

Supporting Information

Brønsted Acid Catalysis in Visible-Light-Induced [2+2] Photocycloaddition Reactions of Enone Dithianes

Christoph Brenninger, Alexander Pöthig, and Thorsten Bach*

anie_201700837_sm_miscellaneous_information.pdf

1. General Information	1
3. General Procedures	5
4. Synthesis of Irradiation Precursors	7
5. Photoreactions of Dithianes	37
5. Deprotection of 1,3-Dithianes	51
7. SC- XRD Determination of Compound 2g (CCDC 1528600)	54
8. Additional UV/Vis Spectra	56
9. Data Sheets and Emission Spectra of Light Sources	58
10. NMR Spectra of new Compounds	61
10.1. Substrates and Intermediate Compounds	61
10.2 Cyclobutanes	80
11. References	91

1. General Information

All reactions sensitive to air and moisture were carried out in flame-dried glassware under an argon atmosphere using standard Schlenk techniques.

Commercially available chemicals were used without further purification, if not further mentioned. Diisopropylamine (*Merck*, technical grade, 99%) for lithium diisopropylamine (LDA) preparation was refluxed over CaH₂ and distilled.

For moisture sensitive reactions tetrahydrofuran (THF), diethyl ether (Et₂O), pentane (P) and dichloromethane (CH₂Cl₂) were purified using a MBSPS 800 *MBraun* solvent purification system. The following columns were used:

THF: $2 \times MB$ -KOL-M type 2 (3 Å molecular sieve)

Et₂O: $1 \times$ MB-KOL-A type 2 (aluminium oxide), $1 \times$ MB-KOL-M type 2 (3 Å molecular sieve)

CH₂Cl₂: $2 \times$ MB-KOL-A type 2 (aluminium oxide)

Dichloromethane for photochemical reactions was additionally dried over activated molecular sieve (4 Å).

For fluorescence experiments *Merck* dichloromethane for spectroscopy Uvasol® was used. For moisture sensitive experiments it was dried by passing through a pad of activated basic aluminium oxide under argon atmosphere.

The following dry solvents are commercially available and were used without further purification:

Methanol: Acros Organics, 99.8%, extra dry, over molecular sieve.

Pyridine: Acros Organics, 99.5% extra dry, over molecular sieve.

Technical solvents for column chromatography (pentane, dichloromethane, diethyl ether) were used after simple distillation.

Flash column chromatography was performed on silica 60 (*Merck*, 230-400 mesh) with the indicated eluent mixture.

Photochemical experiments using a LED were carried out in a Schlenk tube (diameter = 1 cm) with a polished quartz rod as an optical fibre, which was roughened by sandblasting at one end. The roughed end has to be completely submerged in the solvent during the reaction, in order to guarantee optimal and reproducible irradiation conditions.^[1] Photochemical experiments at $\lambda = 366$ nm were performed in Duran tubes ($\mathcal{E} = 1.0$ cm) in an RPR-100 photochemical reactor (Southern New England Ultra Violet Company, Branford, CT, USA) equipped with 16 fluorescence lamps (Philips Lighting, Black Light Blue, 8 W, $\lambda = 366$ nm). For low temperature

irradiation the reaction vessel was placed in the photoreactor for 20 minutes prior to irradiation to assure proper cooling of the solution.

2. Analytical Methods

Thin layer chromatography (TLC) was performed on silica coated glass plates (*Merck*, silica 60 F254) with detection by UV-light ($\lambda = 254$ nm) and/or by staining with a potassium permanganate solution [KMnO₄] followed by heat treatment.

KMnO₄-staining solution: 3.00 g potassium permanganate, 20.0 g potassium carbonate and 5.00 mL 5% sodium hydroxide solution in 300 mL water.

Infrared spectra (IR) were recorded on a *JASCO* IR-4100 spectrometer or a *Perkin Elmer* Frontier IR-FTR spectrometer by ATR technique. The signal intensity is assigned using the following abbreviations: s (strong), m (medium), w (weak), br (broad).

Nuclear magnetic resonance-spectra were recorded at room temperature either on a *Bruker* AVHD-300, AVHD-400, AVHD-500 or an AV-500 cryo. ¹H-NMR spectra were calibrated to the residual solvent signal of chloroform-d₁ (CHCl₃ δ = 7.26 ppm) or benzene-d₆ (C₆HD₅ δ = 7.16 ppm). ¹³C-NMR spectra were calibrated to the ¹³C-D triplet of CDCl₃ (δ = 77.16 ppm) or C₆D₆ (δ = 128.1 ppm). Apparent multiplets which occur as a result of accidental equality of coupling constants to those of magnetically non-equivalent protons are marked as virtual (*virt*.). Following abbreviations for single multiplicities were used: *br*-broad, s-singlet, d-doublet, t-triplet, q-quartet, quin.-quintet. Assignment and multiplicity of the ¹³C-NMR signals were determined by two dimensional NMR experiments (COSY, HSQC, HMBC) or DEPT experiments (DEPT-90 and DEPT-135).

Mass spectroscopy (MS) was performed on a *Agilent* MS5977A MSD spectrometer coupled to a *Agilent* 7890 B gas chromatograph using a HP-5MS UI column (30 m, 0.25 mm, 0.25 μ m, 5% diphenyl- 95% dimethylpolysiloxane).

High resolution mass spectroscopy (HR-MS) was performed on a *Thermo Scientific* DFS-HRMS spectrometer.

UV/Vis Spectroscopy was performed on a *Perkin Elmer* Lambda 35 UV/Vis spektometer. If not further mentioned, spectra were recorded using a *Hellma* precision cell made of quartz SUPRASIL[®] with a pathway of 1 mm. Solvents and concentrations are given for each spectrum.

Gas chromatography (GC) was performed on an *Agilent* 7890 B gas chromatograph using a HP-5 column (30 m, 0.32 mm, 0.25 μ m, 5% diphenyl- 95% dimethylpolysiloxane) with a flame ionisation detector.

X-ray crystallography was performed on a *Bruker* D8 Venture Duo IMS system equipped with a Helios optic monochromator and a Mo IMS microsource ($\lambda = 0.71073$ Å). The data was analyzed using a *Bruker* SAINT software package using a narrow-frame algorithm.

Fluoreszence spectroscopy was carried at on a *Horiba Scientific* Fluoromax-4 Spectrofuorometer. Spectra were recorded using a *Hellma* precisions cell made of quartz SUPRASIL[®] (exc.: 4 mm/emi.: 10 mm or exc.: 2 mm/emi.: 10 mm).

3. General Procedures

General Procedure 1: Gringardaddition to 3-ethoxycycloalkenones

A solution of alkylbromide (1.35 eq.) in dry THF [0.96 M] was added dropwise to a suspension of magnesium (1.30 eq.) and catalytic amounts of iodine in THF (1 mL). After full conversion of the magnesium the corresponding 3-ethoxycycloalkenone (1.00 eq.) in THF [0.89 M] was added and the reaction was stirred at room temperature for the time given below. After full conversion the reaction was quenched with saturated aqueous ammonium chloride solution and extracted three times with Et₂O. The combined organic layers were dried over Na₂SO₄, filtered and the solvent was evaporated in vacuo. The crude material was purified by column chromatography.

Lower equivalents of alkyl bromides and magnesium were used, if the bromide was not commercially available. Equivalents are given in the respective procedures below.

General Procedure 2: Synthesis of dithiols and dithianes

Reactions were carried out in flame dried flask under argon atmosphere. To a stirred solution of the corresponding cycloalkenone (1.00 eq.) in dry methanol [0.18 M] was added 1,3-propanedithiol (1.50 eq.) and boron trifluoride diethyl etherate (1.20 eq.) at room temperature. After the time indicated in the individual procedures, the reaction was quenched with saturated aqueous sodium bicarbonate solution. After extraction with Et₂O (three times), the combined organic layers were dried over Na₂SO₄, filtered and the solvent was removed in vacuo. The crude product was purified using column chromatography.

General Procedure 3: Brønsted acid catalysed photocycloadditions using LED-setup

Catalysts were stored in a glove box. For irradiations using 398 or 405 nm LEDs a polished quartz rod was used as an optical fibre, which was roughened by sandblasting at one end. The roughed end has to be completely submerged in the solvent during the reaction, in order to guarantee optimal and reproducible irritation conditions.^[1]

A solution of the respective 1,3-dithiane (1.00 eq) in dry CH_2Cl_2 [10 mM] was precooled to -78 °C before addition of catalyst and irradiation was started under continuous stirring. After the time given below, the reaction was stopped by addition of triethylamine (1.00 eq.). The

mixture was allowed to warm to room temperature and the solvent was removed in vacuo. The crude product was purified by column chromatography as given below.

4. Synthesis of Irradiation Precursors

3-(Pent-4-en-1-yl)cyclohex-2-en-1-one (9a)

Following *GP1* 3-(pent-4-en-1-yl)cyclohex-2-en-1-one (**9a**) was synthesized using 564 mg magnesium (23.3 mmol, 1.30 eq.), 2.97 mL 5-bromopent-1-ene (3.61 g, 24.2 mmol, 1.35 eq.) in 25 mL THF and 2.60 mL 3-ethoxycyclohex-2-en-1-one (2.50 g, 17.9 mmol, 1.00 eq.) in 20 mL THF. The reaction was quenched after three hours. After column chromatography (SiO₂, $P/Et_2O = 4/1$) the title compound **9a** was obtained as a colorless oil in 74% yield (2.20 g, 13.2 mmol).

TLC: $R_f = 0.29 (P/Et_2O = 4/1) [UV/KMnO_4].$

¹**H** NMR (500 MHz, CDCl₃, 300 K): δ (ppm) = 1.61 (*virt.* quin, ³*J* \approx 7.5 Hz, 2H, H-2'), 1.99 (*virt.* quin., ³*J* \approx 6.2 Hz, 2H, H-5), 2.08 (*virt.* qt, ³*J* \approx 7.1 Hz, ⁴*J* \approx 1.3 Hz, 2H, H-3'), 2.22 (t, ³*J* = 7.7 Hz, 2H, H-1'), 2.28 (t, ³*J* = 6.0 Hz, 2H, H-4), 2.36 (t, ³*J* = 6.7 Hz, 2H, H-6), 4.97 – 5.05 (m, 2H, H-5'), 5.78 (ddt, ³*J* = 16.9 Hz, ³*J* = 10.2 Hz, ³*J* = 6.7 Hz, 2H, H-4'), 5.88 (s, 1H, H-2).

¹³C NMR (63 MHz, CDCl₃, 300 K): δ (ppm) = 22.9 (t, C-5), 26.2 (t, C-2'), 29.8 (t, C-4), 33.1 (t, C-3'), 37.5 (t, C-6), 37.5 (t, C-1'), 115.4 (t, C-5'), 125.9 (d, C-2), 138.0 (d, C-4'), 166.3 (s, C-3), 200.0 (s, C-1).

The obtained data match with those reported in the literature.^[2]

8-(Pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1a)

A solution of 300 mg 3-(pent-4-en-1-yl)cyclohex-2-en-1-one (**9a**) (1.83 mmol, 1.00 eq.), 274 μ L 1,3-propandithiol (296 mg, 2.74 mmol, 1.50 eq.) and 277 μ L boron trifluoride diethyl etherate (311 μ g, 219 μ mol, 1.20 eq.) was stirred in dry methanol (4.6 mL) for three hours according to *GP2*. Column chromatography (SiO₂, P/Et₂O = 100/0 \rightarrow 99.5/0.5) afforded the title compound **1a** as a colorless oil in 79% yield (367 mg, 1.45 mmol).

TLC: $R_f = 0.21$ (P/Et₂O = 99.5/0.5) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2972 (s, sp³-CH), 1635 (w, C=C), 1424 (m, sp³-CH), 908 (s, sp²-CH), 886 (s, sp²-CH), 801 (m, C-S).

MS (EI, 70 eV): m/z (%) = 254 (61) [M]⁺, 213 (19) [M-C₃H₅]⁺, 200 (7) [M-C₂H₄-C₃H₅]⁺, 179 (68), 52 (100), 137 (26), 91 (34) [C₇H₇]⁺, 55 (5) [C₄H₃]⁺.

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.53 (*virt.* quin., ${}^{3}J \approx 7.5$ Hz, 2H, H-2'), 1.75-1.82 (m, 2H, H-10), 1.89 (dtt, ${}^{2}J = 14.0$ Hz, ${}^{3}J = 10.8$ Hz, ${}^{3}J = 3.2$ Hz, 1H, H-3), 1.96-2.09 (m, 7H, H-3, H-9, H-1', H-3'), 2.19-2.2 (m, 2H, H-11), 2.75 (ddd, ${}^{2}J = 14.2$ Hz, ${}^{3}J = 6.0$ Hz, ${}^{3}J = 3.2$ Hz, 2H, H-2, H-4), 2.98 (ddd, ${}^{2}J = 14.2$ Hz, ${}^{3}J = 10.8$ Hz, ${}^{3}J = 2.9$ Hz, 2H, H-2, H-4), 4.95 (ddt, ${}^{2}J = 2.2$ Hz, ${}^{3}J = 10.2$ Hz, ${}^{4}J = 1.2$ Hz, 1H, H-5'a), 5.01 (*virt.* dq, ${}^{3}J = 17.0$ Hz, ${}^{2}J \approx {}^{4}J \approx 1.6$ Hz, 1H, H-5'b), 5.80 (ddt, ${}^{3}J = 17.0$ Hz, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 6.7$ Hz, 1H, H-4').

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 19.9 (t, C-10), 25.1 (t, C-3), 26.6 (t-C-2'), 26.9 (t, C-2, C-4), 28.8 (t,C-9), 33.4 (t, C-3'), 36.0 (t, C-11), 37.1 (t, C-1'), 49.0 (s, C-6), 114.9 (d, C-5'), 123.4 (d, C-7), 138.8 (d, C-4'), 142.4 (s,C-8).

HRMS (EI, 70 eV): calculated: (C₁₄H₂₂³²S₂): 254.1157; found: 254.1154

calculated: (C₁₃¹³CH₂₂³²S₂): 255.1191; found: 255.1191.

3-Ethoxy-5,5-dimethylcyclohex-2-en-1-one (10)

In 25 mL dry toluene 2.00 g 5,5-dimethyl-cyclohexan-1,3-dione (14.3 mmol, 1.00 eq.), 16.0 mL ethanol (12.6 g, 27.4 mmol, 1.92 eq.) und 54.3 mg *para*-toluenesulfonic acid monohydrat (28.6 μ mol, 0.02 eq.) were refluxed for 6.5 hours and the solvent was evaporated in vacuo. After column chromatography (SiO₂, P/Et₂O = 2/1) the title compound was obtained as a colorless solid in 85% yield (2.04 g, 12.1 mmol).

TLC: $R_{\rm f} = 0.28$ (P/Et₂O = 2/1) [UV].

M.P.: 59 – 61 °C.

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 1.06 [s, 6H, (CH₃)₂], 1.36 (t, ${}^{3}J$ = 7.0 Hz, 3H, CH₂CH₃), 2.20 (s, 2H, H₆), 2.26 (s, 2H, H-4), 3.89 (q, ${}^{3}J$ = 7.0 Hz, 2H, CH₂CH₃), 5.33 (s, 1H, H-2).

¹³C NMR (91 MHz, CDCl₃, 300 K): δ [ppm] = 12.3 (q, CH₂CH₃), 28.4 [q, (CH₃)₂], 32.6 (s, C-5), 43.1 (t, C-4), 50.9 (t, C-6), 64.4 (t, CH₂CH₃), 101.7 (d, C-2), 176.3 (s, C-3), 199.2 (s, C-1).

