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ABSTRACT

The human face is a complex trait under strong genetic control, as evidenced by the striking visual similarity between twins.
Nevertheless, heritability estimates of facial traits have often been surprisingly low or difficult to replicate. Furthermore, the
construction of facial phenotypes that correspond to naturally perceived facial features remains largely a mystery. We present
here a large-scale heritability study of face geometry that aims to address these issues. High-resolution, three-dimensional
facial models have been acquired on a cohort of 952 twins recruited from the TwinsUK registry, and processed through a
novel landmarking workflow, GESSA (Geodesic Ensemble Surface Sampling Algorithm). The algorithm places thousands
of landmarks throughout the facial surface and automatically establishes point-wise correspondence across faces. These
landmarks enabled us to intuitively characterize facial geometry at a fine level of detail through curvature measurements,
yielding accurate heritability maps of the human face (www.heritabilitymaps.info).



Supplementary Information
0.1 Supplementary Figures

Figure 1. Principal curvatures and shape characterization. General classification of shapes based on the signs of the two
principal curvatures. While principal curvatures include all information about the curvature at a point, both numbers are needed
in order to get meaningful shape categorizations.
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Figure 2. Eigenfaces associated to the largest principal components for each curvature index. For each curvature index,
the faces are arranged in decreasing order, from left to right.
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Figure 3. Effect of sparsity parameter on composite curvature trait heritability analysis. Different sparsity parameters
were tested in order to assess the parameter’s contribution on the heritability study. Each plot shows the sorted heritability
values for the first 100 sPCs per curvature descriptor and for 7 different sparsity parameters. Heritability estimates showed
similar behavior irrespective of how sparse the components were. The facial maps depict the absolute loadings of an example
composite trait (Mean curvature descriptor) for different sparsity parameter values and their computed heritability values.
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Figure 4. Curvature variance Maps. The maps illustrate the variance of curvature values on all landmarks, computed from
the full dataset of 952 TwinsUK subjects.
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Figure 5. Mean and variance maps of absolute curvature differences between twins. For each pair of twins, the
absolute difference in curvature values was computed on all facial points. The maps show the mean and variance of the
differences for all twins, as well as for MZ and DZ subsets.
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Figure 6. Illustration example of Geodesic and Euclidean distance metrics. The distance between two points that lie on
a surface S ∈ R3 may be either the length dE of the straight path between the two points, or the length dG of the shorted
curved path between the same points, under the constraint that movement is only allowed on the surface S .

7/18



Figure 7. Extracted landmark sets on validation faces using GESSA. (A) 4,096 corresponding facial points were
computed using our dense automated landmarking method. Results for three validation faces are shown here. Corresponding
points are colored consistently among the different faces. Preselected Groundtruth landmarks (GTLs) are shown in white. (B)
Red points represent the nearest GESSA generated landmarks (GESLs) to the GTLs for the same example faces. Dense
annotation allowed selection of nearest landmarks with distances from GTLs less than 3% of the mean facial width.
Importantly, the algorithm was able to consistently place landmarks across different faces.
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Figure 8. Morphface Validation Dataset. Example 3D facial surface with groundtruth landmarks. The 19 groundtruth
landmark positions were used during validation of our GESSA landmarking methodology.

Figure 9. Morphface Average Facial Surface. The average surface was constructed by averaging landmark coordinates of
the 11 validation faces from the Morphface dataset.
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Figure 10. TwinsUK Average Facial Surfaces. Three average facial surfaces from the TwinsUK dataset using (a) 10
randomly selected individuals, (b) 200 randomly selected individuals and (c) the complete dataset. Increasing the number of
faces results in a smoother average facial surface.

