**Supplementary Materials for:** 

## Title: Integrated Genomic Analysis of Mitochondrial RNA Processing in Human Cancers

Authors: Youssef Idaghdour<sup>1</sup> and Alan Hodgkinson<sup>2</sup>

## Affiliations:

1. Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.

2. Department of Medical and Molecular Genetics, Guy's Hospital, King's College London, London, SE1 9RT, UK

## **Content:**

Figures S1-6 Supplementary Tables S1-S9



**Figure S1: Observed methylation levels for all eleven p9 sites within KIRC, split into normal and tumor**. Average p9 methylation levels in each category are shown as horizontal black lines and p-values for differences between paired normal and tumor samples are shown below each p9 site (\* for P<0.05, \*\* for P<0.01, \*\*\* for P<0.001 after Bonferroni correction).



**Figure S2: Distribution of Spearman correlations between global gene expression levels and methylation levels at 11 p9 sites in the KIRC (left) and THCA (right) datasets**. Associations that are significant at 0.05 p-value threshold in normal samples are highlighted with the dark green color. As in the BRCA dataset (Figure S3), we observe an alteration in the tumor samples of the associations that are significant in the normal samples.



Figure S3: QQ plots for p9 sites and cancers showing significant interaction effects.



**Figure S4: Two-way hierarchical clustering of expression of 99 (100 for THCA) genes encoding mtRNA-binding proteins in BRCA, KIRC and THCA datasets.** Each column represents one of the genes and each row represents one individual sample. Sample type is identified by color in the legend to the left of the heat map (normal in blue and tumor in red). Intensity of red indicates high expression relative to the sample mean, and blue relatively low expression. The clustering was generated with the Ward method. The heat map shows the clustering of expression profiles largely by sample type.

Status Normal Tumor



**Figure S5:** Two-way clustering of Spearman correlations of expression levels of 99 genes encoding mtRNA-binding proteins (columns) and methylation level at 11 p9 sites (rows) in the BRCA dataset. Correlation values are visualized using a red-to-gray-to-blue color theme (values range from 0.62 to -0.66). The clustering was generated with the Ward method.



**Figure S6: Distribution of Spearman correlations between gene expression levels of 16,736 genes and methylation level at 11 p9 sites in the BRCA dataset.** Associations that are significant at Bonferroni threshold in normal samples are highlighted with the dark green color. Note the alteration in the tumor samples of the associations that are significant at Bonferroni threshold in the normal samples.

**Table S1: Ingenuity pathway enrichment analysis for BRCA, THCA and KIRC.** Nuclear genes whose expression levels are significantly associated with methylation level at p9 sites were subject to the Core Analysis Workflow implemented in the Ingenuity Pathway Analysis package. p9 sites were included for BRCA if >50 genes showed significant correlations, and for THCA and KIRC, site 10413 was used for replication of BRCA results.

