Supplementary information

Structural basis of inhibition of lipid-linked oligosaccharide flippase PglK by a conformational nanobody

Camilo Perez¹, Martin Köhler², Daniel Janser¹, Els Pardon^{3,4}, Jan Steyaert^{3,4}, Renato Zenobi², Kaspar P. Locher^{1*}

¹Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland

²Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland ³VIB Center for Structural Biology, VIB, 1050 Brussels, Belgium

⁴Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium.

*Correspondence and requests for materials should be addressed to K.P.L. (email: locher@mol.biol.ethz.ch).

Supplementary Figure 1. A. SDS-PAGE of eluates from pull-down (PD) assays performed with Nbs representatives from each of the 26 distinct families. Purified, His-Tagged Nbs were immobilized using Ni-NTA resin, followed by passage of purified, tag-less PglK and extensive washing. Bound proteins were then eluted and resolved by SDS-PAGE. **B.** SDS-PAGE of purified PglK, Nb87, Nb80 and NbPglB together with PD assays performed with these purified proteins. NbPglB is a negative control. Although there is a light PglK band that co-eluted with NbPglB, the ratio of PglK:NbPglB is clearly much lower than the ratio with PglK specific Nbs after pull-down. PglK₂ and PglK₁ correspond to dimeric and monomeric PglK.

Supplementary Figure 2. ATPase activity assays of PglK in presence of Nbs in detergent (LMNG) (**A**) and proteoliposomes (**B**). **C.** tLLO flipping rates of PglK proteoliposomes in presence of inhibitory nanobodies (Nb84, Nb87, Nb93 and Nb97), positive control non-inhibitory nanobody (Nb80) and negative control non-inhibitory/non-binding nanobody (NbPglB). "Pre-ATP" indicate pre-incubation with ATP before addition of Nb87. All assays were performed using a 1:2 PglK:Nb molar ratio, in presence of 5mM ATP. Error bars denote s.d. (n=3).

Supplementary Figure 3. PglK-E510Q/Nb87 complex isolation. **A.** Size exclusion chromatography (Superdex 200 10/300 GL, GE Healthcare) profiles of purified PglK-E510Q (blue curve) and PglK-E510Q pre-incubated with Nb87 at 1:2 PglK homo-dimer:Nb molar ratio (red curve). **B.** SDS-PAGE of samples from different steps of the experiment.

Supplementary Figure 4. 2Fo-Fc electron density map for the complete PglK-E510Q/Nb87 complex (A), transmembrane regions of individual subunits (B), and central cavity (C). All maps are shown at 1.0σ level.

Supplementary Figure 5. Electron density map for Nb87. 2Fo-Fc electron density map of a sideview (A), and front-view (B) of Nb87 showing its CDR loops in green. All maps are shown at 1.0σ level.

Supplementary Figure 6. Crystal packing of PglK-E510Q/Nb87 complex. Space group P22₁2₁. Unit cell dimensions: a=84.34Å, b=142.66Å, c=199.48Å. **A.** Far view of crystal packing. **B.** Close up view showing crystal contacts formed by Nb87 (blue) and periplasmic loops from a neighbor PglK-E510Q molecule (Orange/Gray). **C.** and **D.** Top view of PglK-E510Q showing the 2Fo-Fc electron density map at 1.0σ level and the architecture of the external helices (EH). EH from the gray subunit is involved in crystal contacts formation and acquires a distinct conformation.

Supplementary Figure 7. A. Fo-Fc polder omit map shown at 3.0σ for the nucleotide binding sites in both PglK subunits. ADP molecules are shown in black with their pyrophosphate group in redorange. PglK subunits are grey and orange; Inhibitory Nb87 is shown in blue and its CDR loops in green. **B.** Interactions of functionally important arginines in the central cavity. The 2Fo-Fc electron density map is shown at 1.0σ . PglK subunits are shown in grey and orange.

Data collection	
Wavelength (Å)	1.0000
Space group	P22 ₁ 2 ₁
Unit cell:	
a/b/c (Å)	84.34/142.66/199.48
α/β/γ (°)	90.0/90.0/90.0
Resolution (Å)	30-3.9
Completeness (%)	97.22[99.7]
No. measured reflections	299851 [307793]
No. unique reflections	41168 [42284]
Ι/σΙ	10.03(1.36) [9.87(0.9)]
R-merge (%)	10.9(207.0) [11.1(230.6)]
CC _{1/2} (%)	100(40) [100(31)]
Refinement	
R_{work}/R_{free} (%)	31.1/33.5
R.m.s.d. Bonds (Å)	0.003
R.m.s.d. Angles (°)	0.607
Ramachandran plot:	
Outliers (%)	3.21
Allowed (%)	10.84
Favored (%)	85.94
Average <i>B</i> -factor ($Å^2$)	158.9
PDB ID	5NBD

Supplementary Table 1: X-ray data collection and refinement statistics

 $\begin{array}{l} Values \ in \ brackets \ are \ before \ anisotropic \ truncation \\ Values \ in \ parentheses \ are \ for \ the \ last \ resolution \ shell \\ Rmerge = \sum_{hkl} \! \Sigma_i \ |I_i(hkl) - <\!I(hkl)\!> | \ / \ \Sigma_{hkl} \! \Sigma_i \ I_i(hkl) \\ \end{array}$