Figure 11. Estimated Probability Density Function on a Validation Face. In GESSA, landmarks are considered samples
of a random variable defined on the facial surface. By maximizing the sample differential entropy (see Equation (7) in the
article), the density function becomes almost constant everywhere. The effect of this optimization is that landmarks are
effectively drawn from the uniform distribution.
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0.2 Supplementary Tables

Landmark Curvature Phenotypes Composite Curvature Phenotypes
MC GC CU SI MC GC CU SI

ACE

d f 5 5 5 5 6 6 6 6
χ2 -0.376 12.348 -2.385 -0.078 9.552 10.263 9.25 10.927
p 0.573 0.442 0.576 0.603 0.29 0.273 0.29 0.251
−2logL 2169.791 -4186.128 1919.943 6730.955 4850.608 4859.602 4862.932 4868.236
AIC 2179.791 -4176.128 1929.943 6740.955 4858.608 4867.602 4870.932 4876.236

AE

d f 6 6 6 6 7 7 7 7
χ2 0.15 12.954 -1.99 0.274 10.029 11.062 9.681 11.254
p 0.592 0.459 0.599 0.63 0.326 0.303 0.33 0.292
−2logL 2170.317 -4185.521 1920.339 6731.308 4851.084 4860.402 4863.362 4868.563
AIC 2178.317 -4177.521 1928.338 6739.308 4857.084 4866.402 4869.362 4874.563

E

d f 7 7 7 7 8 8 8 8
χ2 70.223 66.951 56.491 41.964 99.493 91.209 86.867 83.24
p 0.0195 0.03 0.073 0.111 0.002 0.002 0.002 0.01
−2logL 2240.391 -4131.524 1978.82 6772.997 4940.549 4940.549 4940.549 4940.549
AIC 2246.391 -4125.524 1984.82 6778.997 4944.549 4944.549 4944.549 4944.549

Table 1. Model-Fitting Average Statistics for the Curvature-based Heritability Analyses

MC GC CU SI

Pe
ar

so
n’

s
r

6th sPC MZ 0.720 3rd sPC MZ 0.709 17th sPC MZ 0.750 22th sPC MZ 0.703
DZ 0.441 DZ 0.402 DZ 0.411 DZ 0.407

43th sPC MZ 0.714 9th sPC MZ 0.745 51th sPC MZ 0.737 27th sPC MZ 0.704
DZ 0.268 DZ 0.450 DZ 0.351 DZ 0.250

58th sPC MZ 0.704 67th sPC MZ 0.737 11th sPC MZ 0.727 14th sPC MZ 0.692
DZ 0.363 DZ 0.464 DZ 0.283 DZ 0.365

11th sPC MZ 0.681 15th sPC MZ 0.694 8th sPC MZ 0.686 2nd sPC MZ 0.644
DZ 0.343 DZ 0.382 DZ 0.428 DZ 0.445

60th sPC MZ 0.709 4th sPC MZ 0.695 62nd sPC MZ 0.697 1st sPC MZ 0.666
DZ 0.343 DZ 0.246 DZ 0.412 DZ 0.338

Table 2. Top Heritable Composite Curvature Traits - Phenotypic Correlations for MZ and DZ subsets
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Linear Distance Phenotypes Geodesic Distance Phenotypes

ACE

d f 6 6
χ2 13.458 15.757
p 0.1941 0.1678
−2logL 4775.921 4834.57
AIC 2879.921 2938.569

AE

d f 7 7
χ2 16.4 17.444
p 0.1489 0.184
−2logL 4778.863 4836.256
AIC 2878.862 2938.256

E

d f 8 8
χ2 179.8 163.724
p 0 0
−2logL 4942.263 4982.537
AIC 3042.263 3082.536

Table 3. Model-Fitting Average Statistics for the Distance-based Heritability Analysis

