Rem || 4 < I > AmYNU) Ry, || 4 + |Bu[amY (U) Ry
i€l
- Z 1AM (U;) Ry, || 4 + By [||AmY) (U) Ry |]
zEL
< 20| AmW || 4,

where in the last inequality we used |[AmU)(U)| < h=2||AmU)| 4 and
| Ry ||la < h~Y/2. Hence

E[|[Rem|% | U] < 4h 2E[AmW|% | U] < CR2A 11 Y (I(S0) 71 X513,
1€L;

Hence, we have that the second term in (E.1)

E[E[|Rem|% | Ullge] < CR72A ' Y E[||(S9)) 7 X[ 7]
1€L;
< Ch2A I 'P(E) ST E[I(E9) T X13]
1€L;
(E.8) < C'h2ATIP(E),

where the second last inequality is by Holder’s inequality and the last one by
assumption on the design. By (E.8) and Lemma 7.4, we obtain
(E.9) E[E[HRem(j) 1% | Ulee] < h™2A 'nexp(—clog? N).

Finally, plugging (E.2) and (E.9) into (E.1), we have for sufficiently large n,
(E.10)
E[||Rem(7)|]2] <22h 212

ns

(w(F, 1) +C)+C"h A 'nexp(—clog® N),
as desired. ‘

We can apply similar arguments as above to bound ||Rem§c])\|c and
11/83 254 RemS;j)Hc, by changing w(F, 1) to w(F2,1), which is dominated

by w(F,1). The bounds of HRemg)Hg and [|1/s377_; Remg)Hg then follow
from triangular inequality. O

E.2. Proof of Lemma 7.2.
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PROOF. The main term (I) can be rearranged as follows:
1 1
D=7 & (mTLUl. + 5_1/2h1/2NUi(zo)) + =Y ANy (z0)e
\/ﬁ 1eL; \/N i%LJ‘

(II1) (IV)

When analyzing (I), we consider two cases: (1) s — oo and (2) s is fixed.
Case 1: s — oo. We first apply CLT to the first component of term (III),
ie., % Zz’eLj 6ia:TLUZ.. The summands are i.i.d. with mean zero. Moreover,
E[(ez” Ly)?] = o*z"E[Ly L.
By Proposition 2.3,
ElLyLy] = (Q+3)7E[(X - A(2)(X - A(Z))")[(Q+ 23~
By Lemma A.3 in Section A.l, we have that ¥\ = E;[B(Z)(B(Z) —
A(Z))T} — 0, and also
E[(X - A(2))(X - A(Z))"]
= E[(X - B(2))(X - B(2))'] + E[(B(Z) - A(2))(B(Z) -~ A(Z))"]
+2E[(X — A(2))(B(Z) - A(Z))"] = Q!
This implies E[Ly L{;] — Q71 Therefore by CLT, we have
1

n

We next consider ﬁ Yic L s~1/2pY/ 2Ny, (20)e; which is the second compo-

(E.11) > e’ Ly, ~ N(0,0%z"Q '),

iEL]‘

nent in (IIT). Again the summands are i.i.d. with mean zero. By Proposition
2.3 we have

(E.12)  E[(h'2eNy(20))?]
= o’hE[(Kz(20) — LE A(20))?]
= 0’hE[Kz(20)% + 0*hA(20) E[Ly LT A(20)
—202hE[K 7(20) LE A(20)]-
For the first term in (E.12), by condition in the lemma, we have
o’ hE[K7(20)*] = Wl Kll3,p,) — 0702,
For the second term in (E.12), as h'/2A(zy) — —7,,, and E[LyLE] — Q71

we have
UQhA(ZQ)TIE[LULE]A(zO) — 02'yT Q_I’yZO.

20
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For the last term in (E.12), we consider
BY2E[R () L] = hY2(Q + 52) B[R (20)(X — A(2))].
We have (2 + X)) — Q! and
B[R (20)(X — A(Z)] = WV2(B, Repiyiey) — (A Ry o)

= WA Ka)e — (A K 1y(e,)
= h'PNA, K.)n
= WAWIAK.)e
= WYPWyA(z) — o,

Hence hl/zE[I?Z(zo)LU] — Q7 la,, and so hE[I?Z(zO)L{,A(ZO)] — 7L ag,.