The obtained data match with those reported in the literature.^[3]

5,5-Dimethyl-3-(pent-4-en-1-yl)cyclohex-2-en-1-one (9b)

Following *GP1* 5,5-dimethyl-3-(pent-4-en-1-yl)cyclohex-2-en-1-one (**9b**) was prepared using 187 mg magnesium (7.73 mmol, 1.30 eq.), 950 μ L 5-bromopent-1-ene (1.95 g, 8.02 mmol, 1.35 eq.) in 8.3 mL THF and 1.00 g 3-ethoxy-5,5-dimethylcyclohex-2-en-1-one (5.94 mmol, 1.00 eq.) in 6.6 mL THF. The reaction was quenched after four hours. After column chromatography (SiO₂, P/Et₂O = 10/1 \rightarrow 4/1) the title compound was obtained as a yellowish oil in 51% yield (580 mg, 3.02 mmol).

TLC: $R_f = 0.31$ (P/Et₂O = 10/1) [UV].

¹**H** NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 1.03 (s, 6H, CH₃), 1.60 (*virt.* quin., ${}^{3}J \approx 7.4$ Hz, 2H, H-2'), 2.07 (*virt.* qt, ${}^{3}J \approx 7.3$ Hz, ${}^{4}J \approx 1.2$ Hz, 2H, H-3'), 2.17 (s, 2H, H-4), 2.19 (*t*, ${}^{3}J = 8.0$ Hz, 2H, H-1'), 2.21 (s, 2H, H-6), 4.97 – 5.05 (m, 2H, H-5'), 5.79 (ddt, ${}^{3}J = 16.9$ Hz, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 6.7$ Hz, 1H, H-4'), 5.88 (*virt.* quin., ${}^{4}J \approx 1.4$ Hz, 1H, H-2).

¹³C NMR (91 MHz, CDCl₃, 300 K): δ [ppm] = 26.2 (t, C-2'), 28.4 (q, CH₃), 33.3 (t, C-3'), 33.8 (t, C-5), 37.5 (t, C-1'), 44.1 (t, C-4), 51.2 (t, C-6), 115.4 (t, C-5'), 125.0 (d, C-2), 138.0 (d, C-4'), 163.8 (s, C-3), 200.1 (s, C-1).

The obtained data match with those reported in the literature.^[4]

10,10-Dimethyl-8-(pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1b)

According to *GP2* a solution of 448 mg 5,5-dimethyl-3-(pent-4-en-1-yl)cyclohex-2-en-1one (**10**) (2.33 mmol, 1.0 eq.), 350 μ L 1,2-propanedithiol (378 μ g, 3.49 mmol, 1.50 eq.) and 396 μ L BF₃·Et₂O (353 μ g, 2.79 mmol, 1.2 eq.) was stirred in dry methanol (8 mL) for five hours. After column chromatography (SiO₂, P/Et₂O = 100/0 \rightarrow 99.5/0.5) **1b** was obtained in 81% yield (360 mg, 1.89 mmol).

TLC: $R_f = 0.21$ (P/Et₂O = 99/1) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3074 (w, sp²-CH), 2928 (s, sp³-CH), 1654 (w, C=C), 1436 (m, sp³-CH), 906 (s, sp²-CH).

MS (EI, 70 eV): m/z (%) = 282 (65) [M]⁺, 241 (100) [M-C₃H₅]⁺, 207 (29), 152 (93), 107 (54) 91 (32) [C₇H₇]⁺, 51 (10) [C₄H₃]⁺.

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.02 (s, 6H, CH₃), 1.50-1.56 (m, 2H, H-2'), 1.81 (s, 2H, H-9), 1.97-2.09 (m, 6H, H-3, H-1', H-4'), 2.05 (s, 2H, H-11), 2.85-2.91 (m, 2H, H-2, H-4), 2.97-3.03 (m, 2H, H-2, H-4), 4.96 (ddt, ²J = 2.2 Hz, ³J = 10.2 Hz, ⁴J = 1.1 Hz, 1H, H-5'a), 5.02 (*virt*. dq, ³J = 17.1 Hz, ²J \approx ⁴J \approx 1.6 Hz, 1H, H-5'b), 5.76-5.86 (m, 2H, H-7, H-4'). ¹³C NMR (126 MHz, CDCl₃, 300 K): δ (ppm) = 25.1 (t, C-3), 26.6 (t, C-2'), 27.3 (t, C-2, C-4), 30.0 (q, *C*H₃), 31.2 (s, C-10), 33.4 (t, C-3'), 37.5 (t, C-1'), 42.4 (t, C-9), 47.5 (s, C-6), 49.4 (t, C-11), 114.8 (t, C-5'), 121.6 (d, C-7), 137.6 (s, C-8), 138.8 (d, C-4').

HRMS (EI, 70 eV): calculated: (C₁₆H₂₆³²S₂): 282.1470; found: 282.1468,

calculated: (C₁₅¹³CH₂₆³²S₂): 283.1504; found: 283.1504.

2,2-Dimethylpent-4-en-1-ol (11)

To a suspension of 638 mg lithium aluminium hydride (15.9 mmol, 1.02 eq.) in 40 mL of dry THF were added 2.00 g 2,2-dimethylpent-4-enoic acid (15.6 mmol 1.00 eq.) in 10 mL THF dropwise at 0 °C. The mixture was warmed to room temperature and stirred for 23 hours. After addition of 1 mL water, 2 mL NaOH (10 wt-% aqueous solution) and 1 mL water the precipitate was filtered of and washed with ethyl acetate. The filtrate was dried over MgSO₄, filtered and the solvent was removed in vacuo. The title compound **11** was obtained as a colorless liquid in 79% yield (1.40 g, 12.3 mmol) and was used without further purification.^[5]

TLC: $R_f = 0.15$ (P/Et₂O = 10/1) [KMnO₄].

¹**H** NMR (500 MHz, CDCl₃, 300 K): δ (ppm) = 0.89 (s, 6H, CH₃), 2.02 (*virt.* dt, ³J = 7.5 Hz, ⁴J ≈ 1.1 Hz, 2H, H-3), 3.33 (s, 2H, H-1), 5.02-5.09 (m, 2H, H-5), 5.80-5.90 (m, 1H, H-4).

¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 24.0 (q, *C*H₃), 36.7 (s, C-2), 43.5 (t, C-3), 71.9 (t, C-1), 117.3 (t, C-5), 135.5 (s, C-4).

The obtained data match with those reported in the literature.^[6]

5-Iodo-4,4-dimethylpent-1-ene (12)

To a solution of 1.66 g 2,2-Dimethylpent-4-en-1-ol (**11**) (14.5 mmol, 1.00 eq.) in 7.7 mL dry pyridine were added 4.19 g triphenylphosphine (15.9 mmol, 1.10 eq.) and 3.69 g iodine (15.5 mmol, 1.00 eq.). The mixture was stirred under reflux for 14 hours. The crude product S11

was purified by column chromatography (SiO₂, P) without any further work up. The product **12** was obtained in 63% yield (2.05 g, 9.15 mmol) as a colorless oil.

TLC: $R_{\rm f} = 0.85$ (P) [KMnO₄].

¹**H** NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 1.06 (s, 6H, CH₃), 2.10 (virt. dt, ³J = 7.5 Hz, ⁴J \approx 1.0 Hz, 2H, H-3), 3.14 (s, 2H, H-5), 5.06-5.14 (m, 2H, H-5), 5.75 (ddt, ³J = 16.7 Hz, ³J = 14.4 Hz, ³J = 7.5 Hz, 1H, H-2).

¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 24.0 (t, C-5), 26.9 (q, *C*H₃), 33.8 (s, C-4), 45.3 (t, C-3), 118.3 (t, C-1), 134.4 (d, C-2).

The obtained data match with those reported in the literature.^[7]

3-(2,2-Dimethylpent-4-en-1-yl)cyclohex-2-en-1-one (9c)

To a solution of 700 mg 5-iodo-4,4-dimethylpent-1-ene (**12**) (3.12 mmol, 1.00 eq.) in 12 mL dry pentane and 8 mL dry Et₂O were added 3.37 mL *t*-BuLi (2.5 M in heptane, 410 mg, 6.40 mmol, 2.05 eq.) dropwise at -78° C. The mixture was stirred at -78° C for one hour, 477 µL 3-ethoxycyclohex-2-en-1-one (460 mg, 3.28 mmol, 1.05 eq.) were added and the solution was stirred for three hours at room temperature before 12 mL saturated aqueous ammonium chloride solution were added. The aqueous phase was extracted with Et₂O (3 × 20 mL). Combined organic layers were dried over Na₂SO₄, filtered and the solvent was removed in vacuo. The crude product was purified using column chromatography (SiO₂, P/Et₂O = 4/1). Remaining 3-(*tert*-butyl)cyclohex-2-en-1-one was removed by distillation (4 mbar, 100°C). Pure ketone **9c** was obtained as a colorless oil in 50% yield (222 mg, 1.60 mmol).

TLC: $R_f = 0.33$ (P/Et₂O = 4/1) [UV/KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3077 (w, sp²-CH), 2957 (s, sp³-CH), 1671 (s, C=O), 1618 (m, C=C), 1468 (m, sp³-CH), 1324 (m, sp²-CH).

MS (EI, 70 eV): m/z (%) = 192 (17) [M]⁺, 164 (14) [M-C₂H₄]⁺, 151 (18) [M-C₃H₅]⁺, 110 (100), 55 (52).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.93 (s, 6H, CH₃), 1.94-2.00 (m, 2H, H-5), 2.01 (d, ³*J* = 7.3 Hz, 2H, H-3'), 2.13 (s, 2H, H-1'), 2.32-2.38 (m, 4H, H-4, H-6), 5.01-5.08 (m, 1H, H-5'b), 5.08 (ddt, ²*J* = 0.8 Hz, ³*J* = 10.2 Hz, ⁴*J* = 1.9 Hz, 1H, H-5'a), 5.82 (ddt, ³*J* = 17.5 Hz, ³*J* = 10.2 Hz, ³*J* = 7.3 Hz, 1H, H-4'), 5.85 (s, 1H, H-2).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 23.2 (t, C-5), 27.4 (q, CH₃), 32.7 (t, C-4), 35.2 (s, C-2'), 37.4 (t, C-6), 47.6 (t, C-3'), 50.2 (t, C-1'), 117.9 (t, C-5'), 129.3 (d, C-2), 134.9 (d, C-4'), 164.8 (s, C-3), 199.9 (s, C-1).

HRMS (EI, 70 eV): calculated: (C₁₃H₂₀O): 192.1509; found: 192.1504.

8-(2,2-Dimethylpent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1c)

A solution of 2.15 mg 3-(2,2-dimethylpent-4-en-1-yl)cyclohex-2-en-1-one (**9c**) (1.12 mmol, 1.00 eq.), 170 μ L 1,3-propandithiol (181 mg, 1.68 mmol, 1.50 eq.) and 170 μ L boron trifluoride diethyl etherate (190 μ g, 1.34 mmol, 1.30 eq.) was stirred in dry methanol (6.2 mL) for four hours according to *GP2*. Column chromatography (SiO₂, P/Et₂O = 99/1) afforded the title **1c** compound as a colorless oil in 95% yield (300 mg, 1.06 mmol).

TLC: $R_f = 0.26 (P/Et_2O = 99/1) [KMnO_4].$

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3073 (s, sp²-CH), 2931 (s, sp³-CH), 1638 (m, C=C), 1423 (m, sp³-CH), 911 (m, sp²-CH).

MS (EI, 70 eV): m/z (%) = 282 (69) [M]⁺, 241 (13) [M-C₃H₅]⁺, 208 (36) [C₁₃H₂₀S]⁺, 207 (100), 180 (72), 167 (13) [C₁₀H₁₅S]⁺, 126 (62) [C₇H₁₀S]⁺.

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.88 (s, 6H, CH₃), 1.73-1.86 (m, 2H, H-10), 1.85-1.94 (m, 1H, H-3), 1.90 (s, 2H, H-1'), 1.97 (d, ³*J* = 7.4 Hz, 2H, H-3'), 2.02-2.09 (m, 3H, H-3, H-9, H-9), 2.21-2.23 (m, 2H, H-11), 2.75 (ddd, ²*J* = 14.3 Hz, ³*J* = 6.0 Hz, ³*J* = 3.2 Hz, 2H, H-2, H-4), 2.98 (ddd, ²*J* = 14.3 Hz, ³*J* = 10.8 Hz, ³*J* = 2.8 Hz, 2H, H-2, H-4), 4.98-5.06 (m, 2H, H-5'), 5.50 (s, 1H, H-7), 5.82 (ddt, ³*J* = 17.6 Hz, ³*J* = 10.2 Hz, ³*J* = 7.4 Hz, 1H, H-4').

¹³**C NMR** (500 MHz, CDCl₃, 300 K): δ (ppm) = 20.2 (t, C-10), 25.1 (t, C-3), 26.9 (t, C-2, C-4), 27.5 (q, *C*H₃), 31.9 (t, C-9), 34.6 (s, C-2'), 35.9 (t, C-11), 47.5 (t, C-3'), 49.2 (s, C-6), 49.5 (t, C-1'), 117.2 (t, C-5'), 127.2 (d, C-7), 135.7 (d, C-4'), 140.0 (s, C-8).

HRMS (EI, 70 eV): calculated: (C₁₆H₂₆³²S₂): 282.1470; found: 282.1471,

calculated: (C₁₅¹³CH₂₆³²S₂): 283.1504; found: 283.1500.

(5-Bromopent-1-yn-1-yl)trimethylsilane (13)

To 66 mL of dry THF were added 5.18 g 5-(trimethylsilyl)pent-4-yn-1-ol (33.1 mmol, 1.00 eq.) and 5.97 mL NEt₃ (4.36 g, 43.1 mmol, 1.30 eq.). At 0 °C were 3.33 mL methanesulfonyl chloride (4.93 g, 43.1 mmol, 1.03 eq.) added dropwise. After stirring for three hours at room temperature 50 mL water were added. The aqueous phase was extracted using CH₂Cl₂ (4×40 mL), combined organic layers were dried over Na₂SO₄, filtered and the solvent was removed in vacuo. The crude mesylate was dissolved in 35 mL acetone, 8.64 g LiBr (99.5 mmol, 3.00 eq.) were added and the heterogeneous mixture was stirred for 15 hours at 60 °C. After cooling the reaction mixture to room temperature about 50% of acetone were removed in vacuo and 40 mL water were added. The aqueous phase was extracted using Et₂O (3×20 mL), combined organic layers were dried over Na₂SO₄, filtered and the solvent was removed in vacuo. After column chromatography (SiO₂, P/Et₂O = 100/0 \rightarrow 99/1) bromide 13 was obtained as a colorless oil in 76% yield (5.50 g, 25. mmol).

TLC: $R_{\rm f} = 0.47$ (P) [KMnO₄].

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.15 [s, 9H, Si(CH₃)₃], 2.05 (*virt.* p, ${}^{3}J \approx 6.7$ Hz, 2H, H-4), 2.41 (t, ${}^{3}J = 6.8$ Hz, 2H, H-3), 3.51 (t, ${}^{3}J = 6.5$ Hz, 2H, H-5).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 0.2 [q, Si(CH₃)₃], 18.8 (t, C-3), 31.6 (t, C-4), 32.5 (t, C-5), 85.9 (s, C-1), 105.2 (s,C-2).

The obtained data match with those reported in the literature.^[8]

3-(5-(Trimethylsilyl)pent-4-yn-1-yl)cyclohex-2-en-1-one (14)

Following *GP2* the title compound was prepared using 225 mg magnesium (9.27 mmol, 1.30 eq.), 2.11 g (5-bromopent-1-yn-1-yl)trimethylsilane (**13**) (9.60 mmol, 1.35 eq.) in 12 mL dry THF and 961 μ L 3-ethoxycyclohex-2-en-1-on (1.00 g, 7.13 mmol, 1.00 eq.) in 12.8 mL THF. After stirring for 3.5 hours stirring at room temperature, the reaction was quenched using saturated aqueous NH₄Cl solution. Purification by column chromatography (SiO₂, P/Et₂O = 5/1) yielded in 98% of cyclohexenone **14** (1.64 g, 6.82 mmol) as a colorless oil.

TLC: $R_{\rm f} = 0.33$ (P/Et₂O = 3/1) [UV/KMnO₄].