Phenotype Ref. Study Sample Size Ethnicity Related Maps
NW 1 FBH 229 Korean MC Heritability Map
IED 1 FBH 229 Korean 67th GC sPC 4th GC sPC 11th CU sPC
NP 2 TH 42 American 67th GC sPC 4th GC sPC 11th CU sPC
FW 3 TH 138 Asian MC Heritability Map SI Heritability Map
FW 4 FBH 607 American MC Heritability Map SI Heritability Map
FW 5 FBH 1406 European MC Heritability Map SI Heritability Map
FW 6 FBH 373 Indian MC Heritability Map SI Heritability Map
HC 7 FBH 1042 European CU Heritability Map
HC 6 FBH 373 Indian CU Heritability Map
MRL 8 FBH 363 European CU Heritability Map 60th MC sPC 14th SI sPC
MBL 8 FBH 363 European CU Heritability Map
MR-MB 8 FBH 363 European CU Heritability Map
MR-MB 9 TH 77 European CU Heritability Map
CW 1 FBH 229 Korean CU Heritability Map 15th GC sPC 8th CU sPC
NW. Node Width IED. Inner Eye Corner Distance NP. Nasion Protrusion FW. Face Width
HC. Head Circumference MRL. Mandible Ramus Length MBL. Mandible Body Length
MR-MB. Mandible Ramus - Mandible Body Angle CW. Chin Width
FBH. Family-Based Heritability TH. Twin Heritability

Table 4. Comparison between previously reported heritable phenotypes, heritability maps and composite curvature traits

0.3 Supplementary Text
0.3.1 Previous Work on Dense Landmarking
Accurate correspondence of landmark points across surfaces is paramount for shape analysis. Until recently, the primary
approach to landmark annotation was to manually localize a small number of landmarks on every data object. In the last years,
a number of semi-automated and automated landmarking algorithms have appeared in the literature, which attempt to address
these issues. In the following we concentrate specifically to methodologies that compute dense landmark correspondences
between surfaces, meaning that thousands of landmark points are annotated in each object. This large number of landmarks
allows morphological variability to be captured and quantified in a much more granular level, compared to sparse annotations.

Dense landmarking methods can be classified into one of two categories, based on whether annotation is performed in
a pairwise fashion - each surface is registered to a common template, with ensemble correspondence extracted implicitly
from all one-to-one surface annotations - or a groupwise fashion - all surfaces are considered simultaneously during landmark
annotation.
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Pairwise methods are more frequently used in the existing literature. The most prominent approach is based on fitting, or
warping, a face template or a parametric surface model independently on each of the surfaces in the dataset. 3D Morphable
Models10, Point Distribution Models11–13 and Nonrigid Iterative Closest Point14 algorithms are primary examples of this
category. Early literature work on these methodologies required an initial manual annotation of a number of landmarks in
either a training set of surfaces, or even on the complete dataset. Subsequent extensions attempted to weaken or alleviate this
requirement by incorporating the use of additional optimization criterions, such as the minimum description length principle or
the maximization of mutual information, see for example15–18. Another approach in pairwise landmarking that has risen to
attention in recent years entails the use of harmonic or conformal maps which project 3D meshes to a planar domain, thus
transforming the 3D correspondence problem to one of 2D image matching19, 20. An initial annotation of a sparse set of
correspondences is still a requirement here, and semi-automated methods have been proposed to achieve that, using for example
alignment of mesh vertices through curvature features.

The second class of dense landmarking methodologies attempts to optimize the location of landmark points jointly on all
considered surfaces. Although the result is the same as applying one-to-one correspondences between all surfaces in a group
and a template or mean surface model, considering all data at once can have certain advantages, such as removing the need for
the construction of a template and reducing the bias that can result by the multiple pairwise fits to one surface21. Groupwise
functional correspondence methods reformulate the landmarking problem as one of finding correspondence between real-valued
functional representations of the mesh surfaces, extracted for example using Heat or Wave Kernel Signatures22–24.

In the work presented by Cates et al.25, the groupwise correspondence was achieved by optimizing the compactness
of the surfaces’ distribution, represented as vectors of their landmark coordinates, subject to constraints enforcing uniform
distribution of landmarks on individual surfaces. The method was based upon previous work on statistical shape modeling with
information-based optimization functions, first presented by Kotcheff and Taylor26, and subsequent articles by Davies et al.27, 28.
In contrast to the older methods, the algorithm by Cates et al. was not tailored towards the construction of a parametric surface
model, but rather to directly solve the landmarking problem. Furthermore, it did not necessitate the use of an anchor surface.
Further details and comparisons between there methods can be found in Cates’ PhD dissertation entitled ’Shape Modeling and
Analysis with Entropy-Based Particle Systems’.