In summary, we have
E[(h'2eNy(20))%] — 02(02, + 1L + 29207 a,) = Saa.
By central limit theorem, it follows that
1
(E.13) — > eih' /2Ny, (20) ~ N(0,07ss).
" iEL]'
1

As s — oo, we have 7= S eis Y22 Ny, (20) — 0. So the second compo-

nent in (III) is asymptotically ignorable. Therefore by (E.11), we obtain
(I1I) ~ N (0,0%z"Q '2) .
As for (IV), we apply similar arguments as in the previous paragraph and
consider s — oo. It follows that

([V) =V 1-— S_l{\/ﬁ Z hl/zNUi(ZO)EZ‘} ~ N(07O'2222).
i¢L;

Lastly, note that (I1I) and (IV') are independent, so are their limits. There-
fore, it follows that

(I) ~ N(0,0%(xTQ 7 2 + ¥9)).

Case 2: s fixed. Instead of decomposing (III) into two components as
in previous case, we apply CLT to term (III) as a whole. Note that the
summands in (III) are i.i.d. with mean zero. Moreover,

E {52 (a:TLU I 8_1/2h1/2NU(zo))2}
= o’E[(z"Ly)?] + s o’ E[(h2 Ny (20))?]
+ 25 1262E[n 22T Ly Ny (20)]
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The first two terms are considered in Case 1. For the third term, we have
E[z” Lyh 2Ny (20)] = E[hY 22" Ly (K 7(20) — LE A(20))]
From Case 1, we have h1/2E|:IA€Z(Z())LU] — 0y, E[LULE] — Q71 and
hY2 A(zy) — —72,. It follows that
(E.14) E[h 22" Ly Ny (20)] — 27 Q 7 (s + 750)-
Therefore, we have
E [52 (@ Ly + 3*1/2h1/2NU(20))2} S 2@ L 4 s 00 + 257 22TRy).
Hence by central limit theorem, we have
(II1) ~ N(0,0%(x"Q e + 57109y + 25712275 )5)).
Similarly, we have
(IV) ~ N(0, (1 — s 1)0?S9).
As (III) and (IV) are independent, so are their limits. Therefore in the case
that s is fixed, we have
(I) ~ N (0,02 (&TQ 7 a4 Tgg 4 257227 %15)).
This finishes the proof. O

E.3. Proof of Lemma 7.4.

PROOF. Recall that AmU) = m) — m(()j). As AmU) minimizes the objec-
tive function (3.2), we have

1 (i -~ 1
- D (@I W) = Yi)? + Al fII3 < - > (mo(Us) = Vi) + Al foll3e,
i€l i€L;
On the j-th sub-population, we have Y; = m(()j )(Ui) + &;, hence it follows that
1 o . 2 o . .
=~ Y @I =m ©))* 4 Y i@ (W) =mg U)FMFV 3 < Allfoll3
’iGLj iELj

Adding and subtracting Eiy[AmU)(U)?], we transform the above inequality

to
1 . A . .
= > AmY(U;)? = Ey[AmD (U)?] + By [AmY (U)?] + A A f9|3,
n ’iELj
2 . .
+ - Z EiAm(])(UZ') — 2)\”foH%_L + 2)\<]?(j), f()>7.[ <0.
1€L;

As we have Ey[AmD(U)?] + MAFD|3, = [AmD|Z, 5, + AMAFD|5, =
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|Am)||%. Tt follows that

|Am@) |2 < _2<% > eamD(U;) — >\<Af(j),f0>7{>

(USI
—= Z (AmY)(U3) Ry, — Ey[Am@D (U)Ry], AmD) 4
zEL
(E.15) = —2<l Y &Ry, - Pm AmY)y 4 — (Rem@, Am©) 4.
n
icL;

Define the following two events:

1
By = {H; > &Ry, | < Clog? N(nh)~/?},

iELj
By = {||R€m(j)\|A < 2¢,htn Y2 (Cw(1) + log N)||Am(j)]|A}.
We bound the two terms in (E.15) respectively. First, note that

1Pam|| = sup [(Pom$ myal = sup A(fo, f)ul
lm]|a=1 [Im]]a=1
< o ARy T < 2l

where the last inequality follows from the fact that A||f[|3, < [m[% = 1.
Therefore on event By, the first term in (E.15) can be bounded by