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.15 [s, 9H, Si(CH₃)₃], 1.72 (*virt.* p, ${}^{3}J \approx 7.3$ Hz, 2H, H-2'), 2.00 (*virt.* p, ${}^{3}J \approx 6.3$ Hz, 2H, H-5), 2.26 (t, ${}^{3}J = 7.0$ Hz, 2H, H-3'), 2.28-2.35 (m, 4H, H-4, H-1'), 2.37 (t, ${}^{3}J = 6.6$ Hz, 2H, H-6), 5.89 (s, 1H, H-2).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ (ppm) = 0.3 [q, Si(CH₃)₃], 19.6 (t, C-3'), 22.8 (t, C-5), 26.0 (t, C-2'), 29.8 (t, C-4), 37.0 (t, C-1'), 37.5 (t,C-6), 85.7 (s, C-5'), 106.3 (s, C-4'), 126.2 (d, C-2), 165.6 (s, C-3), 200.0 (s, C-1).

The obtained data match with those reported in the literature.^[9]

3-(Pent-4-yn-1-yl)cyclohex-2-en-1-one (15)

A solution of 1.20 g 3-(5-(trimethylsilyl)pent-4-yn-1-yl)cyclohex-2-en-1-one (**14**) (5.12 mmol, 1.00 eq.) in 5.0 mL dry THF was cooled to 0 °C and 10.2 mL tetrabutylammonium fluoride (1.0 M in THF, 2.68 g, 10.2 mmol, 2.00 eq.) were slowly added. After stirring for five hours 20 mL water were added. The aqueous phase was extracted using Et_2O (4×20 mL), combined organic layers were dried over Na₂SO₄, filtered and the solvent was removed in vacuo. After

purification by column chromatography (SiO₂, P/Et₂O = $3/1 \rightarrow 2/1$) the deprotected alkyne **15** was obtained as a colorless oil in 89% yield (742 mg, 4.57 mmol).

TLC: $R_f = 0.17$ (P/Et₂O = 3/1) [UV/KMnO₄].

¹**H** NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 1.74 (*virt*. p, ${}^{3}J \approx$ 7.0 Hz, 2H, H-2'), 1.96-.2.04 (m, 3H, H-5, H-5'), 2.23 (td, ${}^{3}J$ = 6.9 Hz, ${}^{4}J$ = 2.6 Hz, 2H, H-3'), 2.26-2.41 (m, 6H, H-4, H-6, H.1'), 5.89 (s, 1H, H-2).

¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 18.2 (t, C-3'), 22.9 (t, C-5), 25.8 (t, C-2'), 29.9 (t, C-4), 36.9 (t, C-1'), 37.5 (t,C-6), 69.3 (d, C-5'), 83.5 (s, C-4'), 126.2 (d, C-2), 165.3 (s, C-3), 199.8 (s, C-1).

The obtained data match with those reported in the literature.^[10]

8-(Pent-4-yn-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (16)

According to *GP1* 730 µg ketone **15** (4.50 mmol. 1.00 eq.), 676 µL propane dithiol (730 mg, 6.75 mmol, 1.50 eq.) and 684 µL BF₃·OEt₂ (766 mg, 5.40 mmol, 1.20 eq.) in 12 mL dry methanol were stirred for four hours at room temperature. After aqueous work up and column chromatography (SiO₂, P/Et₂O = 98/2) the title compound **16** was obtained as a yellowish oil in 92% yield (1.05 g, 4.14 mmol).

TLC: *R*_f = 0.21 (P/Et₂O = 98/2) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3290 (m, sp-CH), 3292 (s, sp³-CH), 1653 (m, C=C), 1424 (m, sp³-CH), 1274 (m, sp²-CH), 886 (m), 652 (m, C-S).

MS (EI, 70 eV): m/z (%) = 252 (7) [M]⁺, 177 (24), 150 (100) [C₉H₁₀S]⁺, 149 (36), 135 (36).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.66 (*virt*. p, ³*J* \approx 7.2 Hz, 2H, H-2'), 1.77-1.82 (m, 2H, H-10), 1.89 (dtt, ²*J* = 14.6 Hz, ³*J* = 6.1 Hz, ³*J* = 3.0 Hz, 1H, H-3), 1.95 (t, ⁴*J* = 2.7 Hz, 1H, H-5'), 1.99 (t, ³*J* = 5.7 Hz, 2H, H-9), 2.05 (dtt, ²*J* = 14.6 Hz, ³*J* = 6.1 Hz, ³*J* = 3.0 Hz, 1H, H-3), 2.10 (t, ³*J* = 7.6 Hz, 2H, H-1), 2.18 (td, ³*J* = 7.1 Hz, ⁴*J* = 2.7 Hz, 2H, H-3'), 2.20-2.22 (m,

2H, H-11), 2.76 (ddt, ${}^{2}J = 14.2$ Hz, ${}^{3}J = 6.1$ Hz, ${}^{3}J = 3.2$ Hz, 2H, H-2, H-4), 2.97 (ddt, ${}^{2}J = 14.2$ Hz, ${}^{3}J = 10.7$ Hz, ${}^{3}J = 3.0$ Hz, 2H, H-2 H-4), 5.55 (s, 1H, H-7).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 18.11 (t, C-3'), 19.9 (t, C-10), 25.1 (t, C-3), 26.3 (t, C-2'), 26.9 (t, C-2, C-4), 28.7 (t, C-9), 35.9 (t, C-11), 36.6 (t, C-1'), 48.9 (s, C-6), 68.7 d, C-5'), 84.4 (s, C-4'), 124.0 (d, C-7), 141.4 (s, C-8).

HRMS (EI, 70 eV): calculated: (C₁₄H₂₀S₂): 252.1001; found: 252.0995.

8-(Hex-4-yn-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1d)

A solution of 300 mg 8-(pent-4-yn-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (**16**) (1.19 mmol, 1.00 eq.) in 12 mL dry THF was cooled to -78 °C. After dropwise addition of 713 µL *n*-BuLi (2.5 M in hexane, 114 mg, 1.78 mmol, 1.50 eq.) the reaction mixture was stirred for 1.5 hours and 295 µL methyl iodine (674 mg, 4.75 mmol, 4.00 eq.) were added. After stirring for 1.5 hours at -78 °C and additional 1.5 hours at room temperature 15 mL water were added. Aqueous phase was extracted using Et₂O (3×20 mL), combined organic layers were dried over Na₂SO₄, filtered and solvent was removed in vacuo. Purification by column chromatography (SiO₂, P/Et₂O = 98/2) yielded in 97% of product **1d** (308 mg, 1.16 mmol) as a colorless oil.

TLC: $R_f = 0.31$ (P/Et₂O = 98/2) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2933 (s, sp³-CH), 2190 (w, C=C), 1653 (w, C=C), 1423 (m, sp³-CH), 1273 (m), 885 (m).

MS (EI, 70 eV): m/z (%) = 266 (8), [M]⁺, 238 (15) [M-C₂H₄]⁺, 207 (27), 191 (31), 164 (100), [C₁₀H₁₂S]⁺, 149 (35) [C₉H₉S]⁺.

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.60 (*virt*. q, ${}^{3}J \approx 7.4$ Hz, 2H, H-2'), 1.76-1.81 (m, 2H, H-10), 1.78 (t, ${}^{5}J = 2.5$ Hz, 3H, H-6'), 1.89 (dtt, ${}^{2}J = 13.9$ Hz, ${}^{3}J = 10.8$ Hz, ${}^{3}J = 3.2$ Hz, 1H, H-3), 1.99 (td, ${}^{3}J = 6.3$ Hz, ${}^{4}J = 1.5$ Hz, 2H, H-9), 2.01-2.05 (m, 1H, H-3), 2.05-2.10 (m, 2H, H-1'), 2.09-2.13 (m, 2H, H-3), 2.20 (tq, ${}^{3}J = 6.1$ Hz, ${}^{4}J = 2.5$ Hz, 2H, H-11), 2.75 (ddd,

 ${}^{2}J = 14.2$ Hz, ${}^{3}J = 6.1$ Hz, ${}^{3}J = 3.2$ Hz, 2H, H-2, H-4), 2.97 (ddd, ${}^{2}J = 14.2$ Hz, ${}^{3}J = 10.8$ Hz, ${}^{3}J = 2.8$ Hz, 2H, H-2, H-4), 5.51-5.53 (m, 1H, H-7).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ (ppm) = 3.5 (q, C-6'), 18.5 (t, C-3'), 19.9 (t, C-10), 25.1 (t, C-3), 26.9 (t, C-2'), 26.9 (t, C-2, C-4), 28.8 (t, C-9), 36.0 (t, C-11), 36.8 (t, C-1'), 49.0 (s, C-6), 76.0 (s, C-5'*), 79.0 (s, C-4'*), 123.6 (d, C-7), 141.9 (s, C-8).

* assignment is interconvertible

HRMS (EI, 70 eV): calculated: (C₁₅H₂₂³²S₂): 266.1157; found: 266.1155,

calculated: (C₁₄¹³CH₂₂³²S₂): 267.1191; found: 267.1192.

3-Ethoxycyclopent-2-en-1-one (17)

In dry toluene (28 mL) 2.00 g cyclopentane-1,3-dione (20.4 mmol, 1.00 eq.), 9.15 mL ethanol (154 mmol, 7.6 eq.) and 71.0 mg *para*-toluenesulfonic acid monohydrat (407 μ mol, 2.0 mol-%) were stirred at 90 °C for 10 hours. After removal of volatile compounds in vacuo the crude product was subjected to column chromatography (SiO₂, CH₂Cl₂/EtOAc = 3/1). The title compound **17** was obtained in 99% yield (2.54 g, 20.1 mmol) as a colorless oil.

TLC: $R_f = 0.27$ (CH₂Cl₂/EtOAc = 3/1) [UV/KMnO₄].

¹**H NMR** (500 MHz, DMSO-d₆, 298 K): δ (ppm) = 1.31 (t, ³*J* = 7.1 Hz, 3H, OCH₂*C*H₃), 2.27-2.31 (m, 2H, H-4^{*}), 2.53-2.58 (m, 2H, H-5^{*}), 4.07 (q, ³*J* = 7.1 Hz, 2H, OCH₂CH₃), 5.36 (s, 1H, H-2).

¹³C NMR (126 MHz, DMSO-d₆, 300 K): δ (ppm) = 14.1 (q, OCH₂CH₃), 27.9 (t, C-4*), 33.8 (t, C-5*), 67.5 (t, OCH₂CH₃), 104.4 (d, C-2), 189.9 (s, C-3), 204.6 (s, C-1).

* assignment is interconvertible

The obtained data match with those reported in the literature.^[11]

3-(Pent-4-en-1-yl)cyclopent-2-en-1-one (9e)

The synthesis was carried out according to *GP1* using 250 mg magnesium (10.3 mmol, 1.30 eq.), 1.27 mL 5-bromopentene (1.59 g, 10.7 mmol, 1.35 eq.) in dry THF (11 mL) and 1.00 g vinylogous ester **17** (7.93 mmol, 1.00 eq.) in dry THF (9 mL). The reaction mixture was stirred for 20 hours. After column chromatography (SiO₂, P/Et₂O = 3/1) the enone **9e** was obtained as a yellowish oil in 70% yield (755 mg, 7.0 mmol).

TLC: $R_f = 0.26$ (P/Et₂O = 2/1) [UV/KMnO₄].

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.69 (*virt*. p, ³*J* \approx 7.5 Hz, 2H, H-2'), 2.12 (*virt*. q, ³*J* \approx 7.1 Hz, 2H, H-3'), 2.38-2.45 (m, 4H, H-5, H-1'), 2.55-2.60 (m, 2H, H-4), 4.98-5.06 (m, 2H, H-5'), 5.80 (ddt, ³*J* = 17.0 Hz, ³*J* = 10.2 Hz, ³*J* = 6.7 Hz, 1H, H-4'), 5.95 (s, 1H, H-2).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 26.3 (t, C-2'), 31.7 (t, C-4), 32.9 (t, C-1'), 33.4 (t, C-3'), 35.4 (t, C-5), 115.6 (t, C-5'), 129.7 (d, C-4'), 182.9 (s, C-3), 210.3 (s, C-5).

The obtained data match with those reported in the literature.^[12]

2-(Pent-4-en-1-yl)-6,10-dithiaspiro[4.5]dec-1-ene (1e)

Following *GP2* 300 mg 3-(pent-4-en-1-yl)cyclopent-2-en-1-one (**9e**) (2.00 mmol, 1.00 eq.), 300 μ L 1,3-propandithiol (324 mg, 3.00 mmol, 1.5 eq.) and 304 μ L boron trifluoride diethyl etherate (340 mg, 2.40 mmol, 1.2 eq.) were stirred in dry methanol (10 mL) for three hours.

After column chromatography (SiO₂, P/Et₂O = 99.5/0.5 \rightarrow 99/1) the irradiation precursor **1e** was obtained as a colorless oil in 56% yield (256 mg, 1.12 mmol).

TLC: $R_f = 0.28$ (P/Et₂O = 99/1) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3074 (w, sp²-CH), 2940 (s, sp³-CH), 1640 (m, C=C), 1422 (m, sp³-CH), 1272 (m), 907 (m, sp²-CH).

MS (EI, 70 eV): m/z (%) = 240 (100) [M]⁺, 199 (22) [M-C₃H₅]⁺, 186 (58), 166 (49) [C₁₀H₁₄S]⁺, 124 (74), 91 (68).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.57 (*virt.* p, ³J = 7.7 Hz, 2H, H-2'), 1.99-2.17 (m, 6H, H-3, H-1', H-3'), 2.43-2.54 (m, 4H, H-9, H-10), 2.88-2.98 (m, 4H, H-2, H-4), 4.96 (ddt, ²J = 2.2 Hz, ³J = 10.2 Hz, ⁴J = 1.2 Hz, 1H, H-5'a), 5.01 (*virt.* dq, ³J = 17.0 Hz, ²J \approx ⁴J \approx 1.6 Hz, 1H, H-5'b), 5.63 (s, 1H, H-7), 5.80 (ddt, ³J = 17.0 Hz, ³J = 10.2 Hz, ³J = 6.7 Hz, 1H, H-4').

¹³C NMR (126 MHz, CDCl₃, 300 K): δ (ppm) = 25.2 (t, C-3), 26.6 (t, C-2'), 28.8 (t, C-2, C-4), 30.5 (t, C-1'), 33.5 (t, C-3'), 34.3 (t, C-9^{*}), 41.4 (t, C-10^{*}), 59.8 (s, C-6), 115.0 (t, C-5'), 126.8 (d, C-7), 138.6 (d, C-4'), 147.4 (s, C-8).

* assignment is interconvertible

HRMS (EI, 70 eV): calculated: (C₁₃H₂₀³²S₂): 240.1001; found: 240.1003,

calculated: (C₁₂¹³CH₂₀³²S₂): 241.1035; found: 241.1032.

3-Ethoxy-5-methylcyclohex-2-en-1-one (18)

A solution of 2.50 g 5-methylcyclohexane-1,3-dione (19.8 mmol, 1.00 eq.), 11.6 mL ethanol (198 mmol, 10.0 eq.) and 75.4 mg pTsOH·H₂O (396 µmol, 2.0 mol%) in 25 mL toluene was stirred at 85°C for six hours. All volatile compounds were removed in vacuo and the product purified using column chromatography (SiO₂, P/Et₂O = 1/2). Vinylogous ester **18** was obtained as a yellowish oil in 82% yield (2.51 g, 16.3 mmol).

TLC: $R_f = 0.51$ (P/Et₂O = 1/2) [UV/KMnO₄].

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.07 (d, ³*J* = 6.3 Hz, 3H, CHC*H*₃), 1.36 (t, ³*J* = 7.0 Hz, 3H, OCH₂C*H*₃), 2.03 (dd, ²*J* = 16.3 Hz, ³*J* = 11.4 Hz, 1H, H-6), 2.10-2.18 (m, 1H, H-4), 2.18-2.29 (m, 1H, H-5), 2.36-2.41 (m, 2H, H-4, H-6), 3.83-3.95 (m, 2H, OC*H*₂CH₃), 5.33 (s, 1H, H-2).