| Cancer | Site  | Functional Category                       | P-value Range                              | Molecules |
|--------|-------|-------------------------------------------|--------------------------------------------|-----------|
|        |       | Cell-to-Cell Signalling and Interaction   | 3.61e <sup>-2</sup> – 6.00e <sup>-6</sup>  | 18        |
|        |       | Cellular Movement                         | 3.61e <sup>-2</sup> – 3.31e <sup>-4</sup>  | 38        |
| BRCA   | 585   | Gene Expression                           | 3.61e <sup>-2</sup> - 5.06e <sup>-4</sup>  | 62        |
|        |       | Cell Death and Survival                   | 3.61e <sup>-2</sup> – 6.11e <sup>-4</sup>  | 44        |
|        |       | Cellular Assembly and Organisation        | 3.61e <sup>-2</sup> - 8.54e <sup>-4</sup>  | 42        |
|        |       | Cellular Assembly and Organisation        | 4.22e <sup>-2</sup> – 1.88e <sup>-4</sup>  | 87        |
|        |       | Cell-to-Cell Signalling and Interaction   | 4.22e <sup>-2</sup> – 7.49e <sup>-4</sup>  | 31        |
| BRCA   | 1610  | Cellular Development                      | 4.30e <sup>-2</sup> – 1.07e <sup>-3</sup>  | 50        |
|        |       | Cell Signalling                           | 4.28e <sup>-2</sup> – 1.13e <sup>-3</sup>  | 32        |
|        |       | Post-translational Modification           | 4.71e <sup>-2</sup> – 1.13e <sup>-3</sup>  | 57        |
|        |       | RNA Post-Transcriptional Modification     | 3.04e <sup>-2</sup> – 1.17e <sup>-19</sup> | 118       |
|        |       | DNA Replication, Recombination and Repair | 4.58e <sup>-2</sup> – 2.00e <sup>-10</sup> | 231       |
| BRCA   | 8303  | Cell Cycle                                | 4.58e <sup>-2</sup> – 4.58e <sup>-7</sup>  | 162       |
|        |       | Cellular Growth and Proliferation         | 4.58e <sup>-2</sup> – 4.97e <sup>-5</sup>  | 719       |
|        |       | Protein Synthesis                         | 1.04e <sup>-2</sup> – 5.48e <sup>-5</sup>  | 168       |
|        | 9999  | RNA Post-Transcriptional Modification     | 4.50e <sup>-3</sup> – 3.54e <sup>-30</sup> | 166       |
|        |       | Gene Expression                           | 3.91e <sup>-2</sup> – 9.27e <sup>-13</sup> | 718       |
| BRCA   |       | DNA Replication, Recombination and Repair | 4.99e <sup>-2</sup> – 3.24e <sup>-9</sup>  | 363       |
|        |       | Cell Cycle                                | 4.99e <sup>-2</sup> – 5.64e <sup>-8</sup>  | 478       |
|        |       | Post-translational Modification           | 3.33e <sup>-2</sup> – 3.53e <sup>-5</sup>  | 35        |
|        | 12274 | RNA Post-Transcriptional Modification     | 3.33e <sup>-2</sup> – 4.39e <sup>-13</sup> | 33        |
|        |       | Protein Synthesis                         | 3.54e <sup>-2</sup> – 1.52e <sup>-12</sup> | 55        |
| BRCA   |       | Gene Expression                           | 3.33e <sup>-2</sup> – 2.18e <sup>-11</sup> | 30        |
|        |       | Cell Cycle                                | 3.60e <sup>-2</sup> – 3.61e <sup>-4</sup>  | 29        |
|        |       | DNA Replication, Recombination and Repair | 4.17e <sup>-2</sup> – 3.61e <sup>-4</sup>  | 20        |
|        |       | RNA Post-Transcriptional Modification     | 2.77e <sup>-2</sup> – 3.27e <sup>-31</sup> | 139       |
|        |       | DNA Replication, Recombination and Repair | 4.79e <sup>-2</sup> – 2.45e <sup>-13</sup> | 241       |
| BRCA   | 10413 | Cell Cycle                                | 4.79e <sup>-2</sup> – 2.83e <sup>-7</sup>  | 268       |
|        |       | Gene Expression                           | 4.09e <sup>-2</sup> – 1.53e <sup>-4</sup>  | 423       |
|        |       | Cellular Compromise                       | 3.54e <sup>-2</sup> – 3.62e <sup>-4</sup>  | 19        |
|        |       | RNA Post-Transcriptional Modification     | 3.60e <sup>-2</sup> – 9.50e <sup>-4</sup>  | 23        |
|        |       | Cell Death and Survival                   | 3.98e <sup>-2</sup> – 1.33e <sup>-3</sup>  | 153       |
| KIRC   | 10413 | Cell Cycle                                | 3.98e <sup>-2</sup> – 1.58e <sup>-3</sup>  | 20        |
|        |       | Gene Morphology                           | 3.98e <sup>-2</sup> – 1.58e <sup>-3</sup>  | 40        |
|        |       | Cell-to-Cell Signalling and Interaction   | 3.98e <sup>-2</sup> – 1.58e <sup>-3</sup>  | 17        |
|        |       | Cellular Growth and Proliferation         | 3.33e <sup>-2</sup> – 3.42e <sup>-6</sup>  | 194       |
|        |       | DNA Replication, Recombination and Repair | 4.10e <sup>-2</sup> – 1.36e <sup>-5</sup>  | 63        |
| THCA   | 10413 | Gene Expression                           | 3.17e <sup>-2</sup> – 3.37e <sup>-5</sup>  | 110       |
|        |       | Protein Synthesis                         | 3.21e <sup>-2</sup> – 3.37e <sup>-5</sup>  | 48        |
|        |       | RNA Post-Transcriptional Modification     | 3.05e <sup>-2</sup> – 1.05e <sup>-4</sup>  | 28        |

**Table S2: Differences in methylation level in normal and tumor samples at each p9 site in each cancer type**. The table shows the number of paired samples used in each test (N), the fold change in tumor samples compared to normal samples (F) and the P value for a paired Wilcoxon signed-rank test (P).