1 , ) |
(~ > &Ry, — Prfo, Am)) 4] I~ S &Ry, — Pofol| | Am 9| 4
i€L; i€L;

Furthermore, on the event Ba, the second term in (E.15) can be bounded by

IN

IN

LS (Rem®, Am@)u| < [ AmO || RemD |4
USI

(E.17) < 26,h 7T V2 (Cw(F, 1) +log N) || AmD |14

Therefore, by (E.15), (E.16) and (E.17), it yields that on the event B; N Ba
there exists a constant C,

1AmD |2 < C'((nh) "2 1og? N + A2 | AmD)| 4
+2¢,h V2 (Cw(F, 1) +log N) [AmD| 3.
If Condition (3.6) is satisfied, it implies that
h'n7 2 (Cw(l) +log N) < Cs'2N712h 7 (w(1) +log N) = o(1).
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Therefore it follows that
JAm@) |4 < Cy (k)12 10g? N + AV2) + o(1) | Am )| 4
which implies that for sufficiently large n,
IAmD | 4 < C(log? N(nh) =% + A/2),
Now we are left to bound the probability of Bf U BS. For Bj, define

Q; = {|ei| <logN}. Since |Ry|| < ¢,h~'/2, we have that on the event of
Nier; Qis {eiRUi}i cp, is a sequence of random variables in Hilbert space A
J

that are independent with mean zero and bounded by ch~1/21log N. Therefore
we have

1 _
B(B) = B(|- > iRu,la> Clog? N(nh)~"/2)
iELj

IN

1 - c
P( Nier, Qa7 3 il > Clog! N(n) 12) + B(iQ))
€L

(E.18) < 2exp(—log? N) + 2nexp(—log® N),

where the first term in the last inequality is by Lemma G.1, and the second
term is by union bound and the fact that ¢; are i.i.d. sub-Gaussian.
Now we turn to Bsy. Define m := (QCT)*lhl/ZM. Then it follows that
[Am )| 4
[llsup < crh™' 2 il < 172

By the same argument as in Section 7.3, it follows that HAf(j)Hsup <1/2
and |7 AB| < 1 for all . Moreover, we have

1Fll2 < ATV2(I]|4 < (26,) 7 RNV,
Hence we proved that m € F. By Lemma F.1, it follows that

IP’(||Zn(ﬁL)HA > Cw(1, diam(F)) + log N) < Cexp ( — log? N/o).

By definition of Z,(m) and m, we have Z,(m) = (2¢,) " hn'/2|| AmU) ||;‘1Rem(j).
Hence it follows that

P(BS) = IP’(HRem(j)HA > 2¢,h~'n Y2 (Cw(1) + log N) HAm(j)HA>
(E.19) < Cexp < — log? n/C’)

Combining (E.18) and (E.19), we have that for some universal constants ¢, C
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and sufficiently large n,

P(AmW)|a > C((nh) "2 1og? N +A1?)) < P(BY) + P(B3)
(E.20) < mnexp(—clog® N).
This finishes the proof. O

APPENDIX F: EMPIRICAL PROCESS LEMMA
Lemma F.1 (Local chaining inequality). If Z,(m) € A is a separable

process on the metric space (F, || - ||sup) and satisfies (7.15):
2
B(120(m) ~ Zatomala 2 0) < 20xp (- L)

Then for all my € F and z > 0, we have

(F.1)

P( sup || Zn(m)—2Zn(mo)|la > Cw(F, diam(]:))+x> < Cexp (—xQ/C’diam(}“)Q),
meF

where C' is a generic constant.

PRrOOF. The proof follows by modifying the proof of Theorem 5.28 in
van Handel (2014). Let kg be the largest integer such that 27%0 > diam(F).
Then N(F,d,27%) =1 for all k < k. We employ a chaining argument, and
start at the scale 2750, For every k > ko, let Ni be a 27% net such that
|Ni| = N(T,d,27%). We define the singleton Ny, = {mg}. We claim that

Zn(m) = kh—g)lo Zn(mi(m)) — Zp(myg)

= 3 {Zu(me(m)) = Za(meoa(m)} s,

k>ko
where 7, (m) is the closes point in Ny, to m. To prove this identity, note that
the sub-Gaussian property of {Z,(m)}mer implies that Z,(m) — Z,(m(m))
is d(m, m(m))-sub-Gaussian. Thus