¹³**C-NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 14.3 (q, OCH₂CH₃), 21.1 (q, CHCH₃), 29.0 (d, C-5), 37.4 (t, C-4), 45.3 (t, C-6), 64.4 (t, OCH₂CH₃), 102.5 (d, C-2), 177.4 (s, C-3), 199.9 (s, C-1).

The obtained data match with those reported in the literature.^[13]

5-Methyl-3-(pent-4-en-1-yl)cyclohex-2-en-1-one (9f)

According to *GP1* this *Grignard*-reaction was carried out using 143 mg magnesium (5.45 mmol, 1.30 eq.), 725 μ L 5-bromopent-1-en (913 mg, 6.13 mmol, 1.35 eq.) in 9.2 mL dry THF and 700 mg vinylogous ester **18** (6.13 mmol, 1.00 eq.). The reaction was quenched after 21 hours by addition of 20 mL saturated aqueous ammonium chloride solution. Usual work up and column chromatography (SiO₂, P/Et₂O = 5/1) yielded in 47% of the title compound **9f** (380 mg, 2.13 mmol) as a colorless oil.

TLC: $R_f = 0.27$ (P/Et₂O = 5/1) [UV/KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3077 (w, sp²-CH), 2654 (m, sp³-CH), 1666 (s, C=O), 1626 (m, C=C), 911 (m), 799 (m).

MS (EI, 70 eV): m/z (%) = 178 (21) [M]⁺, 163 (9) [M-CH₃]⁺, 136 (50) [C₉H₁₂O]⁺, 108 (61) [C₇H₈O]⁺, 82 (100) [C₇H₈O-C₂H₄]⁺, 93 (32).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.06 (d, ³*J* = 6.6 Hz, 3H, C*H*₃), 1.57-1.65 (m, 2H, H-2'), 1.97-2.06 (m, 2H, H-4, H-6), 2.07-2.11 (m, 2H, C-3'), 2.12-2.9 (m, 1H, H-5), 2.21 (t, ³*J* = 8.0 Hz, 2H, H-1'), 2.30 (dd, ²*J* = 17.6 Hz, ³*J* = 4.1 Hz, 1H, H-4), 2.43 (dd, ²*J* = 16.2 Hz, ³*J* = 3.7 Hz, 1H, H-6), 4.96-5.06 (m, 2H, H-5'), 5.79 (ddt, ³*J* = 16.9 Hz, ³*J* = 10.2 Hz, ³*J* = 6.7 Hz, 1H, H-4'), 5.87 (*br* s, 1H, H-2).

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 21.3 (q, CH₃), 26.2 (t, C-2'), 30.4 (d, C-5), 33.3 (t, C-3'), 37.4 (t, C-1'), 38.3 (t, C-4), 45.7 (t, C-6), 115.4 (t, C-5'), 125.6 (d, C-2), 138.0 (d, C-4'), 165.6 (s, C-3), 200.4 (s, C-1).

HRMS (EI, 70 eV): calculated: (C₁₂H₁₈O): 178.1352; found: 178.1347.

10-Methyl-8-(pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1f)

Following *GP3* the title compound was prepared using 240 mg 5-methyl-3-(pent-4-en-1-yl)cyclohex-2-en-1-one (**9f**) (1.1 mmol, 1.0 eq.), 0.21 mL 1,3-propanedithiol (0.22 g, 1.7 mmol, 1.5 eq.) and 0.21 mL BF₃·OEt₂ (1.4 mmol, 1.2 eq.) in 7.7 mL dry methanol in 2.5 hours. After work up and column chromatography product **1f** was obtained as a colorless oil in 66% yield (342 mg, 0.73 mmol).

TLC: $R_f = 0.32$ (P/Et₂O = 99/1) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3074 (w, sp²-CH), 2904 (s, sp³-CH), 1654 (m, C=C), 1422 (s, sp³-CH), 902 (s), 888 (s, CSC).

MS (EI, 70 eV): m/z (%) = 268 (53) [M]⁺, 227 (10) [M-C₃H₅]⁺, 193 (45) [C₁₂H₁₇S]⁺, 152 (100) [C₁₂H₁₇S-C₃H₅]⁺, 137 (28) [C₁₂H₁₇S-C₃H₅-CH₃], 105 (31).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.00 (d, ³*J* = 6.4 Hz, 3H, C*H*₃), 1.47-1.59 (m, 3H, H-9, H-2',H-2'), 1.62-1.72 (m, 1H, H-11), 1.90 (*virt.* dtt, ²*J* = 13.8 Hz, ³*J* \approx 10.5 Hz, ³*J* \approx 3.2 Hz, 1H, H-3), 1.96-2.09 (m, 7H, H-3, H-10, H-11, H-1', H-1', H-3', H-3'), 2.51 (ddt, ²*J* = 13.3 Hz, ³*J* = 2.7 Hz, ⁴*J* = 1.6 Hz, 1H, H-9), 2.71 (ddd, ²*J* = 14.3 Hz, ³*J* = 6.0 Hz, ³*J* = 3.1 Hz, 1H, H-2), 2.83 (ddd, ²*J* = 14.7 Hz, ³*J* = 6.3 Hz, ³*J* = 3.3 Hz, 1H, H-4), 2.92-3.03 (m, 2H, H-2, H-4), 4.95 (ddt, ²*J* = 2.1 Hz, ³*J* = 10.2 Hz, ⁴*J* = 1.2 Hz, 1H, H-5'a), 5.01 (*virt.* qd, ²*J* \approx ⁴*J* \approx 1.6 Hz, ³*J* = 17.0 Hz, 1H, H-5'b), 5.52 (s, 1H, H-7), 5.79 (ddt, ³*J* = 17.0 Hz, ³*J* = 10.2 Hz, ³*J* = 10.2 Hz, ³*J* = 6.7 Hz, 1H, H-4').

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 21.6 (q, CH₃), 25.1 (t, C-3), 26.3 (t, C-4*), 26.5 (t, C-2'*), 26.6 (d, C-10), 27.4 (t, C-2), 33.4 (t, C-3'), 36.9 (t, C-1'), 37.7 (t, C-11), 44.5 (t, C-9), 49.6 (s, C-6), 114.9 (t, C-5'), 123.1 (d, C-7), 138.8 (d, C-4'), 141.8 (s, C-8).

* assignment is interconvertible

HRMS (EI, 70 eV): calculated: (C₁₅H₂₄S₂): 268.1314; found: 268.1307.

3-Ethoxy-6-methylcyclohex-2-en-1-one (19)

This compound was synthesized following literate procedure.^[13] To a solution of 2.43 mL diisopropylamine (1.73 g, 17.1 mmol, 1.20 eq.) in 8.6 ml dry THF were added 6.85 mL *n*-BuLi (2.5 M in hexane, 1.10 g, 17.1 mmol, 1.20 eq.) at -78 °C. After complete addition the mixture was allowed to warm to 0 °C. Freshly prepared LDA was added dropwise to a solution of 2.08 mL 3-ethoxycyclohexenone (2.00 g, 14.0 mmol, 1.00 eq.) in 14 mL dry THF at -78 °C. After stirring for two hours 1.06 mL MeI (2.43 g, 17.1 mmol, 1.20 eq.) were added. The reaction mixture was allowed to warm to room temperature and was stirred for an additional hour, before 10 mL of saturated aqueous ammonium chloride solution were added. The aqueous phase was extracted four times with Et₂O. The combined organic layers were dried over Na₂SO₄, filtered and the solvent was removed in vacuo. After column chromatography (SiO₂, P/Et₂O = 10/1 \rightarrow 5/1 \rightarrow 4/1 \rightarrow 3/1 \rightarrow 2/1) the title compound **19** was obtained as a colorless oil in 96% yield (2.12 g, 13.7 mmol).^[14]

TLC: $R_f = 0.22 (P/Et_2O = 3/1) [UV].$

¹**H-NMR** (400 MHz, CDCl₃, 298 K): δ (ppm) = 1.14 (d, ³*J* = 6.9 Hz, 3H, C*H*₃), 1.35 (t, ³*J* = 7.0 Hz, 3H, OCH₂C*H*₃), 1.69 (*virt*. dtd, ²*J* = 13.3 Hz, ³*J* ≈ 10.6 Hz, ³*J* = 5.3 Hz, 1H, H-5), 2.04 (*virt*. dq, ²*J* = 13.3 Hz, ³*J* ≈ 4.9 Hz, 1H, H-5), 2.28 (dqd, ³*J* = 11.5 Hz, ³*J* = 6.9 Hz, ³*J* = 4.8 Hz, 1H, H-6), 2.38 (*virt*. dt, ²*J* = 17.0 Hz, ³*J* ≈ 5.0 Hz, 1H, H-4), 2.47 (dddd, ²*J* = 17.0 Hz, ³*J* = 10.5 Hz, ³*J* = 5.1 Hz, ⁴*J* = 1.0 Hz, 1H, H-4), 3.81-3.94 (m, 2H, OC*H*₂CH₃), 5.31 (s, 1H, H-2).

¹³**C-NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 14.3 (q, OCH₂CH₃), 15.5 (q, CH₃), 28.6 (t, C-4), 29.4 (t, C-5), 40.3 (d, C-6), 64.3 (t, OCH₂CH₃), 102.2 (d, C-2), 177.0 (s, C-3), 202.2 (s, C-1).

The obtained data match with those reported in the literature.^[14]

4-Methyl-3-(pent-4-en-1-yl)cyclohex-2-en-1-one (9g)

Following *GP1* 4-methyl-3-(pent-4-en-1-yl)cyclohex-2-en-1-one (**9g**) was synthesized using 113 mg magnesium (4.65 mmol, 1.30 eq.), 639 mL 5-bromopent-1-ene (719 mg, 4.83 mmol, 1.35 eq.) dissolved in 6.4 mL THF and 600 mg vinylogous ester **19** (3.90 mmol, 1.00 eq.) in 6.0 mL THF. The reaction was quenched after 21 hours. After column chromatography (SiO₂, $P/Et_2O = 2/1 \rightarrow 4/1$) the title compound **9g** was obtained as a colorless oil in 85% yield (539 mg, 3.02 mmol).

TLC: $R_f = 0.30 (P/Et_2O = 5/1) [UV/KMnO_4].$

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3078 (w, sp²-CH), 2933 (m, sp³-CH), 1670 (s, C=O), 1623 (m, O=C-C=C), 1457 (m, sp³-CH), 1417 (m, sp²-CH), 880 (m, C=C).

MS (EI, 70 eV): m/z (%) = 178 (9) [M]⁺, 163 (23) [M-CH₃]⁺, 150 (7) [M-C₂H₇]⁺, 136 (100) [M-C₃H₅]⁺, 96 (82) [M-C₂H₄-C₄H₇]⁺.

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.19 (d, ³*J* = 7.1 Hz, 3H, C*H*₃), 1.54-1.60 (m, 1H, H-2'), 1.60-1.68 (m, 1H, H-2'), 1.78 (*virt*. ddt, ²*J* = 13.3 Hz, ³*J* = 6.7 Hz, ³*J* \approx 3.2 Hz, 1H, H-5), 2.05-2.15 (m, 3H, H-5, H-3', H-3'), 2.20-2.26 (m, 2H, H-1'), 2.32 (ddd, ²*J* = 17.1 Hz, ³*J* = 6.7 Hz, ³*J* = 4.9 Hz, 1H, H-6), 2.40-2.46 (m, 1H, H-4), 2.49 (ddd, ²*J* = 17.1 Hz, ³*J* = 10.6 Hz, ³*J* = 4.9 Hz, 1H, H-6), 4.97-5.00 (m, 1H, H-5'a), 5.04 (*virt*. qd, ²*J* \approx ³*J* \approx 1.6 Hz, ³*J* = 17.4 Hz, 1H, H-5'b), 5.74-5.84 (m, 1H, H-4'), 5.82 (s, 1H, H-2).

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 18.0 (q, CH₃), 26.4 (t, C-2'), 30.4 (t, C-5), 33.2 (t, C-4), 33.4 (t, C-3') 34.4 (t, C-6), 35.0 (t, C-1'), 115.4 (t, C-5'), 25.2 (d, C-2), 138.0 (d, C-4'), 170.4 (s, C-3), 199.9 (s, C-1).

HRMS (EI, 70 eV): calculated: (C₁₂H₁₈O): 178.1352; found: 178.1357,

calculated: (C₁₁¹³CH₁₈O): 179.1386; found: 179.1396.

9-Methyl-8-(pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1g)

Following *GP2* 200 mg 4-methyl-3-(pent-4-en-1-yl)cyclohex-2-en-1-one (1.12 mmol, 1.00 eq.) were dissolved in 3.0 mL MeOH and 168 μ L 1,3-propanedithiol (182 mg, 1.68 mmol, 1.50 eq.) and 171 μ L boron trifluoride diethyl etherate (191 mg, 1.35 mmol, 1.30 eq.) were added. The reaction was quenched after three hours. After column chromatography (SiO₂, P/Et₂O = 99/1) dithiane **1g** was obtained as a colorless oil in 90% yield (0.27g, 1.0 mmol).

TLC: $R_f = 0.27$ (P/Et₂O = 98/2) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3074 (w, sp²-CH), 2932 (s, sp²-CH), 1640 (m, C=C), 1441 (m, sp³-CH), 909 (m, sp³-CH).

MS (EI, 70 eV): m/z (%) = 268 (24) [M]⁺, 193 (28), 179 (5) [C₁₁H₁₅S]⁺, 152 (100), 137 (15), 91 (19).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.03 (d, ${}^{3}J$ = 7.1 Hz, 3H, CH₃), 1.44-1.66 (m, 3H, H-10, H-2', H-2'), 1.85-1.94 (m, 2H, H-3, H-10), 1.95-2.01 (m, 1H, H-1'), 2.01-2.12 (m, 4H, H-3, H-11, H-1', H-3'), 2.14-2.21 (m, 2H, H-9, H-3'), 2.28 (ddd, ${}^{2}J$ = 12.6 Hz, ${}^{3}J$ = 9.3 Hz, ${}^{3}J$ = 3.0 Hz, 1H, H-11), 2.71-2.78 (m, 2H, H-2, H-4), 2.94-3.02 (m, 2H, H-2, H-4), 4.95 (*virt.* ddt, ${}^{2}J$ = 2.2 Hz, ${}^{3}J$ = 10.2 Hz, ${}^{4}J$ ≈ 1.2 Hz, 1H, H-5'a), 5.01 (*virt.* dq, ${}^{2}J$ ≈ ${}^{3}J$ ≈ 1.6 Hz, ${}^{3}J$ = 17.0 Hz, 1H, H-5'b), 5.47 (s, 1H, H-7), 5.80 (ddt, ${}^{3}J$ = 17.0 Hz, ${}^{3}J$ = 10.2 Hz, ${}^{3}J$ = 6.7 Hz, 1H, H-4').

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 19.3 (q, *C*H₃), 25.1 (C-3), 26.9 (t, C-2, C-4), 27.0 (t, C-2'), 28.3 (t, C-10), 32.1 (d, C-9), 33.5 (t, C-3'), 33.5 (t, C-11), 34.4 (t, C-1'), 49.2 (s, C-6), 114.9 (t, C-5'), 123.4 (d, C-7), 138.8 (d, C-4'), 146.4 (s, C-8).

HRMS (EI, 70 eV): calculated: (C₁₅H₂₄³²S₂): 268.1314; found: 268.1309,

calculated: (C₁₄¹³CH₂₄³²S₂): 269.1348; found: 269.1343.