|        | P9 Sites |         |         |         |         |         |         |         |         |         |         |
|--------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|        | 585      | 1610    | 4271    | 5520    | 7526    | 8303    | 9999    | 10413   | 12146   | 12274   | 14734   |
| BRCA N | 108      | 91      | 90      | 58      | 56      | 95      | 107     | 108     | 108     | 109     | 109     |
| BRCA F | 1.19     | 2.17    | 1.68    | 2.11    | 3.06    | 1.16    | 1.02    | 0.93    | 1.60    | 0.65    | 1.04    |
| BRCA P | 9.9E-01  | 3.0E-03 | 9.2E-02 | 3.9E-05 | 2.1E-05 | 2.4E-01 | 7.8E-01 | 9.2E-01 | 1.9E-01 | 1.6E-01 | 6.5E-01 |
| COAD N | 23       | 18      | 15      | 4       | 13      | 21      | 21      | 20      | 23      | 23      | 25      |
| COAD F | 2.07     | 1.85    | 1.94    | 6.81    | 2.28    | 0.69    | 0.36    | 0.27    | 0.40    | 0.38    | 1.29    |
| COAD P | 2.5E-01  | 4.2E-02 | 3.3E-01 | 1.3E-01 | 9.2E-02 | 6.0E-02 | 9.3E-02 | 4.6E-03 | 1.1E-03 | 3.1E-01 | 2.3E-01 |
| HNSC N | 38       | 27      | 24      | 12      | 16      | 33      | 39      | 38      | 40      | 41      | 42      |
| HNSC F | 1.62     | 2.02    | 2.05    | 1.45    | 2.86    | 0.75    | 1.97    | 0.73    | 0.81    | 5.24    | 1.43    |
| HNSC P | 6.6E-01  | 1.5E-01 | 2.9E-01 | 3.8E-01 | 2.1E-02 | 1.5E-01 | 6.4E-02 | 3.5E-01 | 1.8E-01 | 2.9E-01 | 8.3E-01 |
| KICH N | 24       | 24      | 20      | 16      | 17      | 24      | 24      | 24      | 24      | 24      | 24      |
| KICH F | 17.78    | 6.50    | 1.81    | 2.70    | 4.23    | 4.27    | 6.84    | 3.95    | 3.84    | 2.31    | 1.76    |
| KICH P | 1.3E-05  | 8.3E-06 | 2.2E-01 | 1.7E-03 | 3.8E-02 | 8.3E-06 | 2.3E-03 | 3.5E-04 | 1.2E-03 | 2.0E-02 | 5.3E-03 |
| KIRC N | 70       | 64      | 59      | 46      | 63      | 64      | 61      | 67      | 68      | 69      | 70      |
| KIRC F | 3.83     | 4.64    | 1.46    | 1.64    | 2.33    | 1.09    | 3.12    | 1.48    | 1.80    | 1.63    | 1.31    |
| KIRC P | 1.3E-04  | 4.4E-09 | 1.9E-01 | 1.6E-03 | 7.5E-06 | 9.7E-01 | 6.0E-04 | 1.2E-01 | 5.6E-05 | 8.8E-02 | 2.0E-02 |
| KIRP N | 32       | 25      | 28      | 26      | 26      | 32      | 32      | 32      | 32      | 32      | 32      |
| KIRP F | 5.14     | 6.16    | 0.97    | 1.57    | 4.51    | 1.16    | 1.71    | 1.31    | 1.51    | 1.44    | 1.71    |
| KIRP P | 5.6E-03  | 4.5E-05 | 5.4E-01 | 4.3E-02 | 1.1E-05 | 4.5E-01 | 6.5E-01 | 3.0E-01 | 3.2E-01 | 5.4E-01 | 3.2E-01 |
| LIHC N | 41       | 28      | 43      | 36      | 34      | 50      | 50      | 50      | 50      | 50      | 50      |
| LIHC F | 2.11     | 2.92    | 2.21    | 1.41    | 2.17    | 1.61    | 1.47    | 1.44    | 1.49    | 2.12    | 1.19    |
| LIHC P | 3.2E-01  | 2.2E-03 | 4.8E-03 | 2.3E-02 | 5.4E-02 | 4.6E-03 | 2.0E-01 | 2.1E-01 | 7.7E-02 | 1.3E-01 | 5.4E-01 |
| LUAD N | 54       | 36      | 25      | 12      | 29      | 36      | 41      | 47      | 46      | 50      | 56      |
| LUAD F | 1.94     | 2.06    | 2.18    | 2.31    | 2.81    | 1.47    | 1.23    | 1.35    | 1.37    | 1.04    | 1.01    |
| LUAD P | 3.0E-01  | 2.5E-02 | 4.7E-02 | 2.3E-01 | 1.0E-02 | 4.1E-01 | 3.0E-01 | 7.8E-01 | 6.4E-01 | 9.1E-01 | 3.0E-01 |
| LUSC N | 47       | 36      | 35      | 9       | 25      | 46      | 49      | 49      | 49      | 50      | 51      |
| LUSC F | 1.39     | 1.35    | 1.15    | 0.84    | 3.75    | 0.77    | 0.89    | 0.82    | 0.92    | 0.97    | 1.42    |
| LUSC P | 7.7E-01  | 5.4E-02 | 5.6E-01 | 2.9E-01 | 5.9E-03 | 5.6E-02 | 2.2E-01 | 3.2E-02 | 5.8E-01 | 5.2E-02 | 9.4E-01 |
| PRAD N | 49       | 43      | 33      | 17      | 38      | 45      | 50      | 50      | 48      | 50      | 50      |
| PRAD F | 0.94     | 0.71    | 1.39    | 1.34    | 0.73    | 1.14    | 0.49    | 0.47    | 0.78    | 0.43    | 0.84    |
| PRAD P | 2.2E-01  | 9.0E-03 | 7.6E-01 | 1.4E-01 | 4.7E-02 | 3.1E-01 | 1.6E-01 | 1.3E-02 | 5.9E-01 | 4.1E-02 | 3.0E-01 |
| STAD N | 30       | 31      | 31      | 25      | 23      | 20      | 30      | 29      | 31      | 29      | 31      |
| STAD F | 2.89     | 2.00    | 1.52    | 1.97    | 2.85    | 1.90    | 2.80    | 1.38    | 0.95    | 0.87    | 1.11    |
| STAD P | 9.1E-03  | 1.4E-02 | 9.0E-02 | 2.5E-02 | 6.4E-03 | 1.1E-01 | 3.3E-02 | 2.7E-01 | 4.8E-01 | 3.2E-01 | 3.0E-01 |
| THCA N | 57       | 36      | 46      | 39      | 47      | 57      | 57      | 57      | 57      | 57      | 57      |
| THCA F | 0.47     | 1.56    | 1.65    | 2.72    | 2.88    | 1.21    | 1.99    | 1.57    | 2.75    | 1.23    | 1.05    |
| THCA P | 1.2E-02  | 1.5E-01 | 2.9E-01 | 1.3E-04 | 2.2E-05 | 2.2E-01 | 9.1E-01 | 5.6E-02 | 2.1E-05 | 6.1E-01 | 5.8E-01 |