> " E[|1Zn(m) — Zn(me(m))||%] < dewk <Zz— < 0.
k=ko k=ko k=ko

It follows that || Z,(m) — Z,(mk(m))||4 — 0 a.s. as k — oo, and the chaining
identity follows readily using the telescoping property of the sum. By the
chaining identity and separability of F, we obtain

sup (| Za(m) = Zn(mo)|la < Y sup | Zn(m(m)) = Zu(mwp—1(m))| -

meF k>ko meF
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By union bound and sub-Gaussian property, it follows that

2
P sup |y (mi(m)) = Zu(mms (m) s > ) < 2Nl exp (= g5

= 2exp (log|Nk| - 81;2_2k>
For large enough ¢, let u = 8.;7:,“ — log | Nk|, and we have
p( Sup |23 (i (1)) Z (51 ()Lt > 29227 (/o [Nil+u)) < 2exp’/2,
m
which implies the link ||Z,,(7x(m)) — Z,(7r—1(m))||.4 at scale k is small. To

show that the links at all scale of k are small simultaneously, we again use
the union bound. Define the event D := {3k > ko s.t.sup,,c 7 || Zn (7 (m)) —

Zn(m—1(m))|la > 2v2 - 27%(\/log [Ny| + uk)}, where u, = = + vk — ko.
Then

P(D)
< 3 B sup 1 Zu(melm)  Za(msa (m)) L > 232 - 27(/log [Nl + )

k>ko meF

< Y exp(—uj/2) <exp(—a?/2) Y exp(—k/2) < Cexp(—z°/2).
k>ko k>0

Moreover, by the fact that 2% < 2diam(F) and

27k < ca o flog N(F.d,27h-1) < €'Y \/log [N,

k>ko
we have on the event D¢,

sup || Zn(m) — Zn(mo)|| 4

meF

< Y sup [|Zn(mr(m)) = Za(mr-1(m))|la

k>ko meF

<2v2 ) 27%(\/log [ Ni| + uy)
k>kg

<2v2) 275\ log|Ni[ +2v2-27% Y T2 MVE+2v2 Y 27Fe
k>ko k>ko k>ko

diam

(%)
<C V1og N(F,d,e)de + Cdiam(F)z

0
= Cw(F,diam(F)) + Cdiam(F)z.
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Therefore

P( sup [1Z(m) — Zn(mo)|la = Ceo(F, diam(F)) + Cdiam(F)z)
meF

< P(D) < Cexp(—27/2).

Replacing C'diam(F)x with a new variable x, we reach the conclusion of the
lemma. O

APPENDIX G: AUXILIARY LEMMAS

Lemma G.1. (Pinelis, 1994) If =4, ..., = are zero mean independent ran-
dom variables in a separable Hilbert space and ||Z;|| < M fori=1,...,n,
then

n 2
IP’(H:L;EH > t) < 2exp ( — 273\22).
Lemma G.2. We have for all j =1,...,s,
(G.1) E[IIAfD13 U] < 20° /A + 4llfol3.
PROOF. By the zero order optimality condition, we have

. 1 s .
NIFDIE < = D0 (% =@ (U) + AL TVl

iELj
1 .
< 3 (V= md (U)) + Alfoll5,
1€L;
_1 2 2
= > e+ Allfoll3
’iELj

Hence taking expectation conditioned on U, we get
AE[|FD3,1U] < 0 + All foll3

Then, applying triangular inequality along with the inequality (a + b)? <
2a% + 2b%, we have
E[|AfDI5 U] < 2|l foll3, + 2E[| 793, U]
202 9
< - T 4llfolly

as desired. O
Lemma G.3 (Matrix Heoffding in Tropp (2012)). Consider a finite sequence
{A;}_, of independent, random, symmetric matrices with dimension p.
Assume that each random matrix satisfies

E[A;] =0 and |A?|| <M almost surely.
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Then, for all t > 0,
1 n
(I
1=

Lemma G.4. Let A E € R*** be given. If A is invertible, and || A~ 'E|| < 1,
then A := A + E is invertible, and

nt?

sir)

Zt)épeXp(—

—1(12
H:&—l _ A—1|| < ”E”HA H
T 1-|ATE]

PROOF. See Theorem 2.5, p. 118 in Stewart and Sun (1990). O
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