Finally, a number of algorithms, usually coined as groupwise methodologies, adopt an intermediate approach to the
correspondence problem. They are based on bottom-up iterative pairwise alignments of similar surfaces, driven by an affinity
graph connecting similar surfaces29, 30.

While extensive work has been done in the problem of identifying corresponding landmark points on sets of surfaces, as
outlined previously, it is possible to identify some key methodological issues that are still prominent. In pairwise correspondence
methods, the construction of a face model, or template, can be a tedious and error-prone procedure. Furthermore, the geometry
of the final data objects after correspondence optimization, can be biased towards the mean or template surface. Iterative
pairwise methods could address, to a certain extent, such problems, but have not been extensively used so far, probably due the
extra computational cost they incur, as well as the difficulty in constructing meaningful affinities between unregistered surfaces.
Functional groupwise methodologies, on the other hand, may not suffer from the above issues, but are also associated with
specific shortcomings. The most prominent, regarding the problem of point-to-point correspondence, being that the reverse
mapping, from corresponding functions, to surface points, is not always easy to construct.

In Cates et al.25, groupwise correspondence is achieved by manipulating the location of landmark points on the surfaces, such
that an objective function comprised of two entropy-based terms is optimized. These terms are related to the uniform distribution
of points in each surface and the overall landmark correspondence among surfaces. Due to the fact that landmark annotation
under this formulation is equivalent to randomly sampling corresponding points from uniform distributions defined on the
surfaces, the problem is also coined with the term ensemble surface sampling. The entropy formulation of the correspondence
problem, and the associated optimization procedure, are attractive for a number of reasons. First, the methodology does not
necessitate the construction of a template or any manual annotation. Second, the number of computed landmarks can be
easily adjusted to the specific application requirements. Third, optimization can be easily tailored to problems of adaptive
sampling, as will be discussed in the next section. However, two key problems of the previously presented method could be
easily pinpointed. The optimization of the uniform distribution of points on individual surfaces was controlled by a kernel
density estimator that did not take into consideration the structure of the surfaces. As a result, the method does not provide
an optimal uniform distribution of landmarks and can not deal with highly curved surfaces. In addition, the gradient-descent
optimization algorithm also ignored surface constraints. Point updates had to be recast on the surface after each iteration, which
further impairs efficiency and performance.

In this work, we extend the methodology of Cates et al.25 and present our Geodesic Ensemble Surface Sampling Algorithm
(GESSA) for the automated identification of landmarks across sets of similar polyhedral surfaces. We propose a suitable
estimator for the probability density function of a variable defined on a manifold or polyhedral surface, and employ it in the
construction of the objective function. Furthermore, a gradient descent algorithm is constructed, which enables the optimization
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to be performed directly on the surfaces. incorporating these two key features inside the existing framework, we are able to to
deal with highly curved surfaces and improve upon computational space requirements.

0.3.2 Sparse Principal Component Analysis
Different sparse PCA methods have been presented in the literature31–33. Here use Penalized Matrix Decomposition (PMD), as
proposed in32, which has been shown to be similar but more computationally efficient than the SCoTLASS sPCA formula-
tion32, 33.

Without loss of generality, let P be a column-wise zero-mean N×M data matrix. Standard PCA seeks unit loading vectors
vk so that linear transformations - principal components - Pvk have successively maximum variance. The first PC loading vector
is thus computed as

v1 = argmax
v

vT PT Pv, s.t. vT v = 1 (1)

Consequent loading vectors can be computed by repeating the same process on the deflated data matrices. Given Pk and vk, the
deflated data matrix Pk+1 = Pk−PkvkvT

k , with P1 = P.
The SCoTLASS procedure for sPCA modifies the optimization problem (1) with an additional L1 regularization constraint

on the loading vectors: ‖v‖1 ≤ t, for some tuning parameter t. It has been shown that for the first PC, SCoTLASS is equivalent
to the following penalized matrix decomposition problem32:

v1 = argmax
u,v

uT Pv, s.t. ‖v‖1 ≤ sp, ‖v‖2
2 ≤ 1, ‖u‖2

2 ≤ 1, (2)

where sp is the sparsity parameter, with lower values leading to sparser loading vectors v. The above problem is biconvex and
can be optimized by iteratively alternating between maximization with respect to u and v. SCoTLASS imposes orthogonality
constraints between subsequent loading vectors, which though makes optimization very difficult. PMD does not utilize such
constraints. Consequent components in PMD are again computed by applying the same procedure on the deflated data matrices.