**Table S3: Differences in methylation level in normal and tumor samples at each p9 site in each cancer type after resampling**. Data was resampled within each individual to the lowest coverage found in either the normal or tumor sample for each given position. The table shows the number of paired samples used in each test (N), the fold change in tumor samples compared to normal samples (F) and the P value for a paired Wilcoxon signed-rank test (P).

|        | P9 Sites |         |         |         |         |         |         |         |         |         |         |
|--------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|        | 585      | 1610    | 4271    | 5520    | 7526    | 8303    | 9999    | 10413   | 12146   | 12274   | 14734   |
| BRCA N | 108      | 91      | 90      | 58      | 56      | 95      | 107     | 108     | 108     | 109     | 109     |
| BRCA F | 0.94     | 2.10    | 1.95    | 2.04    | 2.32    | 1.11    | 1.04    | 0.91    | 1.59    | 0.54    | 1.01    |
| BRCA P | 8.1E-01  | 4.7E-03 | 3.3E-02 | 2.3E-04 | 4.1E-04 | 4.0E-01 | 6.1E-01 | 8.7E-01 | 7.7E-02 | 6.7E-02 | 6.7E-01 |
| COAD N | 23       | 18      | 15      | 4       | 13      | 21      | 21      | 20      | 23      | 23      | 25      |
| COAD F | 1.74     | 2.03    | 1.77    | 7.32    | 2.15    | 0.69    | 0.23    | 0.33    | 0.40    | 0.34    | 0.90    |
| COAD P | 3.7E-01  | 5.2E-02 | 2.6E-01 | 1.3E-01 | 2.0E-01 | 5.1E-02 | 2.5E-02 | 1.0E-02 | 3.5E-03 | 1.4E-01 | 1.0E+00 |
| HNSC N | 38       | 27      | 24      | 12      | 16      | 33      | 39      | 38      | 40      | 41      | 42      |
| HNSC F | 1.89     | 2.25    | 1.53    | 2.36    | 2.99    | 0.71    | 1.86    | 0.60    | 0.89    | 6.18    | 1.65    |
| HNSC P | 4.7E-01  | 2.2E-02 | 5.6E-01 | 1.3E-01 | 6.0E-02 | 1.7E-01 | 8.7E-02 | 1.2E-01 | 3.3E-01 | 2.2E-01 | 2.9E-01 |
| KICH N | 24       | 24      | 20      | 16      | 17      | 24      | 24      | 24      | 24      | 24      | 24      |
| KICH F | 9.77     | 6.32    | 1.10    | 2.77    | 4.99    | 4.36    | 7.44    | 4.50    | 3.83    | 2.07    | 1.59    |
| KICH P | 1.1E-04  | 1.6E-05 | 8.6E-01 | 6.9E-03 | 1.4E-02 | 3.0E-06 | 2.1E-03 | 4.0E-04 | 9.6E-04 | 1.3E-01 | 7.2E-02 |
| KIRC N | 70       | 64      | 59      | 46      | 63      | 64      | 61      | 67      | 68      | 69      | 70      |
| KIRC F | 4.88     | 4.47    | 1.67    | 1.67    | 2.30    | 1.12    | 3.64    | 1.41    | 1.76    | 2.01    | 1.53    |
| KIRC P | 1.2E-05  | 6.2E-09 | 1.7E-01 | 1.2E-03 | 2.5E-05 | 6.2E-01 | 6.9E-04 | 1.7E-01 | 6.2E-04 | 5.5E-02 | 1.6E-03 |
