The C677T Variant in *MTHFR* Modulates Associations Between Brain Integrity, Mood, and Cognitive Functioning in Old Age

Supplemental Information

	CC	СТ	ТТ	Total
N	273	275	92	640
Medial Orbitofrontal Volumes	7,455.20	7,514.64	7,200.50	7,444.13
(in mm ³)	$(\pm 1,027.22)$	(± 941.54)	(± 973.04)	(± 987.35)
	[7,451.00]	[7,475.00]	[7,199.50]	[7,435.50]
Standardized Volumes	0.01	0.07	-0.25	0.00
(z-scores)	(± 1.04)	(± 0.95)	(± 0.99)	(± 1.00)
	[0.01]	[0.03]	[-0.25]	[01]

Table S1. Total medial orbitofrontal volumes by genotype groups (N=640)

N indicates sample sizes. Average volumes of the medial orbitofrontal cortices (in mm³) and standardized volumes (z-scores) are followed by standard deviations in parentheses. Median volumes are indicated in brackets.

Dependent Variable	C677T	Diagnosis	Sex	Age	Corrected Model
mOFC	0.033	< 0.001	< 0.001	< 0.001	< 0.001
Volumes	(3.428)	(19.295)	(74.000)	(44.541)	(25.868)
(N=640)	[2]	[2]	[1]	[1]	[6]
mOFC	0.009	< 0.001	< 0.001	< 0.001	< 0.001
Volumes	(6.814)	(19.554)	(74.219)	(44.556)	(31.077)
(Recessive Model)	[1]	[2]	[1]	[1]	[5]
Homocysteine	< 0.001	0.016	< 0.001	< 0.001	< 0.001
(N=732)	(10.375)	(4.153)	(24.991)	(28.839)	(14.857)
	[2]	[2]	[1]	[1]	[6]
Homocysteine	< 0.001	0.018	< 0.001	< 0.001	< 0.001
(Recessive Model)	(20.114)	(4.053)	(25.342)	(28.893)	(17.708)
	[1]	[2]	[1]	[1]	[5]

Table S2. Results of multiple regression analyses: Predictors of medial orbitofrontal volumes and plasma homocysteine

Each row illustrates results of a separate GLM using the following equation: Dependent variable = C677T genotype + diagnosis + sex + age + intercept + error. The dependent variable and sample size are identified in the first column. For completeness, results obtained using a recessive model of minor T allele effects are presented below the default (additive) results discussed in the manuscript. *p*-values are followed by *F*-ratios in parentheses and degrees of freedom in brackets.

Dependent Variable	C677T	Diagnosis	Sex	Age	Vitamin B ₁₂ Deficiency	C677T * Vitamin B ₁₂	Corrected Model
Homocysteine (N=675)	<0.001 (12.143) [2]	0.062 (2.787) [2]	<0.001 (23.030) [1]	<0.001 (27.032) [1]	0.021 (5.348) [1]	0.011 (4.529) [2]	<0.001 (10.007) [9]
Homocysteine (Recessive Model)	<0.001 (21.469) [1]	0.079 (2.553) [2]	<0.001 (23.898) [1]	<0.001 (27.225) [1]	0.005 (7.987) [1]	0.007 (7.320) [1]	<0.001 (12.450) [7]
Homocysteine (B ₁₂ Deficient N=83)	0.008 (5.122) [2]	0.572 (0.563) [2]	0.541 (0.377) [1]	0.023 (5.366) [1]			0.006 (3.270) [6]
Homocysteine (B ₁₂ Deficient Recessive)	0.003 (9.101) [1]	0.503 (0.694) [2]	0.462 (0.547) [1]	0.022 (5.498) [1]			0.005 (3.692) [5]
Homocysteine (Non-Deficient N=592)	0.055 (2.911) [2]	0.010 (4.684) [2]	<0.001 (24.127) [1]	<0.001 (21.467) [1]			<0.001 (10.925) [6]
Homocysteine (Non-Deficient Recessive)	0.019 (5.513) [1]	0.010 (4.656) [2]	<0.001 (24.261) [1]	<0.001 (21.654) [1]			<0.001 (13.062) [5]

Table S3. Results of multiple regression analyses: Predictors of plasma homocysteine in the whole sample and by Vitamin B_{12} deficiency status

Rows 1-2 illustrate results of a GLM using the following equation: Plasma homocysteine = C677T genotype + diagnosis + sex + age + vitamin B_{12} deficiency status + vitamin B_{12} deficiency*genotype + intercept + error. Row 3-4 illustrate results in deficient individuals. Rows 5-6 present results in non-deficient subjects. For completeness, results obtained using a recessive model of minor T allele effects are presented below the default (additive) results discussed in the manuscript. *p*-values are followed by *F*-ratios in parentheses and degrees of freedom in brackets.

Dependent Variable: GDS-15		Homo- cysteine	Vitamin B ₁₂ Deficiency	MMSE	mOFC Volumes	Age	Sex	Corrected Model
GDS-15 (N-587)	0.256 (1.368)	0.823 (0.050)	0.961 (0.002)	<0.001 (12.808)	0.005 (7.840)	0.107 (2.609)	0.527 (0.401)	<0.001 (3.855)
(11-307)	[2]	[1]	[1]	[1]	[1]	[1]	[1]	[8]
GDS-15 (Recessive)	0.517 (0.421)	0.860 (0.031)	0.925 (0.009)	<0.001 (13.285)	0.005 (8.035)	0.094 (2.6814)	0.533 (0.388)	<0.001 (4.066)
([1]	[1]	[1]	[1]	[1]	[1]	[1]	[7]

Table S4. Results of multiple regression analyses: Predictors of mood

This table illustrates results of a GLM using the following equation: GDS-15 = C677T genotype + plasma homocysteine + vitamin B_{12} deficiency status + MMSE + mOFC volumes + age + sex + intercept + error. For completeness, results obtained using a recessive model of minor T allele effects are presented below the default (additive) results discussed in the manuscript. *p*-values are followed by *F*-ratios in parentheses and degrees of freedom in brackets.

Figure S1. Summary of proposed model. Black arrows illustrate a simple association between two variables; dotted arrows denote moderation; colored arrows indicate mediation. A moderator variable influences the strength of a relationship between two other variables, while a mediator variable explains this relationship. Increased plasma homocysteine mediates the association between *MTHFR* genotype and lower medial orbitofrontal volumes, and these volumes mediate the association between MMSE and GDS-15 scores. Vitamin B₁₂ deficiency moderates the association between the C677T variant and increased homocysteine; it is also an independent predictor of elevated homocysteine.