We notice here that sPCA does not guarantee uncorrelated principal components. We have opted to use sPCA since a main
objective in our decomposition analysis was to construct composite traits corresponding to spatially coherent facial areas, which
could not be achieved through standard PCA. This coherency was imposed by controlling the sparsity parameter sp. Tuning
the parameter is commonly performed through cross validation, by selecting the value that leads to minimum average CV
reconstruction error of the data34. This process though could have led to spatially extended loading vectors for which biological
interpretation would be difficult. Furthermore, the parameter would need tuning for each principal component independently,
which would be computationally expensive.

Since our primary objective was to estimate the heritability of principal components, we evaluated the effect of sparsity
by comparing heritability estimates (see below for detailed description) of a fixed number of PCs derived from different sp
values. In detail, we computed 100 sPCs for each curvature descriptor and 7 different parameter values. Heritability estimates
for all components were subsequently computed. We noticed that the sorted heritability estimates show similar behavior across
curvature descriptors for all sp values tested.

Based on the fact that heritability estimation would not be significantly affected by the particular value of sp, we selected
constant values for each descriptor after visual inspection of sPC loading maps - constructed by mapping the sPCs’ loadings on
the facial surface - with the criterion of which parameter yielded sPCs more suitable for further biological interpretation. In
particular, the parameter was set to 7.5 for GC, 12.5 for SI and 15 for MC and CU.

We retained for further analysis all 100 sPCs for each curvature descriptor. Each set of sPCs was able to cumulatively
explain respectively 92.72%, 89.41%, 90.11% and 88.2% of the MC, GC, CU and SI phenotypic curvature variance.

0.3.3 Structural Equation Modelling
In this work, we estimated heritability as the proportion of phenotypic variance explained by genetic factors. Since the genetic
and environmental variables are unobserved (latent), their effects are inferred from twin resemblance using Structural Equation
Modelling (SEM). SEM encompasses a broad family of statistical modeling techniques and can be viewed as a combination of
path and latent factor analysis35. SEM is also widely referred to as covariance structure modeling, since a SE model implies a
structure for the covariances between observed variables.

In heritability studies, observed phenotypic variation can be partitioned into variance components from the following
latent factors: additive (A) genetic, dominant (D) genetic, common (C) environmental and unique (E) environmental, with the
latter component also including measurement error. A path diagram of a SEM including all of the above latent factors can
be seen in Figure 12. The structure of covariance is implied by latent factor correlations between twin pairs. Additive and
dominant genetic effects are correlated 1 between MZ pairs, while only 0.5 and 0.25 respectively between DZ pairs. Common
environmental effects have correlation 1 for both types of twins while unique environmental factors are uncorrelated.
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Figure 12. Path Diagram of the ACDE Structural Equation Model. Latent factors A, D, C and E correspond to additive
and dominant genetic, common and unique environmental effects respectively. Double arrows represent the latent factor
correlations between pairs of twins. Additive and dominant genetic effects are correlated 1 between MZ pairs, 0.5 and 0.25
between DZ pairs. Common environmental effects have correlation 1 for both types of twins while unique environmental
factors are uncorrelated. a, d, c and e are regression path coefficients of the respective latent factors. Heritability in a ACDE
SEM model is given by h2

ACDE = a2+d2

a2+d2+c2+e2 .

For twin studies in particular, the model ADCE is over-specified and cannot be estimated using twin data alone36. Submodels
that can be examined are ACE, ADE, AE, CE and E. Models composed of the components DE are not considered biologically
plausible. Here we considered ACE, AE and E models. As such, below we focus and describe in detail the definition of the
ACE SE model.