| KIRP N | 32       | 25      | 28      | 26      | 26      | 32      | 32      | 32      | 32      | 32      | 32      |
| KIRP F | 4.98     | 5.73    | 1.56    | 1.60    | 4.78    | 1.09    | 1.28    | 1.12    | 1.26    | 0.92    | 1.38    |
| KIRP P | 2.0E-03  | 1.8E-04 | 8.1E-01 | 3.1E-02 | 3.7E-04 | 7.6E-01 | 7.3E-01 | 8.3E-01 | 5.2E-01 | 5.1E-01 | 5.2E-01 |
| LIHC N | 41       | 28      | 43      | 36      | 34      | 50      | 50      | 50      | 50      | 50      | 50      |
| LIHC F | 2.39     | 3.32    | 2.40    | 1.42    | 2.55    | 1.80    | 1.57    | 1.40    | 1.45    | 1.57    | 1.24    |
| LIHC P | 4.2E-01  | 8.8E-04 | 1.3E-02 | 1.8E-02 | 2.2E-02 | 2.0E-03 | 1.7E-01 | 2.9E-01 | 8.1E-02 | 2.5E-01 | 3.3E-01 |
| LUAD N | 54       | 36      | 25      | 12      | 29      | 36      | 41      | 47      | 46      | 50      | 56      |
| LUAD F | 2.65     | 2.31    | 2.17    | 1.91    | 2.50    | 1.32    | 1.27    | 1.34    | 1.25    | 0.86    | 0.99    |
| LUAD P | 6.0E-02  | 1.1E-02 | 6.9E-02 | 3.1E-01 | 3.0E-02 | 7.3E-01 | 4.9E-01 | 9.2E-01 | 9.8E-01 | 8.1E-01 | 6.5E-01 |
| LUSC N | 47       | 36      | 35      | 9       | 25      | 46      | 49      | 49      | 49      | 50      | 51      |
| LUSC F | 1.88     | 1.40    | 1.11    | 0.91    | 3.83    | 0.75    | 0.75    | 0.85    | 0.89    | 1.25    | 1.31    |
| LUSC P | 2.7E-01  | 4.3E-02 | 5.1E-01 | 6.7E-01 | 4.3E-03 | 7.8E-02 | 1.0E-01 | 1.0E-01 | 9.4E-01 | 5.6E-01 | 4.3E-01 |
| PRAD N | 49       | 43      | 33      | 17      | 38      | 45      | 50      | 50      | 48      | 50      | 50      |
| PRAD F | 1.07     | 0.72    | 1.43    | 1.64    | 0.84    | 1.16    | 0.51    | 0.49    | 0.74    | 0.33    | 0.79    |
| PRAD P | 9.5E-01  | 5.2E-02 | 8.0E-01 | 7.9E-02 | 3.8E-01 | 3.0E-01 | 2.5E-01 | 1.5E-02 | 6.2E-01 | 7.9E-03 | 1.7E-01 |
| STAD N | 30       | 31      | 31      | 25      | 23      | 20      | 30      | 29      | 31      | 29      | 31      |
| STAD F | 3.26     | 1.93    | 1.45    | 2.30    | 3.32    | 1.93    | 3.23    | 1.33    | 0.97    | 0.76    | 1.38    |
| STAD P | 3.9E-03  | 2.2E-02 | 1.5E-01 | 1.3E-02 | 4.0E-03 | 1.1E-01 | 5.4E-02 | 3.6E-01 | 5.6E-01 | 4.3E-01 | 3.4E-02 |
| THCA N | 57       | 36      | 46      | 39      | 47      | 57      | 57      | 57      | 57      | 57      | 57      |
| THCA F | 0.47     | 1.68    | 2.17    | 2.52    | 3.27    | 1.21    | 2.38    | 1.57    | 2.73    | 1.07    | 0.97    |
| THCA P | 2.9E-02  | 6.7E-02 | 2.7E-01 | 5.0E-04 | 2.1E-05 | 2.8E-01 | 9.4E-01 | 7.0E-02 | 1.1E-04 | 4.7E-01 | 9.3E-01 |