3-Ethoxy-6-ethylcyclohex-2-en-1-one (20)

To a solution of 2.42 mL diisopropylamine (1.73 g, 17.1 mmol, 1.20 eq.) in 8.6 ml dry THF were added 6.85 mL n-BuLi (2.5 M in hexane, 1.10 g, 17.1 mmol, 1.20 eq.) at 0 °C. After stirring for 30 minutes, LDA was added dropwise to a solution of 2.08 mL 3-Ethoxycyclohexenone (2.00 g, 14.3 mmol, 1.00 eq.) in 13 mL dry THF at -78°C. After stirring for two hours 1.37 mL ethyl iodine (2.67 g, 17.1 mmol, 1.20 eq.) were added. The reaction mixture was allowed to warm to room temperature. After stirring for 14 hours 10 mL of saturated aqueous ammonium chloride solution were added, the aqueous phase was extracted four times with Et₂Oand the combined organic layers were dried over NaSO₄, filtered and the solvent was removed in After column chromatography $(SiO_2,$ vacuo. $P/Et_2O = 6/1 \rightarrow 5/1 \rightarrow 4/1 \rightarrow 3/1 \rightarrow 2/1$) the title compound **20** was obtained as a colorless oil in 61% yield (1.47 g, 8.74 mmol).

TLC: $R_f = 0.19$ (P/Et₂O = 3/1) [UV/KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2937 (w, sp₃-CH), 1651 (s, O=C-C=C), 1604 (s, C=C), 1377 (m, sp³-CH), 1184 (s, C-O), 814 (m).

MS (EI, 70 eV): m/z (%) = 168 (39) [M]⁺, 140 (100) [M-C₂H₄]⁺, 112 (53) [M-C₄H₈]⁺, 84 (64), 69 (48).

¹**H-NMR** (300 MHz, CDCl₃, 298 K): δ (ppm) = 0.94 (t, ³*J* = 7.5 Hz, 3H, CHCH₂CH₃), 1.35 (t, ³*J* = 7.0 Hz, 3H, OCH₂CH₃), 1.45 (*virt.* dq, ²*J* = 14.5 Hz, ³*J* \approx 7.5 Hz, 1H, CHCH₂CH₃), 1.68-1.79 (m, 1H, H-5), 1.81-1.96 (m, 1H, CHCH₂CH₃), 2.00-2.18 (m, 2H, H-5, H-6), 2.39-2.44 (m, 2H, H-4), 3.88 (q, ³*J* = 7.0 Hz, 2H, OCH₂CH₃), 5.30 (s, 1H, H-2).

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 11.7 (q, CHCH₂CH₃), 14.3 (q, OCH₂CH₃), 22.6 (t, CHCH₂CH₃), 25.8 (t, C-5), 28.1 (t, C-4), 46.7 (d, C-6), 64.3 (t, OCH₂CH₃), 102.4 (d, C-2), 176.9 (s, C-3), 201.9 (s, C-1).

HRMS (EI, 70 eV): calculated: (C₁₀H₁₆O₂): 168.1145; found: 168.1146.

4-Ethyl-3-(pent-4-en-1-yl)cyclohex-2-en-1-one (9h)

According to *GP1* 4-ethyl-3-(pent-4-en-1-yl)cyclohex-2-en-1-one (**9g**) was prepared using 116 mg magnesium (4.79 mmol, 1.30 eq.), 658 μ L 5-bromopent-1-ene (741 mg, 4.98 mmol, 1.35 eq.) in 6.4 mL THF and 620 mg vinylogous ester **20** (3.69 mmol, 1.00 eq.) in 6 mL THF. The reaction was quenched after 20 hours. After column chromatography (SiO₂, P/Et₂O = 4/1) the title compound **9h** was obtained as a colorless oil in 80% yield (570 mg, 2.96 mmol).

TLC: $R_f = 0.25$ (P/Et₂O = 4/1) [UV/ KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3074 (w, sp²-CH), 2931 (m, sp³-CH), 1670 (s, C=O), 1460 (m, sp³-CH), 1247 (m), 912 (m, sp²-CH), 882 (m, C=C).

MS (EI, 70 eV): m/z (%) = 192 (11) [M]⁺, 177 (4) [M-CH₃]⁺, 163 (35) [M-C₂H₅]⁺, 136 (100) [M-C₄H₈]⁺, 121 (40), 82 (71).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.00 (t, ${}^{3}J = 7.3$ Hz, 3H, CH₂CH₃), 1.42-1.49 (m, 1H, CH₂CH₃), 1.51-1.59 (m, 1H, H-2'), 1.61-1.70 (m, 2H, H-2', CH₂CH₃), 1.92-1.98 (m, 1H, H-5), 1.99-2.04 (m, 1H, H-5), 2.05-2.13 (m, 2H , H-3'), 2.17 (*virt.* dq, ${}^{3}J = 8.7$ Hz, ${}^{3}J \approx 4.3$ Hz, 1H, H-4), 2.21-2.26 (m, 2H, H-1'), 2.29 (*virt.* dt, ${}^{2}J = 17.2$ Hz, ${}^{3}J \approx 5.1$ Hz, 1H, H-6), 2.44 (ddd, ${}^{2}J = 17.2$ Hz, ${}^{3}J = 11.5$ Hz, ${}^{3}J = 5.3$ Hz, 1H, H-6), 4.99 (ddt, ${}^{2}J = 2.0$ Hz, ${}^{3}J = 10.2$ Hz, ${}^{4}J = 1.2$ Hz, 1H, H-5'a), 5.02 (*virt.* dq, ${}^{3}J = 17.0$ Hz, ${}^{3}J \approx 1.6$ Hz, 1H, H-5'b), 5.80 (ddt, ${}^{3}J = 17.0$ Hz, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 6.2$ Hz, 1H, H-4'), 5.82 (s, 1H, H-2).

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 12.7 (q, CH₂CH₃), 24.0 (t, CH₂CH₃), 25.6 (t, C-5), 26.6 (t, C-2'), 33.4 (t, C-3'), 33.7 (t, C-6), 35.3 (t, C-1'), 39.9 (d, C-4), 115.4 (t, C-5'), 125.4 (d, C-2), 138.0 (d, C-4'), 170.1 (s, C-3), 199.9 (s, C-1).

HRMS (EI, 70 eV): calculated: (C₁₃H₂₀O): 192.1509; found: 192.1495.

9-Ethyl-8-(pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1h)

According to *GP2* dithiane formation was carried out using 214 mg 4-ethyl-3-(pent-4-en-1-yl)cyclohex-2-en-1-one (**9h**) (1.11 mmol, 1.00 eq.), 167 μ L propanedithiol (180 mg, 1.67 mmol, 1.50 eq.) and 190 μ L BF₃·OEt₂ (169 mg, 1.34 mmol, 1.20 eq.) in 6.2 mL methanol. The reaction mixture was stirred for 2.5 hours before quenching. After purification using column chromatography (SiO₂, P/CH₂Cl₂ = 4/1) the irradiation precursor **1h** was obtained as a colorless oil in 42% yield (132 mg, 46.7 mmol).

TLC: $R_f = 0.29 (P/CH_2Cl_2 = 4/1) [KMnO_4].$

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3074 (w, sp²-CH), 2931 (s, sp³-CH), 1640 (m, C=C), 1441 (m, sp³-CH), 1273 (m), 907 (s, sp²-CH), 872 (s).

MS (EI, 70 eV): m/z (%) = 282 (30) [M]⁺, 241 (8) [M-C₃H₅]⁺, 207 (38) [C₁₃H₁₉S]⁺, 152 (100) [C₁₃H₁₉S-C₄H₇]⁺, 119 (15), 91 (20).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.90 (t, ³*J* = 7.4 Hz, 3H, CH₂C*H*₃), 1.26 (ddq, ²*J* = 14.4 Hz, ³*J* = 9.5 Hz, ³*J* = 7.3 Hz, 1H, C*H*₂CH₃), 1.42-1.51 (m, 1H, H-2'), 1.51-1.56 (m, 1H, H-2'), 1.57-1.61 (m, 1H, C*H*₂CH₃), 1.68 (dddd, ²*J* = 14.4 Hz, ³*J* = 8.3 Hz, ³*J* = 5.7 Hz, ³*J* = 3.1 Hz, 1H, H-10), 1.82 (*virt*. ddt, ²*J* = 14.4 Hz, ³*J* = 9.3 Hz, ³*J* ≈ 3.1 Hz, 1H, H-10), 1.82 (*virt*. ddt, ²*J* = 14.4 Hz, ³*J* = 9.3 Hz, ³*J* ≈ 3.1 Hz, 1H, H-10), 1.86-1.93 (m, 1H, H-3), 1.95-2.01 (m, 2H, H-9, H-1'), 2.01-2.12 (m, 4H, H-3, H-1', H-3', H-3'), 2.16 (ddd, ²*J* = 13.3 Hz, ³*J* = 8.3 Hz, ³*J* = 3.1 Hz, 1H, H-11), 2.26 (ddd, ²*J* = 13.3 Hz, ³*J* = 9.3 Hz, ³*J* = 3.1 Hz, 1H, H-11), 2.74 (ddd, ²*J* = 14.2 Hz, ³*J* = 5.9 Hz, ³*J* = 3.1 Hz, 2H, H-2, H-4), 2.98 (ddd, ²*J* = 14.2 Hz, ³*J* = 10.9 Hz, ³*J* = 2.8 Hz, 2H, H-2, H-4), 4.95 (ddt, ²*J* = 2.1 Hz, ³*J* = 10.2 Hz, ⁴*J* = 1.1 Hz, 1H, H-5'a), 5.01 (*virt*. dq, ³*J* = 17.0 Hz, , ²*J* ≈ ⁴*J* ≈ 1.6 Hz, 1H, H-5'b), 5.49 (s, 1H, H-7), 5.80 (ddt, ³*J* = 17.0 Hz, ³*J* = 10.2 Hz, ³*J* = 6.7 Hz, 1H, H-4').

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 11.9 (q, CH₂CH₃), 23.6 (t, C-10), 24.9 (t, CH₂CH₃), 25.1 (t, C-3), 26.9 (t, C-2'), 27.1 (t, C-2), 27.1 (t, C-4), 33.3 (t, C-3'*), 33.5 (t, C-11*), 34.5 (t, C-1'), 38.5 (d, C-9), 49.1 (s, C-6), 114.8 (t, C-5'), 124.1 (d, C-7), 138.8 (d, C-4'), 145.7 (s, C-8).

* assignment is interconvertible

HRMS (EI, 70 eV): calculated: (C₁₂H₂₆³²S₂): 282.1470; found: 282.1476.

Methyl 3-methylpent-4-enoate (21)

This compound was prepared following literature procedure.^[15] A solution of 8.28 mL but-2en-1-ol (7.00 g, 97.1 mmol, 1.00 eq.), 12.4 mL trimethyl orthoacetate (11.7 g, 97.1 mmol, 1.00 eq.) and 436 μ L propionic acid (431 mg, 5.82 mmol, 6.0 mol-%) was stirred at 135 °C until distillation of methanol was complete. After stirring for five hours at 145 °C the mixture was cooled to room temperature, the organic layer was washed with saturated aqueous NaHCO₃ solution (3×40 mL), dried over Na₂SO₄ and filtered. Volatile compounds were removed in vacuo. The title compound **21** was obtained by distillation (115°C, 400 mbar) as a colorless oil in 50% yield (6.16 g, 48.1 mmol).

B.P.: 115°C (400 mbar).

¹**H-NMR** (300 MHz, CDCl₃, 298 K): δ (ppm) = 1.05 (d, ${}^{3}J$ = 6.8 Hz, 3H, CHC*H*₃), 2.21-2.41 (m, 2H, H-2), 2.60-2.76 (m, 1H, H-3), 3.66 (s, 3H, COOC*H*₃), 4.91-5.12 (m, 2H, H-5), 5.77 (ddd, ${}^{3}J$ = 17.3 Hz, ${}^{3}J$ = 10.4 Hz, ${}^{3}J$ = 6.9 Hz, 1H, H-4).

¹³**C-NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 19.9 (q, CH*C*H₃), 34.5 (d, C-3), 41.5 (t, C-2), 51.6 (q, COO*C*H₃), 112.5 (t, C-5), 142.6 (d, C-4), 173.1 (s, C-1).

The obtained data match with those reported in the literature.^[16]

3-Methylpent-4-en-1-ol (22)

To a suspension of 1.82 g LiAlH₄ (48.6 mmol, 1.00 eq.) in 120 mL dry THF at 0 °C was a solution of 6.16 g ester **21** (48.6 mmol, 1.00 eq.) in 20 mL THF added dropwise. The mixture was allowed to warm to room temperature and was stirred for 19 hours before 2 mL ethyl acetate, 2.4 mL water, 1.5 mL NaOH (2 M in water) and 2.4 mL water were added carefully at 0 °C. The precipitate was removed by filtration over a short pad of celite and washed with

diethyl ether. The filtrate was diluted with 20 mL water and was extracted using diethyl ether (5×30 mL). The combined organic layers were dried over Na₂SO₄, filtered and the solvent was removed in vacuo. After purification by column chromatography (SiO₂, P/Et₂O = 2/1) alcohol **22** was obtained as a colorless oil in 75% yield (3.56 g, 35.5 mmol).

TLC: $R_f = 0.21$ (P/Et₂O = 4/1) [KMnO₄].

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.20 (d, ³*J* = 6.8 Hz, 3H, C*H*₃), 1.38 (*br.* s, 1H, O*H*), 1.52-1.62 (m, 2H, H-2), 2.30 (*virt.* hept, ³*J* \approx 7.2 Hz, 2H, H-3), 3.66 (td, ³*J* = 6.6 Hz, ⁴*J* = 1.6 Hz, 2H, H-1), 4.94 (ddd, ²*J* = 1.7 Hz, ³*J* = 10.3Hz, ⁴*J* = 0.7 Hz, 1H, H-5a), 5.04 (*virt.* dt, ³*J* = 17.4 Hz, ²*J* \approx ⁴*J* \approx 1.4 Hz, 1H, H-5b), 5.72 (ddd, ³*J* = 17.4 Hz, ³*J* = 10.3 Hz, ³*J* = 7.9 Hz, 1H, H-4).

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 20.6 (q, CH₃), 35.1 (d, C-3), 39.4 (t, C-2), 61.4 (t, C-1), 113.3 (t, C-5), 144.4 (s, C-4).

The obtained data match with those reported in the literature.^[17]

5-Bromo-3-methylpent-1-ene (23)

$$\bigcirc \mathsf{OH} \longrightarrow \overset{\mathsf{H}_{\mathsf{b}}}{\underset{\mathsf{H}_{\mathsf{a}}}{\overset{\mathsf{O}}{\longrightarrow}}} \mathsf{Br} \qquad \overset{\mathsf{C}_{6}\mathsf{H}_{11}\mathsf{Br}}{\underset{\mathsf{MW} = 128.17 \text{ g/mol}}{\overset{\mathsf{C}}{\longrightarrow}} \mathsf{Br}$$

To a solution of 2.00 g alcohol (**22**) (20.0 mmol, 1.00 eq.), 3.60 mL triethyl amine (2.63 g, 26.0 mmol, 1.30 eq.) and 40 mL dry THF at 0 °C were added 2.01 mL methanesulfonyl chloride (2.97 g, 26.0 mmol, 1.30 eq.) dropwise. The reaction mixture was allowed to warm to room temperature and was stirred for four hours, before 50 mL water were added. The aqueous layer was extracted using CH₂Cl₂ (4×30 mL), combined organic layers were dried over Na₂SO₄, filtrated and solvent was removed in vacuo. The crude mesylate was used without any further purification and was dissolved in 30 mL acetone. To this solution 5.20 g LiBr (59.9 mmol, 3.00 eq.) were added and the suspension was stirred at 60 °C for 19 hours. After cooling to room temperature about 50% acetone were removed in vacuo. To the remaining suspension were added 40 mL water and the aqueous layer was extracted using pentane (3×30 mL). Combined organic layers were dried over Na₂SO₄, filtered and solvent was removed in vacuo. Column chromatography (SiO₂, P) yielded in 42% bromide **23** (1.37 g, 10.7 mmol) as a colorless oil.

TLC: $R_{\rm f} = 0.80$ (P) [KMnO₄].