A univariate ACE model can be expressed as

P = aA+ cC+ eE, (3)

where for simplicity and without loss of information, P is an observed zero-centered, continuous phenotypic variable and A, C,
E are unobserved latent factors with fixed unit variances and covariances that depend on the type of twin. Finally, a, c, e are
regression coefficients expressing the effects of the latent variables in the phenotype. Now Let PMZ be a NMZ×2 matrix of
phenotypic observations with each row coming from one pair of MZ twins and NMZ the number of MZ paired observations.
Respectively PDZ denotes a NDZ × 2 matrix of phenotypic observations with each row coming from one pair of DZ twins.
Furthermore let

L =


a 0
c 0
e 0
0 a
0 c
0 e

 , (4)

be the matrix of regression coefficients and finally ΛMZ , ΛDZ be NMZ×6 and NDZ×6 matrices of unobserved A, C, E factors
for MZ and DZ twin subsets respectively.

Expressing the ACE model for our observations, we have

PMZ = ΛMZL, PDZ = ΛDZL. (5)

The expected phenotypic covariances from the ACE model are:

ΣMZ = E[ΛT
MZΛMZ ] = LT

ΨMZL

ΣDZ = E[ΛT
DZΛDZ ] = LT

ΨDZL,
(6)

where the correlation matrices ΨMZ , ΨDZ of the latent factors are derived from the SEM path diagram. In particular, ΨMZ has
two off diagonal elements equal to 1, corresponding to corr(A1,A2) and corr(C1,C2), while ΨDZ has corr(A1,A2) = 0.5 and
corr(C1,C2) = 1 (see Figure 12).
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The structured covariance matrices as modelled by SEM can be now easily computed to be

ΣMZ =

[
a2 + c2 + e2 a2 + c2

a2 + c2 a2 + c2 + e2

]
, (7)

ΣDZ =

[
a2 + c2 + e2 0.5a2 + c2

0.5a2 + c2 a2 + c2 + e2

]
, (8)

Maximum Likelihood is used to estimate the regression coefficients a, c, e. Let SMZ and SDZ be the observed sample
covariances. Assuming that the phenotypic response is normally distributed, the probabilities of observing SMZ and SDZ given
estimates Σ̂MZ and Σ̂DZ follow the Wishart distribution with NMZ and NDZ degrees of freedom respectively. The log-likelihood
functions can be written as follows, after the omission of constant terms37:

−2LLMZ ≈ NMZ
[
ln |Σ̂MZ |+ tr(Σ̂−1

MZSMZ)
]

−2LLDZ ≈ NDZ
[
ln |Σ̂DZ |+ tr(Σ̂−1

DZSDZ)
]
.

(9)

Estimates â, ĉ, ê are obtained by maximizing the combined likelihood function−2(LLMZ +LLDZ). Model fit can be assessed
using a log-likelihood ratio test between the structured model and a fitted saturated model where no structure is imposed on the
covariances. The ratio statistic is distributed approximately as a chi-squared distribution with degrees of freedom equal the
difference in d f between the structured and the saturated model.

At this point we can also define the heritability estimate h2
ACE from the ACE model as

h2
ACE =

â2

â2 + ĉ2 + ê2 . (10)

An important aspect of SEM in twin studies is that the significance of individual variance components can be assessed by
dropping parameters sequentially from nested models; here ACE→AE→E. In choosing between models, variance components
are excluded in the selection process if there is no significant deterioration in model fit, assessed commonly by the Akaike
Information Criterion (AIC)38, after the component is dropped. The E component represents random error and is always
retained36. Heritability is estimated from the AE model as

h2
AE =

â2

â2 + ê2 . (11)

In this study, we estimated heritability for all 4,096 curvature traits independently, as well as for the top 100 variance-
explaining sPCs (composite traits), for each curvature descriptor, using SEM. We assessed the significance of individual
variance components by dropping parameters sequentially from the set of nested models ACE, AE and E, fitted using the
OpenMx software39, 40. Age was included in the models as a covariate.
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