**Table S4: Differences in methylation levels in normal and tumor samples at each p9 site across all cancer types combined.** For each p9 site methylation level data was standardized within each cancer (thus maintaining cancer associated patterns in methylation rates). In total, 5 out of the 11 sites show Bonferroni significant differences using two-sided paired Wilcoxon signed-rank tests.

| p9 Site | Prob> S    | Bonferroni<br>Significant |
|---------|------------|---------------------------|
| 585     | 0.0416     | No                        |
| 1610    | 1.6017E-18 | Yes                       |
| 4271    | 0.0014     | Yes                       |
| 5520    | 5.0351E-17 | Yes                       |
| 7526    | 1.0992E-20 | Yes                       |
| 8303    | 0.0268     | No                        |
| 9999    | 0.0482     | No                        |
| 10413   | 0.7445     | No                        |
| 12146   | 0.0014     | Yes                       |
| 12274   | 0.3202     | No                        |
| 14734   | 0.0489     | No                        |

Table S5: Comparisons between p9 methylation levels and the rate of cleavage occurring at the 5' end of each respective tRNA, which we measured as the proportion of sequencing reads starting or ending either side of this position (observed). As a control, we also considered cleavage rates a further 9bp upstream from each p9 site (control). Sites were considered if they show significant differences in methylation between normal and tumor samples at the 5% significance level.

| Cancer | P9 Site | Sample | P-value    | R          | P-value   | R (control) |
|--------|---------|--------|------------|------------|-----------|-------------|
|        |         | Pairs  | (observed) | (observed) | (control) |             |
| BRCA   | 1610    | 91     | 1.8E-01    | 0.10       | 91        | 8.9E-01     |
| BRCA   | 5520    | 42     | 3.3E-04    | 0.38       | 42        | 2.1E-01     |
| BRCA   | 7526    | 56     | 8.5E-01    | 0.02       | 56        | 3.9E-01     |
| COAD   | 10413   | 20     | 2.1E-03    | 0.47       | 20        | 1.0E+00     |
| COAD   | 12146   | 23     | 3.4E-01    | 0.14       | 23        | 9.5E-01     |
| KICH   | 585     | 23     | 5.7E-01    | 0.09       | 23        | 1.1E-01     |
| KICH   | 1610    | 24     | 2.0E-04    | 0.51       | 24        | 9.9E-01     |
| KICH   | 8303    | 24     | 4.4E-03    | 0.40       | 24        | 3.8E-01     |
| KICH   | 9999    | 24     | 2.1E-02    | 0.33       | 24        | 2.3E-01     |
| KICH   | 10413   | 24     | 4.7E-04    | 0.49       | 24        | 1.8E-01     |
| KICH   | 12146   | 24     | 1.3E-06    | 0.63       | 24        | 2.9E-01     |
| KICH   | 12274   | 24     | 5.3E-01    | 0.09       | 24        | 6.7E-01     |
| KICH   | 14734   | 24     | 5.6E-01    | -0.09      | 24        | 8.8E-04     |
| KIRC   | 585     | 70     | 3.1E-01    | -0.09      | 70        | 5.1E-01     |
| KIRC   | 1610    | 64     | 4.5E-06    | 0.39       | 64        | 7.1E-03     |
| KIRC   | 5520    | 29     | 8.0E-01    | 0.03       | 29        | 5.0E-01     |
| KIRC   | 7526    | 62     | 3.5E-01    | 0.08       | 62        | 8.6E-01     |
| KIRC   | 9999    | 61     | 8.6E-01    | 0.02       | 61        | 2.2E-01     |
| KIRC   | 12146   | 67     | 5.6E-06    | 0.38       | 67        | 2.9E-01     |
| KIRC   | 14734   | 70     | 7.0E-01    | 0.03       | 70        | 6.6E-02     |
| KIRP   | 585     | 30     | 9.6E-01    | 0.01       | 30        | 8.4E-01     |
| KIRP   | 1610    | 25     | 6.7E-03    | 0.38       | 25        | 3.7E-02     |
| KIRP   | 7526    | 26     | 8.1E-05    | 0.52       | 26        | 2.9E-01     |
| LIHC   | 1610    | 28     | 4.0E-01    | -0.11      | 28        | 7.6E-02     |
| LIHC   | 4271    | 43     | 5.7E-02    | 0.21       | 43        | 8.1E-01     |
| LIHC   | 8303    | 50     | 6.3E-02    | -0.19      | 50        | 3.7E-01     |
| LUAD   | 1610    | 36     | 6.9E-02    | 0.22       | 36        | 9.8E-02     |
| LUAD   | 4271    | 24     | 9.5E-01    | 0.01       | 24        | 5.1E-02     |
| LUAD   | 7526    | 29     | 8.5E-02    | 0.23       | 29        | 3.3E-01     |
| LUSC   | 7526    | 25     | 8.3E-01    | 0.03       | 25        | 7.0E-01     |
| LUSC   | 10413   | 49     | 1.0E-04    | 0.38       | 49        | 5.5E-02     |
| PRAD   | 1610    | 43     | 8.0E-01    | -0.03      | 43        | 7.3E-01     |
| PRAD   | 7526    | 38     | 6.0E-01    | 0.06       | 38        | 3.1E-02     |
| PRAD   | 10413   | 50     | 2.7E-05    | 0.41       | 50        | 1.4E-01     |
| PRAD   | 12274   | 50     | 9.6E-01    | -0.01      | 50        | 4.6E-01     |
| STAD   | 585     | 30     | 4.1E-02    | 0.27       | 30        | 9.1E-01     |
| STAD   | 1610    | 31     | 2.4E-01    | 0.15       | 31        | 3.7E-02     |
| STAD   | 5520    | 23     | 2.5E-01    | 0.17       | 23        | 3.6E-01     |
| STAD   | 7526    | 22     | 6.0E-01    | 0.08       | 22        | 2.5E-01     |
| STAD   | 9999    | 30     | 4.1E-01    | 0.11       | 30        | 2.4E-01     |
| THCA   | 585     | 56     | 3.2E-01    | -0.09      | 56        | 5.7E-01     |
| THCA   | 7526    | 46     | 5.9E-01    | 0.06       | 46        | 6.2E-01     |
| THCA   | 12146   | 57     | 6.3E-03    | 0.25       | 57        | 5.9E-01     |