¹**H-NMR** (400 MHz, CDCl₃, 298 K): δ (ppm) = 1.03 (d, ³*J* = 6.8 Hz, 3H, C*H*₃), 1.79-1.90 (m, 2H, H-4), 2.37 (*virt.* hept., ³*J* \approx 7.6 Hz, 1H, H-3), 3.33-3.45 (m, 2H, H-5), 4.99 (ddd, ²*J* = 1.7 Hz, ³*J* = 10.3 Hz, ⁴*J* = 0.7 Hz) 1H, H-1a), 5.05 (ddd, ²*J* = 1.7 Hz, ³*J* = 17.3 Hz, ⁴*J* = 0.7 Hz, 1H, H-1b), 5.63 (ddd, ³*J* = 17.3 Hz, ³*J* = 10.3 Hz, ³*J* = 7.9 Hz, 1H, H-2).

¹³**C-NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 20.1 (q, *C*H₃), 32.0 (t, C-5), 36.7 (d, C-3), 39.4 (t, C-4), 114.3 (t, C-1), 142.8 (d, C-2).

The obtained data match with those reported in the literature.^[18]

3-(3-Methylpent-4-en-1-yl)cyclohex-2-en-1-one (9i)

Compound (9i) was prepared following *GP1* using 76.3 mg magnesium (3.14 mmol, 1.10 eq.), 558 mg bromide (23) (3.42 mmol, 1.20 eq.) in 5.8 mL THF and 415 μ L 3-ethoxy-cyclohex-2-en-1-one (400 mg, 2.85 mmol, 1.00 eq.) in 4.5 mL THF. The reaction was quenched after four hours. After column chromatography (SiO₂, P/Et₂O = 4/1 \rightarrow 3/1) the enone 9i was obtained as a yellowish oil in 80% yield (406 mg, 2.28 mmol).

TLC: $R_{\rm f} = 0.23$ (P/Et₂O = 4/1) [UV/ KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3074 (w, sp²-CH), 2928 (s, sp³-CH), 1653 (w, C=O), 1639 (w, O=C-C=C), 1451 (m, sp³-CH), 1421 (m, sp²-CH), 995 (m), 907 (s, C=C), 884 (s, C=C).

MS (EI, 70 eV): m/z (%) = 178 (28) [M]⁺, 163 (9) [M-CH₃]⁺, 150 (29) [M-C₂H₄]⁺, 123 (32) [M-C₄H₇]⁺, 107 (55), 82 (100) [M-C₂H₄-C₅H₈]⁺.

¹**H-NMR** (500 MHz, CDCl₃, 300 K): δ (ppm) = 1.02 (d, ³*J* = 6.7 Hz, 3H, C*H*₃), 1.43-1.55 (m, 2H, H-2'), 1.95-2.01 (m, 2H, H-5), 2.09-2.15 (m, 1H, H-3'), 2.16-2.25 (m, 2H, H-1'), 2.27 (t, ³*J* = 5.9 Hz, 2H, H-4), 2.33-2.37 (m, 2H, H-6), 4.92-5.01 (m, 2H, H-5'), 5.65 (ddd, ³*J* = 17.3 Hz, ³*J* = 10.3 Hz, ³*J* = 7.8 Hz, 1H, H-4'), 5.87 (*virt.*, ³*J* \approx 1.4 Hz, 1H, H-2).

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 20.4 (q, *C*H₃), 22.9 (t, C-5), 29.9 (t, C-4), 33.8 (t, C-2'), 35.9 (t, C-1'), 37.5 (t, C-6), 37.7 (d, C-3'), 113.7 (t, C-5'), 125.8 (d, C-2), 143.8 (d, C-4'), 166.8 (s, C-3), 200.1 (s, C-1).

HRMS (EI, 70 eV): calculated: ($C_{12}H_{18}O$): 178.1352; found: 178.1351, calculated: ($C_{11}^{13}CH_{18}O$): 179.1391; found: 179.1386.

8-(3-Methylpent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1i)

Following *GP2* 200 mg ketone **9i** (1.12 mmol, 1.00 eq.) dissolved in 6.3 mL dry methanol, 168 μ L propanedithiol (182 mg, 1.68 mmol, 1.50 eq.) and 171 μ L BF₃·OEt₂ (191 mg, 1.35 mmol, 1.20 eq.) were stirred for four hours. The title compound **1i** was obtained as a colorless oil in 56% yield (170 mg, 63.3 μ mol) after purification by column chromatography (SiO₂, P/Et₂O = 99/1).

TLC: $R_f = 0.20 (P/Et_2O = 99/1) [KMnO_4].$

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2926 (s, sp³-CH), 1444 (m), 1421 (m, sp³-CH), 1274 (m), 906 (m, sp²-CH), 809 (m, C-S).

MS (EI, 70 eV): m/z (%) = 268 (71) [M]⁺, 253 (4) [M-CH₃]⁺, 213 (8) [M-C₄H₇]⁺, 193 (86), 166 (100) [C₁₀H₁₄S]⁺, 151 (25), 139 (57) [C₈H₁₁S]⁺, 91 (47).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.99 (d, ³*J* = 6.7 Hz, 3H, C*H*₃), 1.38-1.44 (m, 2H, H-2'), 1.76-1.82 (m, 2H, H-10), 1.90 (dtt, ²*J* = 14.0 Hz, ³*J* = 10.8 Hz, ³*J* = 3.2 Hz, 1H, H-3), 1.94-2.00 (m, 4H, H-9, H-1'), 2.00-2.06 (m, 1H, H-3), 2.07-2.14 (m, 1H, H-3'), 2.19-2.23 (m, 2H, H-11), 2.75 (ddd, ²*J* = 14.4 Hz, ³*J* = 6.0 Hz, ³*J* = 3.2 Hz, 2H, H-2, H-4), 2.94-3.01 (m, 2H, H-2, H-4), 4.92 (ddd, ²*J* = 1.9 Hz, ³*J* = 10.3 Hz, ⁴*J* = 0.7 Hz, 1H, H-5'a), 4.96 (ddd, ²*J* = 1.9 Hz, ³*J* = 17.6 Hz, ³*J* = 1.2 Hz, 1H, H-5'b), 5.50 (*br.* s, 1H, H-7), 5.66 (ddd, ³*J* = 17.6 Hz, ³*J* = 10.3 Hz, ³*J* = 7.7 Hz, 1H, H-4').

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 20.0 (t, C-10), 20.4 (q, *C*H₃), 25.1 (t, C-3), 27.0 (t, C-2, C-4), 28.9 (t, C-9), 34.3 (t, C-2'), 35.4 (t, C-1'), 36.0 (t, C-11), 37.6 (d, C-3'), 49.0 (s, C-6), 113.1 (t, C-5'), 123.1 (d, C-7), 142.8 (s, C-8), 144.5 (d, C4').

HRMS (EI, 70 eV): calculated: $(C_{15}H_{24}^{32}S_2)$: 268.1312; found: 268.1312,

calculated: (C₁₄¹³CH₂₄³²S₂): 269.1348; found: 269.1348.

(Z)-6-Bromohex-2-ene (24)

To a mixture of 2.33 mL (Z)-hex-4-en-1-ol (2.00 g, 20.0 mmol, 1.00 eq.), 3.60 mL triethylamine (2.63 g, 26.0 mmol, 1.30 eq.) and dry THF (40 mL) were added 2.01 mL methanesulfonyl chloride (2.97 g,26.0 mmol, 1.30 eq.) dropwise at 0 °C. The mixture was stirred for 40 minutes at 0 °C and additional 45 minutes at room temperature. The reaction was quenched with water (60 mL) and the aqueous layer was extracted with CH_2Cl_2 (4×50 mL). Combined organic layer were dried over Na₂SO₄, filtered and the solvent was removed in vacuo. The crude mesylate was dissolved in freshly distilled acetone (40 mL) and 5.2 g LiBr (59.9 mmol, 3.00 eq.) were added. After stirring the mixture under reflux for 23 hours, acetone was removed in vacuo up to 50%. The precipitate was dissolved in water and the aqueous layer was extracted with Et₂O (4×20 mL). The combined organic layers were dried over Na₂SO₄, filtered and the solvent was removed in 70% overall yield (2.30 g, 14.0 mmol) and was used without further purification.

TLC: $R_{\rm f} = 0.34$ (P) [KMnO₄].

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.64 (ddt, ³*J* = 6.8 Hz, ⁴*J* = 1.9 Hz, ⁵*J* = 1.0 Hz, 3H, H-1), 1.93 (*virt.* quin., ³*J* \approx 7.0 Hz, 2H, H-5), 2.21 (*virt.* quin., ³*J* \approx 7.4 Hz, 2H, H-4), 3.42 (t, ³*J* = 6.7 Hz, 2H, H-6) 5.34 (dtq, ³*J* = 11.6 Hz, ³*J* = 7.3 Hz, ⁴*J* = 1.9 Hz, 1H, H-3), 5.52 (dqt, ³*J* = 11.6 Hz, ³*J* = 6.8 Hz, ⁴*J* = 1.6 Hz, 1H, H-2).

¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 13.0 (q, C-1), 25.5 (t, C-4), 32.7 (t, C-5), 33.6 (t, C-6), 125.7 (d, C-2), 128.5 (d, C-3).

The obtained data match with those reported in the literature.^[19]

(Z)-3-(Hex-4-en-1-yl)cyclohex-2-en-1-one (9j)

Following *GP1* 230 mg magnesium (9.90 mmol, 1.30 eq.), 1.60 g 5-bromopent-1-ene (9.60 mmol, 1.35 eq.) in 10 mL THF and 0.96 mL 3-ethoxy-5,5-dimethylcyclohex-2-en-1-one (1.00 g, 7.10 mmol, 1.00 eq.) in 9 mL THF were used. The reaction was quenched after 5 hours. After column chromatography (SiO₂, P/Et₂O = 3/1) the title compound **9j** was obtained as a colorless oil in 65% yield (820 mg, 4.61 mmol).

TLC: $R_f = 0.25$ (P/Et₂O = 4/1) [UV/ KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3013 (w, sp²-CH), 2933 (m, sp³-CH), 2864 (m, sp³-CH), 1669 (s, C=O), 1623 (m, C=CCO), 1456 (w, sp³-CH), 1252 (m), 1191 (m), 885 (m, sp²-CH).

MS (EI, 70 eV): m/z (%) = 178 (16) [M]⁺, 150 (34) [M-C₂H₄]⁺, 123 (93) [M-C₄H₇]⁺, 110 (77), 93 (23) [C₉H₁₀O]⁺, 82 (100) [C₆H₁₀]⁺, 68 (61) [C₅H₈]⁺, 55 (29) [C₄H₇]⁺.

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.57 (*virt.* quin., ${}^{3}J \approx 7.5$ Hz, 2H, H-2'), 1.59 (*virt.* dq, ${}^{3}J = 7.2$ Hz, ${}^{4}J \approx {}^{5}J \approx 1.3$ Hz, 3H, H-6'), 1.98 (*virt.* quin., ${}^{3}J \approx 6.2$ Hz, 2H, H-5), 2.07 (*virt.* q, ${}^{3}J \approx 7.4$ Hz, 2H, H-3'), 2.22 (t, ${}^{3}J = 7.7$ Hz, 2H, H-1'), 2.28 (t, ${}^{3}J = 5.9$ Hz, 2H, H-4), 2.36 (t, ${}^{3}J = 6.2$ Hz, 2H, H-6), 5.36 (dtq, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 7.1$ Hz, ${}^{4}J = 1.6$ Hz, 1H, H-4'), 5.49 (dqt, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 7.2$ Hz, ${}^{4}J = 1.4$ Hz, 1H, H-5'), 5.91 (s, 1H, H-2).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ (ppm) = 13.2 (q, C-6'), 23.1 (t, C-5), 26.7 (t, C-3'), 27.1 (t, C-2'), 30.1 (t, C-4), 37.8 (t, C-6), 37.9 (t, C-1'), 125.2 (d, C-5'), 126.1 (d, C-2), 129.9 (d, C-4'), 166.9 (s, C-3), 200.4 (s, C-1).

HRMS (EI, 70 eV): calculated: (C₁₂H₁₈O): 178.1352; found: 178.1349,

calculated: (C₁₁¹³CH₁₈O): 179.1386; found: 179.1393.
(Z)-8-(Hex-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1j)

Dithiane **1j** was prepared using 200 mg enone **9j** (1.12 mmol, 1.00 eq.), 169 μ L propanedithiol (186 mg, 1.50 eq.) and 171 μ L BF₃·OEt₂ (191 mg, 1.35 mmol, 1.20 eq.) in 2.5 hours. After aqueous work up and column chromatography the title compound **1j** was obtained in 83% yield (254 mg, 946 μ mol) as a colorless oil. Ration of *Z*/*E*-isomers was determined as 92/8 by GC.

TLC: $R_f = 0.25$ (P/CH₂Cl₂ = 3/1) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 301 (w, sp²-CH), 2929 (s, sp³-CH), 1654 (w, C=C), 1423 (m, sp³-CH), 1273 (m), 865 (m, sp²-CH).

MS (EI, 70 eV): m/z (%) = 268 (59) [M]⁺, 213 (10) [M-C₄H₇]⁺, 193 (32), 166 (25), 139 (87) [C₈H₁₁S]⁺, 126 (100) [C₇H₁₀S]⁺, 91 (42).

¹**H** NMR (500 MHz, C₆D₆, 298 K): δ (ppm) = 1.35 (*virt.* quin., ${}^{3}J \approx 7.5$ Hz, 2H, H-2'), 1.45-1.53 (m, 1H, H-3), 1.55 (ddt, ${}^{3}J = 7.0$ Hz, ${}^{4}J = 1.8$ Hz, ${}^{5}J = 0.9$ Hz, 3H, H-6'), 1.54-1.64 (m, 1H, H-3), 1.75-1.79 (m, 4H, H-9, H-10), 1.82 (*br.* t, ${}^{3}J = 7.6$ Hz, 2H, H-1'), 1.94 (*virt.* q, ${}^{3}J \approx 7.3$ Hz, 2H, H-3'), 2.19-2.24 (m, 2H, H-11), 2.31 (ddd, ${}^{2}J = 14.3$ Hz, ${}^{3}J = 5.6$ Hz, ${}^{3}J = 3.2$ Hz, 2H, H-2, H-4), 2.60 (ddd, ${}^{2}J = 14.3$ Hz, ${}^{3}J = 2.7$ Hz, 2H, H-2, H-4), 5.37 (dtq, ${}^{3}J = 10.7$ Hz, ${}^{3}J = 7.0$ Hz, ${}^{4}J = 1.7$ Hz, 1H, H-4'), 5.43-5.52 (m, 1H, H-5'), 5.78 (*br.* s, 1H, H-7).

¹³**C NMR** (126 MHz, C₆D₆, 300 K): δ (ppm) = 13.2 (q, C-6'), 20.3 (t, C-10), 25.2 (t, C-3), 26.7 (t, C-3'), 26.9 (t, C-2, C-4), 27.5 (t, C-2'), 28.9 (t, C-9), 36.4 (t, C-11), 37.3 (t, C-1'), 49.5 (s, C-6), 124.3 (d, C-5'), 124.5 (d, C-7), 130.6 (d, C-4'), 142.3 (s, C-8).

HRMS (EI, 70 eV): calculated: $(C_{15}H_{24}{}^{32}S_2)$: 268.1314; found: 268.1314, calculated: $(C_{14}{}^{13}CH_{24}{}^{32}S_2)$: 269.1348; found: 269.1346.

7-(Pent-4-en-1-yl)-1,4-dithiaspiro[4.5]dec-6-ene (25)

Following *GP2* 500 mg enone **9a** (3.04 mmol, 1.00 eq.), 380 µL 1,2-ethandithiol (430 mg, 4.56 mmol, 1.50 eq.) and 458 µL boron trifluoride diethyl etherate (523 mg, 3.68 mmol, 1.20 eq.) were stirred in dry methanol (8.0 mL) for three hours. After column chromatography (SiO₂, P/Et₂O = 100/0 \rightarrow 99.5/0.5 \rightarrow 99/1) the title compound **25** was obtained as a colourless oil in 56% yield (413 mg, 1.70 mmol).