| Cancer       | P9 site      | Samples | P value    | R      |
|--------------|--------------|---------|------------|--------|
| BRCA         | 1610         | 188     | 2.25E-02   | 0.166  |
| BRCA         | 5520         | 122     | 6.12E-02   | -0.170 |
| BRCA         | 7526         | 118     | 5.72E-03   | -0.253 |
| COAD         | 1610         | 36      | 5.77E-01   | 0.096  |
| COAD         | 10413        | 40      | 2.31E-02   | -0.359 |
| COAD         | 12146        | 46      | 9.02E-03   | -0.381 |
| HNSC         | 7526         | 32      | 1.98E-02   | -0.410 |
| КІСН         | 585          | 48      | 1.21E-05   | -0.586 |
| КІСН         | 1610         | 48      | 4.38E-01   | 0.114  |
| КІСН         | 5520         | 32      | 2.09E-02   | 0.407  |
| КІСН         | 7526         | 34      | 2.82E-03   | 0.496  |
| КІСН         | 8303         | 48      | 4.92E-03   | 0.399  |
| КІСН         | 9999         | 48      | 7.06E-01   | 0.056  |
| КІСН         | 10413        | 48      | 7.18E-01   | -0.053 |
| КІСН         | 12146        | 48      | 1.07E-05   | -0.589 |
| КІСН         | 12274        | 48      | 1.13E-01   | -0.232 |
| КІСН         | 14734        | 50      | 9.22E-01   | 0.014  |
| KIRC         | 585          | 144     | 4.83E-02   | -0.165 |
| KIRC         | 1610         | 132     | 3.07E-07   | -0.428 |
| KIRC         | 5520         | 96      | 7.83E-01   | 0.028  |
| KIRC         | 7526         | 130     | 3.39E-02   | -0.186 |
| KIRC         | 9999         | 126     | 7.62E-01   | -0.027 |
| KIRC         | 12146        | 140     | 317E-06    | -0.382 |
| KIRC         | 14734        | 144     | 2 38E-01   | 0.099  |
| KIRP         | 585          | 64      | 2.56E-01   | -0 144 |
| KIRP         | 1610         | 50      | 4 21F-01   | -0.116 |
| KIRP         | 5520         | 52      | 1.21E 01   | -0.188 |
| KIRP         | 7526         | 52      | 4 91F-03   | -0.384 |
|              | 1610         | 56      | 3 54F-02   | 0.282  |
| LIHC         | 4271         | 86      | 1 09E-01   | 0.174  |
|              | 5520         | 72      | 2 52F-01   | 0.137  |
|              | 8303         | 100     | 3.01F-02   | 0.217  |
|              | 1610         | 74      | 5.01E-02   | 0.062  |
|              | 4271         | 52      | 5.23F-03   | 0.382  |
|              | 7526         | 52      | 6 29F-01   | -0.065 |
|              | 7526         | 50      | 0.27E-01   | -0.005 |
|              | 10/12        | 08      | 2 2 2 F 01 | 0.007  |
|              | 1610         | 90      | 4 22E 01   | 0.122  |
|              | 7526         | 70      | 4.52E-01   | 0.005  |
|              | 10/12        | 102     | 2 77E 02   | 0.203  |
|              | 10415        | 102     | 2.77E-05   | -0.295 |
| PRAD<br>STAD | 122/4<br>FOF | 102     | 9.90E-01   | 0.000  |
| STAD         | 000<br>1(10  | 00      | 0.30E-03   | -0.321 |
| STAD         | 1610         | 68      | 2.04E-01   | -0.156 |
| STAD         | 5520         | 54      | 9.30E-01   | 0.012  |
| SIAD         | /520         | 52      | 4.38E-01   | 0.110  |
| SIAD         | 9999         | 00      | 0.59E-01   | 0.055  |
| THCA         | 585          | 118     | 8.69E-01   | -0.015 |
| THCA         | 5520         | 82      | 1.06E-02   | -0.281 |
| ТНСА         | 7526         | 98      | 2.77E-03   | -0.299 |
| THCA         | 12146        | 118     | 2.42E-08   | -0.486 |