TLC: $R_f = 0.21$ (P/ Et₂O = 99/1) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2924 (s, sp³-CH), 1638 (w, C=C), 1455 (w, sp³-CH), 911 (m, sp²-CH), 886 (m, sp²-CH).

MS (EI, 70 eV): m/z (%) = 240 (19) [M]⁺, 212 (72) [M-C₂H₄]⁺, 179 (100), 152 (45), 123 (16) [C₉H₁₅]⁺, 91 (34) [C₇H₇]⁺, 55 (5) [C₄H₃]⁺.

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.50 (*virt.* quin., ³*J* = 7.6 Hz, 2H, H-2'), 1.83-1.76 (m, 2H, H-9), 1.92 (t, ³*J* = 6.2 Hz, 2H, H-8), 1.96 (t, ³*J* = 7.6 Hz, 2H, H-1'), 1.99-2.06 (m, 2H, H-4'), 2.13-2.17 (m, 2H, H-10), 3.27-3.40 (m, 4H, H-2, H-3), 4.95 (ddt, ³*J* = 10.2 Hz, ³*J* = 2.1 Hz, ⁴*J* = 1.1 Hz, 1H, H-5'a), 5.01 (*virt.* dq, ³*J* = 17.0 Hz, ²*J* \approx ⁴*J* \approx 1.6 Hz, 1H, H-5'b), 5.58 (s, 1H, H-6), 5.80 (ddt, ³*J* = 17.0 Hz, ³*J* = 6.7 Hz, 1H, H-4').

¹³**C-NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 23.0 (t, C-9), 26.8 (t, C-2[•]), 27.7 (t, C-3[•]), 37.0 (t, C-1[•]), 40.0 (t, C-2, C-3), 41.7 (t, C-10), 66.0 (s, C-5), 114.8 (t, C-5[•]), 126.3 (d,C-6), 138.8 (d, C-4[•]), 139.9 (s,C-7).

HRMS (EI, 70 eV): calculated: $(C_{13}H_{20}^{32}S_2)$: 240.1001; found: 240.0994.

5. Photoreactions of Dithianes

Octahydro-6*H*-spiro{cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-[1,3]dithiane} (2a)

Small Scale:

According to *GP3* 27.3 mg 8-(pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (**1a**) (107 μ mol, 1.00 eq.) were dissolved in 10.7 mL CH₂Cl₂ and irradiated at 405 nm at -78 °C with 236 μ g 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (**3**) (8.05 μ mol, 7.5 mol-%) for 3.5 hours. After addition of 14.9 μ L NEt₃ (10.9 mg, 107 μ mol, 1.00 eq.) and column chromatography (SiO₂, P/Et₂O = 99.25/0.75) the title compound **2a** was obtained as a colorless oil in 85% yield (23.2 mg, 91.0 μ mol).

Large Scale:

A large scale reaction was carried out following *GP3*, but and power of the LED was increased to 10 W and concentration of dithiane was increased to 20 mM. Therefore 407 mg 8-(pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene **1a** (1.60 mmol, 1.00 eq.) were dissolved in 80 mL CH₂Cl₂ and precooled to -78 °C. After irradiation at 405 nm in presence of 35.2 mg 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (120 µmol, 7.5 mol-%) for 16 hours, 223 µL NEt₃ (162 mg, 1.60 mmol, 1.00 eq.) were added. Purification by column chromatography (SiO₂, P/Et₂O = 99/1) yielded in 93% (379 mg, 14.9 µmol) of the title compound **2a** as a colorless oil.

TLC: $R_f = 0.15$ (P/Et₂O = 99.5/0.5) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2926 (s, sp³-CH), 1444 (m, sp³-CH), 1421 (m, sp³-CH), 906 (w, C-S).

MS (EI, 70 eV): m/z (%) = 254 (100) [M]⁺, 179 (87) [C₁₁H₁₅S]⁺, 152 (46), 145 (21), 106 (41), 91 (28), 79 (23).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.17-1.26 (m, 1H, H-6*), 1.35-1.43 (m, 1H, H-8*), 1.48-1.58 (m, 2H, H-3*, H-4), 1.62-1.71 (m, 2H, H-3*, H-6*), 1.71-1.84 (m, 3H, H-2*, H-2*, H-7*), 1.86-2.01 (m, 5H, H-1*, H-1*, H-7, H-5', H-5'), 2.02-2.09 (m, 1H, H-4), 2.09-

2.16 (m, 2H, H-3a, H-8*), 2.57-2.62 (m, 1H, H-4a), 2.66-2.77 (m, 2H, H-4', H-6'), 2.78-2.89 (m, 2H, H-4', H-6').

¹³C NMR (126 MHz, CDCl₃, 300 K): δ (ppm) = 19.0 (t, C-2*), 25.6 (t, C-1*), 26.1 (t, C-7*), 26.2 (t, C-4'*), 26.6 (t, C-4), 26.7 (t, C-6'*), 30.0 (t, C-8*), 32.2 (t, C-5'*), 32.3 (t, C-3*), 39.0 (d, C-3a), 40.8 (t, C-6*), 41.2 (d, C-4a), 49.3 (s, C-8a), 51.8 (s, C-5).

*assignment is interconvertible

The relative configuration was confirmed upon deprotection by comparison with literature known NMR spectra.^[20]

HRMS (EI, 70 eV): calculated: (C₁₄H₂₂S₂):254.1157; found: 254.1164.

7,7-Dimethyloctahydro-6H-spiro{cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-

[1,3]dithiane} (2b)

26.2 mg 10,10-dimethyl-8-(pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (**1b**) (92.7 μ mol, 1.00 eq.) were dissolved in 9.3 mL CH₂Cl₂ and was cooled to -78 °C. After addition of 2.04 mg 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (**3**) (6.96 μ mol, 7.5 mol-%) the solution was irradiated at $\lambda = 405$ nm for 4.5 h according to *GP3*. After column chromatography (SiO₂, P/Et₂O = 99/1) the title compound was obtained as a colorless oil in 80% yield (21.0 mg, 74.3 μ mol).

TLC: $R_f = 0.19 (P/Et_2O = 99/1) [KMnO_4].$

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2926 (s, sp³-CH), 1456 (m, sp³-CH), 1157 (m), 802 (m).

MS (EI, 70 eV): m/z (%) = 282 (42) [M]⁺, 267 (13) [M-CH₃]⁺, 207 (100) [C₁₃H₇S]⁺, 152 (66) [C₁₃H₇S-C₄H₈]⁺, 106 (31).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.12 (s, 3H, CH₃), 1.14 (s, 3H, CH₃), 1.16-1.24 (m, 2H, H-1, H-8), 1.42 (ddd, ²J = 13.5 Hz, ³J = 9.6 Hz, ³J = 4.2 Hz 1H, H-4), 1.51-1.63 (m,

3H, H-1, H-3, H-3), 1.71-1.77 (m, 1H, H-2), 1.79-1.89 (m, 1H, H-2), 1.89-1.98 (m, 4H, H-6, H-8, H-5', H-5'), 2.03 (dd, ${}^{2}J = 14.9$ Hz, ${}^{4}J = 1.7$ Hz, 1H, H-6), 2.06-2.11 (m, 1H, H-4), 2.33-2.39 (m, 1H, H-3a), 2.44 (*virt.* t, ${}^{3}J \approx 8.0$ Hz, 1H, H-4a), 2.74-2.85 (m, 4H, H-4', H-6').

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 24.0 (t, C-2), 24.9 (t, C-4), 25.6 (t, C-5'), 26.1 (t, C-4'*), 26.2 (t, C-6'*), 30.5 (s, C-7), 33.3 (t, C-3), 34.7 (q, CH₃), 35.0 (q, CH₃), 37.6 (d, C-3a), 42.1 (d, C-4a), 42.4 (t, C-8), 42.6 (t, C-1), 43.7 (t, C-6), 48.7 (s, C-8a), 53.1 (s, C-5).

* assignment is interconvertible

Important NOE contacts

HRMS (EI, 70 eV): calculated: (C₁₆H₂₆³²S₂): 282.1470; found: 282.1472,

calculated: (C₁₅¹³CH₂₆³²S₂): 283.1506; found: 283.1504.

2,2-Dimethyloctahydro-6*H*-spiro{cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-[1,3]dithiane} (2c)

According to *GP3* 23.0 mg 8-(2,2-dimethylpent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (**1c**) (81.4 μ mol, 1.00 eq.) were irradiated with a 405 nm LED at -78 °C in 8.1 mL CH₂Cl₂ in presence of 2.39 mg 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (**3**) (8.14 μ mol, 10 mol-%) for 22 hours. After work up column chromatography (SiO₂, P/Et₂O = 99/1) yielded in an inseparable mixture of product and starting material (23.0 mg, 94/6). This mixture was

dissolved in 0.3 mL 1,4-dioxane and 16.0 mg 3,6-bis(methoxycarbonyl)-1,2,4,5-tetrazine (81.4 μ mol, 1.00 eq.). After stirring for two hours at room temperature solvent was removed in vacuo and the crude product was submitted to column chromatography (SiO₂, P/Et₂O = 99/1) without any further work up. Cyclobutane **2c** was obtained as a colorless oil in 78% yield (18.0 mg, 63.7 μ mol) over two steps.

TLC: $R_f = 0.43$ (P/Et₂O = 98/2) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2928 (s, sp³-CH), 2857 (m, sp³-CH), 1456 (w, sp³-CH), 1275 (w).

MS (EI, 70 eV): m/z (%) = 282 (100) [M]⁺, 267 (4) [M-CH₃]⁺, 225 (30), 207 (89) [C₁₃H₂₀S]⁺, 180 (29) [C₁₃H₂₀S-C₂H₄]⁺, 145 (31), 106 (91).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.87 (s, 3H, C*H*₃), 1.10 (s, 3H, C*H*'₃), 1.37 (dd, ²*J* = 13.1 Hz, ⁴*J* = 1.7 Hz, 1H, H-1), 1.47-1.53 (m, 1H, H-7), 1.55-1.59 (m, 1H, H-3), 1.60-1.66 (m, 3H, H-4*, H-7. H-8), 1.66-1.74 (m, 3H, H-1, H-3, H-6), 1.81-1.85 (m, 1H, H-8), 1.90-2.02 (m, 3H, H-4, H-3', H-3'*), 2.10-2.16 (m, 1H, H-3a), 2.17-2.22 (m, 1H, H-6), 2.72-2.84 (m, 5H, H-4a, H-2', H-2', H-4', H-4').

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 19.4 (t, C-7), 24.9 (t, C-4*), 25.8 (t, C-3'*), 25.9 (t, C-2'), 26.8 (t, C-4'), 29.0 (q, *C*H₃), 29.7 (q, *C*H₃), 34.0 (t, C-6), 35.7 (t, C-8), 43.0 (d, C-3a), 45.1 (s, C-2), 47.3 (t, C-3), 47.3 (d, C-4a), 50.3 (s, C-8a), 51.2 (s, C-5), 57.1 (t, C-1).

* assignment is interconvertible

Important NOE contacts

HRMS (EI, 70 eV): calculated: (C₁₆H₂₆³²S₂): 282.1470; found: 282.1473,

calculated: (C₁₅¹³CH₂₆³²S₂): 283.1504; found: 283.1504.

8-(Hex-4-yn-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (2d)

Following *GP3* a, precooled to -78 °C, solution of 28.3 mg 8-(hex-4-yn-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (**2d**) (106 µmol, 1.00 eq.) in 10.5 mL dry CH₂Cl₂ was irradiated at 405 nm, after addition of 3.11 mg 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (**3**) (10.6 µmol, 10 mol-%). Irradiation was stopped after 24 hours and quenched by addition of NEt₃. After column chromatography cyclobutene **2d** was obtained as a colorless oil in 86% yield (24.2 mg, 91.2 µmol).

TLC: $R_f = 0.38 (P/Et_2O = 99/1) [KMnO_4].$

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2920 (s, sp³-CH), 1436 (m, sp³-CH), 1271 (w), 1032 (w), 951 (w).

MS (EI, 70 eV): m/z (%) = 266 (100) [M]⁺, 251 (5) [M-CH₃]⁺, 233 (22) [C₁₂H₁₆S]⁺, 177 (9) [C₁₁H₁₃S]⁺, 164 (49), 131 (24), 117 (22), 91 (20).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.99-1.06 (m, 1H, H-8), 1.18 (*virt.* td, ${}^{2}J \approx {}^{3}J \approx 12.2$ Hz, ${}^{3}J = 5.5$ Hz, 1H, H-8), 1.31-1.42 (m, 2H, H-6, H-7), 1.41-1.48 (m, 2H, H-1), 1.51-1.58 (m, 1H, H-7), 1.67 (t, ${}^{3}J = 1.7$ Hz, 3H, CH₃), 1.89-1.99 (m, 2H, H-2), 1.99-2.07 (m, 1H, H-5'), 2.07-2.16 (m, 1H, H-3), 2.18-2.28 (m, 2H, H-3, H-5'), 2.34 (*virt.* td, ${}^{2}J \approx {}^{3}J \approx 12.7$ Hz, ${}^{3}J = 5.9$ Hz, 1H, H-6), 2.64 (*virt.* dt, ${}^{2}J = 15.6$ Hz, ${}^{3}J \approx 4.7$ Hz, 1H, H-4'), 2.75 (ddd, ${}^{2}J = 14.7$ Hz, ${}^{3}J = 11.5$ Hz, ${}^{3}J = 5.2$ Hz, 1H, H-6'), 2.86 (ddd, ${}^{2}J = 14.7$ Hz, ${}^{3}J = 6.1$ Hz, ${}^{3}J = 2.7$ Hz, 1H, H-6'), 2.97-3.03 (m, 1H, H-4'), 3.01 (s, 1H, H-4a).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 12.1 (q, CH₃), 20.9 (t, C-7), 23.2 (t, C-3), 24.1 (t, C-8), 25.6 (t, C-6), 25.6 (t, C-4), 27.0 (t, C-2), 33.9 (t, C-6*), 34.4 (t, C-1), 34.8 (t, C-5*), 57.4 (s, C-9), 65.4 (s, C-5), 75.5 (d, C-4a), 128.6 (s, C-4), 148.0 (s, C-3a).

* assignment is interconvertible

HRMS (EI, 70 eV): calculated: (C₁₅H₂₂³²S₂): 266.1157; found: 266.1156,

calculated: (C₁₄¹³CH₂₂³²S₂): 267.1191; found: 267.1190.

Octahydrospiro{cyclobuta[1,2:1,4]di[5]annulene-3,2'-[1,3]dithiane} (2e)

A solution of 24.3 mg 2-(pent-4-en-1-yl)-6,10-dithiaspiro[4.5]dec-1-ene (**1e**) (101 μ mol, 1.00 eq) in 10 mL dry CH₂Cl₂ were cooled down to -78 °C in a duran tube. After addition of 2.22 mg 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (**3**) (7.58 μ mol, 7.5 mol-%) the reaction mixture was irradiated at 366 nm at -78 °C for 21 hours and 14.0 μ L NEt₃ (10.2 mg, 101 μ mol, 1.00 eq.) were added. After warming to room temperature the solvent was removed in vacuo. Purification by column chromatography yielded in 78% of the title compound (19.0 mg, 79.0 μ mol) as a colorless oil.

TLC: $R_f = 0.27$ (P/Et₂O = 99/1) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2927 (s, sp³-CH), 1444 (m, sp3-CH), 907 (w, C-S).

MS (EI, 70 eV): m/z (%) = 240 (100) [M]⁺, 165 (36), 133 (27), 91 (33).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 1.35-1.41 (m, 1H, H-7), 1.44 (*virt.* dt, ${}^{2}J = 12.9$ Hz, ${}^{3}J \approx 3.7$ Hz, 1H, H-4), 1.47-1.52 (m, 1H, H-5), 1.52-1.61 (m, 2H, H-2, H-5), 1.61-1.66 (m, 1H, H-7), 1.79-1.86 (m, 2H, H-6), 1.90-2.04 (m, 3H, H-2, H-5', H-5'), 2.04-2.11 (m, 1H, H-4a), 2.11-2.21 (m, 2H, H-1, H-4), 2.25-2.32 (m, 1H, H-1), 2.47 (dd, ${}^{3}J = 9.3$ Hz, ${}^{3}J = 5.3$ Hz, 1H, H-3a), 2.66-2.74 (m, 2H, H-4'), 2.76-2.84 (m, 2H, H-6').