 Table S6: Comparisons between p9 methylation levels and tRNA expression levels.

**Table S7: Comparisons between methylation levels at each p9 site with mitochondrial gene expression**. Analyses are performed within either normal or tumor samples, and across all cancers.

Table available as additional file 2

**Table S8: Number of significant cross-correlation associations at Bonferroni threshold (p-value < 0.000003).** Association tests were performed between nuclear gene expression (16,736 genes) and methylation levels at 11 p9 sites in the BRCA dataset.

| P9 Site | BRCA Normal | BRCA Tumor |
|---------|-------------|------------|
| 585     | 397         | 0          |
| 1610    | 1318        | 0          |
| 4271    | 0           | 0          |
| 5520    | 0           | 0          |
| 7526    | 0           | 0          |
| 8303    | 4109        | 0          |
| 9999    | 5829        | 0          |
| 10413   | 6061        | 0          |
| 12146   | 26          | 0          |
| 12274   | 752         | 1          |
| 14734   | 1           | 1          |

**Table S9: Results from survival analysis for kidney renal clear cell carcinoma**. One model was ran where the difference in methylation levels at p9 sites between normal and tumor were used as a quantitative trait, and a second model was ran where methylation differences were binned into two equal sized groups. Within each case, tests were ran with and without covariates (age, gender and ethnicity).

| P9    | Quantitative Model    |          | Cate                  | egorical Mo | Sample          | Deaths |    |
|-------|-----------------------|----------|-----------------------|-------------|-----------------|--------|----|
| Sites | P-value<br>covariates | P-value  | P-value<br>covariates | P-value     | Hazard<br>Ratio | Size   |    |
| 585   | 0.00535               | 0.00107  | 0.0691                | 0.133       | 2.0289          | 67     | 20 |
| 1610  | 0.0568                | 0.0257   | 0.137                 | 0.127       | 2.2527          | 61     | 17 |
| 4271  | 0.138                 | 0.102    | 0.138                 | 0.116       | 2.1123          | 56     | 19 |
| 5520  | 0.05                  | 0.311    | 0.0476                | 0.0846      | 3.1594          | 43     | 12 |
| 7526  | 0.0186                | 0.00883  | 0.067                 | 0.0592      | 2.734           | 60     | 17 |
| 8303  | 0.0575                | 0.0307   | 0.829                 | 0.967       | 1.01924         | 61     | 19 |
| 9999  | 0.0286                | 0.0266   | 0.0754                | 0.116       | 2.1745          | 58     | 19 |
| 10413 | 0.00151               | 0.000476 | 0.054                 | 0.036       | 2.7844          | 64     | 20 |
| 12146 | 0.116                 | 0.0243   | 0.0394                | 0.0252      | 3.1842          | 65     | 20 |
| 12274 | 0.2664                | 0.24     | 0.9896                | 0.753       | 0.8684          | 66     | 20 |
| 14734 | 0.8613                | 0.787    | 0.9711                | 0.922       | 1.04512         | 67     | 20 |