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 25.8 (t, C-4), 26.1 (t, C-5'), 26.3 (t, C-6), 27.3 (t, C-6'), 28.1 (t, C-4'), 33.2 (t, C-5), 33.6 (t, C-2), 37.4 (t, C-7), 39.1 (d, C-4a), 39.5 (t, C-1), 49.3 (d, C-3a), 56.6 (s, C-7a), 59.5 (s, C-3).

* assignment is interconvertible

Important NOE contacts

HRMS (EI, 70 eV): calculated: (C₁₃H₂₀³²S₂): 240.1001; found: 240.0997,

calculated: $(C_{12}^{13}CH_{20}^{32}S_2)$: 241.1035; found: 241.1030.

7-Methyloctahydro-6*H*-spiro{cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-[1,3]dithiane} (2f)

Following *GP3* 30.0 mg 10-methyl-8-(pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (**1f**) (112 μ mol, 1.00 eq.) were converted into its corresponding cyclobutane by irradiation at 405 nm in presence of 3.28 mg 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (**3**) (11.2 μ mol, 10 mol-%) in 11 mL dry CH₂Cl₂ at -78 °C. The reaction was finished after 24 hours. After column chromatography (SiO₂, P/Et₂O =99/1) the product **2f** was obtained in 90% yield (27.4 mg, 102 μ mol) as a colorless oil in a diastereomeric ratio of 60/40 (determined by NMR).

TLC: $R_{\rm f} = 0.22$ (P/Et₂O = 99/1) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2925 (s, sp³-CH), 1454 (m, sp³-CH), 905 (m), 790 (w, CSC).

MS (EI, 70 eV): m/z (%) = 268 (98) [M]⁺, 253 (2) [M-CH₃]⁺, 193 (100) [C₁₂H₁₇S]⁺, 179 (9) [C₁₁H₁₅S]⁺, 152 (69) [C₆H₁₂S]⁺, 106 (63).

¹**H-NMR** (500 MHz, CDCl₃, 300 K): δ (ppm) = 0.92 (d, ³*J* = 6.6 Hz, 2H, C*H*₃-minor), 1.00 (d, ³*J* = 6.2 Hz, 3H, C*H*₃-major), 1.15-1.28 (m, 2.7H, 2×H-major, 1×H-minor), 1.33-1.69 (m, 8.8H, 6×H-major, 4×H-minor), 1.71-1.89 (m, 6.2H, 2×H-major, 6×H-minor), 1.89-2.03 (m, 5.8H, 3×H-major, 4×H-minor), 2.04-2.24 (m, 4.4H, 3×H-major, 2×H-minor), 2.58-2.73 (m, 3.4H, 2×H-major, 2×H-minor), 2.73-2.82 (m, 2.4H, 1×H-major, 2×H-minor), 2.83-2.96 (m, 2H, 2×H-major).

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 22.8 (q, *C*H₃-minor), 24.1 (q, *C*H₃-major), 25.2 (t, CH₂-major), 25.4 (t, CH₂-minor), 25.4 (d, CH-minor), 25.9 (t, CH₂-minor), 26.0 (t, CH₂-minor), 26.4 (d, CH-major), 26.5 (t, CH₂-minor), 26.6 (t, CH₂-major), 26.9 (t, CH₂-major), 27.0 (t, CH₂-major), 27.5 (t, CH₂-major), 28.1 (t, CH₂-minor), 31.7 (t, CH₂-minor), 32.7 (t, CH₂-major), 36.9 (d, CH-major), 37.2 (t, CH₂-major), 39.4 (d, CH-major), 40.2 (t, CH₂-major), 41.0 (t, CH₂-minor), 41.7 (d, CH-minor), 42.0 (t, CH₂-major), 42.4 (t, CH₂-minor), 42.5 (d, CH₂-minor), 42.9 (t, CH₂-minor), 49.8 (s, C_{quar}-major), 51.1 (s, C_{quar}-minor), 51.7 (s, C_{quar}-major), 52.3 (s, C_{quar}-minor).

HRMS (EI, 70 eV): calculated: ($C_{15}H_{24}{}^{32}S_2$): 268.1314; found: 268.1308, calculated: ($C_{14}{}^{13}CH_{24}{}^{32}S_2$): 269.1348; found: 269.1342.

8-Methyloctahydro-6*H*-spiro{cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-[1,3]dithiane} (2g)

Following *GP3* 27.0 mg 9-ethyl-8-(pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (**1g**) (100 μ mol, 1.00 eq.) were dissolved in 10 mL CH₂Cl₂ and precooled to -78 °C. After addition of 2.95 mg 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (**3**) (10.1 μ mol, 10 mol-%) irradiation at 405 nm was started and stopped after 21 hours followed by addition of 14 μ L NEt₃ (10 mg, 100 μ mol, 1.00 eq.). Column chromatography (SiO₂, P/Et₂O = 99/1) yielded in 89% of the compound **2g** (24.3 mg, 90.5 μ mol) as a white solid.

TLC: $R_f = 0.49 (P/Et_2O = 98/2) [KMnO_4].$

M.P.: 59°C.

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2929 (s, sp³-CH), 1444 (m, sp³-CH).

MS (EI, 70 eV): m/z (%) = 268 (80) [M]⁺, 163 (96), 152 (100) [C₉H₁₂S]⁺, 145 (30), 106 (55).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.87 (d, ${}^{3}J$ = 7.0 Hz, 3H, CH₃), 1.34-1.40 (m, 1H, H-7), 1.44-1.47 (m, 1H, H-1), 1.49-1.54 (m, 1H, H-7), 1.55-1.58 (m, 1H, H-1), 1.58-1.61 (m, 1H, H-3), 1.61-1.64 (m, 1H, H-4), 1.72-1.78 (m, 1H, H-2), 1.78-1.83 (m, 1H, H-3), 1.83-1.87 (m, 1H, H-6), 1.88-2.06 (m, 5H, H-2, H-3a, H-8, H-3', H-3'), 2.16 (*virt.* td, ${}^{2}J \approx {}^{3}J \approx 11.3$ Hz, ${}^{3}J$ = 8.3 Hz, 1H, H-4), 2.21-2.26 (m, 1H, H-6), 2.72-2.83 (m, 5H, H-4a, H-2', H-2', H-4', H-4').

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 16.7 (q, CH₃), 26.0 (t, C-3'), 26.0 (t, C-2'), 26.9 (t, C-4'), 27.1 (t, C-4), 28.0 (t, C-7), 29.0 (t, C-2), 31.3 (t, C-3), 31.8 (t, C-1), 35.7 (t, C-6), 36.0 (d, C-8), 42.0 (d, C-3a), 43.6 (d, C-4a), 51.6 (s, C-5), 54.8 (s, C-9).

Relative configuration was determined by x-ray crystallography (chapter 7).

HRMS (EI, 70 eV): calculated: (C₁₅H₂₄³²S₂): 268.1314; found: 268.1308,

calculated: (C14¹³CH24³²S2): 269.1348; found:269.1341.

8-Ethyloctahydro-6*H*-spiro{cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-[1,3]dithiane} (2h)

Cyclobutane **2h** was prepared following *GP3* using 29.1 mg dithiane **1h** (103 μ mol, 1.00 eq.) dissolved in 10.3 mL CH₂Cl₂. After irradiation at $\lambda = 405$ nm for 24 hours at -78° C in presence of 3.02 mg 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (**3**) (10.3 μ mol, 10 mol-%), followed by column chromatography, 22.8 mg (80.7 μ mol, 79%) of the title compound **2h** were obtained as a colorless oil.

TLC: $R_f = 0.23$ (P/Et₂O = 99/1) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2930 (s, sp³-CH), 1422 (s, sp³-CH).

MS (EI, 70 eV): m/z (%) = 282 (83) [M]⁺, 253 (8) [M-C₂H₅]⁺, 207 8100) [C₁₃H₁₉S]⁺, 152 (85) [C₉H₁₂S]⁺, 145 (40), 106 (61).

¹**H-NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.84 (t, ${}^{3}J$ = 7.4 Hz, 3H, CH₂CH₃), 1.07-1.17 (m, 1H, CH₂CH₃), 1.23-1.34 (m, 2H, H-2, CH₂CH₃), 1.37-1.61 (m, 6H, H-2, H-3, H-4, H-6*, H-6*, H-8), 1.69-1.81 (m, 3H, H-1, H-3, H-3'), 1.85-2.00 (m, 4H, H-3a, H-7*, H-7*, H-3'), 2.11 (*virt*. td, ${}^{2}J \approx {}^{3}J \approx 11.3$ Hz, ${}^{3}J$ = 8.4 Hz, 1H, H-4), 2.16-2.21 (m, 1H, H-1), 2.64-2.79 (m, 5H, H-4a, H-2', H-2', H-4', H-4').

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 13.1 (q, CH₂CH₃), 24.5 (t, CH₂CH₃), 24.8 (t, C-2), 26.0 (t, C-7*), 26.1 (t, C-4'), 27.0 (t, C-2'), 27.2 (t, C-4), 28.8 (t, C-3'), 31.2 (t, C-3), 32.0 (t, C-6*), 35.8 (t, C-1), 42.3 (d, C-3a), 43.1 (d, C-8), 43.8 (d, C-4a), 51.6 (s, C-8a**), 54.9 (s, C-5**).

*/** assignment is interconvertible

Relative configuration was assumed to be the same as for compound 2g.

HRMS (EI, 70 eV): calculated: $(C_{16}H_{26}{}^{32}S_2)$: 282.1470; found: 282.1465. calculated: $(C_{15}{}^{13}CH_{26}{}^{32}S_2)$: 283.1504; found: 283.1498.

3-Methyloctahydro-6*H*-spiro{cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-[1,3]dithiane} (2i)

According to *GP*3 27.3 mg 8-(3-methylpent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (**1i**) (101 μ mol, 1.00 eq.) in 10 mL CH₂Cl₂ were irradiated at -78 °C and λ = 405 nm in presence of 2.24 mg 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (**3**) (7.63 μ mol, 7.5 mol-%) for 5.5 hours. After quenching and column chromatography (SiO₂, P/Et₂O = 99/1) the cyclobutane **2i** was obtained as a colorless oil in 85% yield (22.8 mg, 84.9 μ mol) in a mixture of diastereoisomers of 90/10 (determined by GC).

TLC: $R_f = 0.24$ (P/Et₂O = 99/1) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2930 (s, sp³-CH), 1455 (m, sp³-CH), 1274 (w), 808 (w, C-S).

MS (EI, 70 eV): m/z (%) = 268 (100) [M]⁺, 239 (13) [M-C₂H₅]⁺, 193 (99) [M-C₃H₇S]⁺, 166 (37), 106 (70).

HRMS (EI, 70 eV): calculated: (C₁₅H₂₄³²S₂): 268.1314; found: 268.1312,

calculated: (C₁₄¹³CH₂₄³²S₂): 269.1348; found: 269.1348.

Major Diastereoisomer

¹**H-NMR** (500 MHz, CDCl₃, 300 K): δ (ppm) = 0.88 (t, ${}^{3}J$ = 7.1 Hz, 3H, CH₃), 1.37-1.45 (m, 3H, H-2, H-7, H-8), 1.53-1.64 (m, 2H, H-4, H-7), 1.67-1.73 (m, 1H, H-3a), 1.73-1.82 (m, 2H, H-1), 1.84-2.07 (m, 6H, H-3, H-4, H-6, H-8, H-3', H-3'), 2.07-2.17 (m, 2H, H-2, H-6), 2.63 (*virt.* t, ${}^{3}J \approx 9.0$ Hz, 1H, H-4a), 2.67-2.77 (m, 2H, H-2', H-4'), 2.78-2.88 (m, 2H, H-2', H-4').

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 18.9 (t, C-1), 21.2 (q, CH₃), 25.6 (t, C-2'), 25.8 (t, C-4'), 26.1 (t, C-4), 26.7 (t, C-3'), 31.2 (t, C-8), 32.2 (t, C-6), 34.0 (t, C-2), 38.9 (t, C-7), 40.2 (d, C-3), 41.9 (d, C-4a), 47.5 (d, C-3a), 49.6 (s, C-8a), 51.8 (s, C-5).

Minor Diastereoisomer

¹**H-NMR** (500 MHz, CDCl₃, 300 K): δ (ppm) = 0.95 (d, ³*J* = 6.7 Hz, 3H, C*H*₃), 1.2-1.4 (m, 4H), 2.47 (t, ³*J* = 8.8 Hz, 1H, H-4a).

Remaining ¹H signals could not be identified due to their low signal intensity and overlap with the ¹H NMR signals of the major diastereoisomer.

¹³**C-NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 14.8 (q, *C*H₃), 16.7, 19.7, 25.6, 26.2 26.6, 29.1, 31.3, 33.7, 36.3, 40.5, 41.3 (d, C-4a), 42.6, 49.2, 52.2.

Signals could not be assigned due to low signal intensities in 2D spectra. In addition most cross peaks overlap with the signals of the major diastereoisomer.

Important NOE contacts of the major diastereoisomer

HRMS (EI, 70 eV): calculated: ($C_{15}H_{24}{}^{32}S_2$): 268.1314; found: 268.1309, calculated: ($C_{14}{}^{13}CH_{24}{}^{32}S_2$): 269.1348; found: 269.1341.

4-Methyloctahydrocyclopenta[1,4]cyclobuta[1,2]benzen-5(6H)-one (6)

This photochemical reaction was carried out following *GP3* by cooling a solution of 22.8 mg dithiane **1j** (84.9 µmol, 1.00 eq.) in 8.6 mL dry CH₂Cl₂ to -78 °C. After addition of 1.87 mg 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (**3**) (6.37 µmol, 7.5 mol-%) the solution was irradiated at $\lambda = 405$ nm for 15 hours. After addition of 11.8 µL NEt₃ (8.59 mg, 84.9 µmol, 1.00 eq.) The reaction solution was allowed to warm to room temperature and polar impurities were removed by column chromatography (SiO₂, P/Et₂O = 99/1). Small amounts of unpolar impurities were not separable and the dithiane was removed in order to isolate pure cyclobutane **6**. For the deprotection reaction the crude product was dissolved in 0.3 mL methanol, 0.3 mL THF and 40 µL water and cooled to -78 °C. After addition of 35.2 mg [bis(trifluoroacetoxy)-iodo]benzene (81.9 µmol, 1.10 eq.) the reaction solution was allowed to warm slowed to warm slowly to room temperature. After stirring at room temperature for two hours 10 mL saturated aqueous sodium bicarbonate solution were added and organic compounds were extracted by Et₂O (3×15 mL). The combined organic layers were dried over Na₂SO₄, filtered and solvent was removed in 53% (7.1 mg,

39 μ mol) over both steps after column chromatography (SiO₂, P/Et₂O = 10/1). The diastereomeric ratio (d.r.) was determined as 67/33 by GC.

TLC: $R_f = 0.20 (P/Et_2O = 10/1) [KMnO_4].$

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2926 (s, sp³-CH), 1694 (s, C=O), 1443 (m, sp³-CH), 1315 (m, sp³-CH), 1163 (m).

MS (EI, 70 eV): m/z (%) = 178 (31) [M]⁺, 163 (9) [M-CH₃]⁺, 150 (28) [M-C₂H₄]⁺, 123 (100) [M-C₄H₇]⁺, 110 (91), 79 (43).

HRMS (EI, 70 eV): calculated: (C₁₂H₁₈O): 178.1354; found: 178.1354.

major Diastereoisomer cis-6

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.98 (d, ${}^{3}J$ = 6.8 Hz, 3H, CH₃), 1.24-1.38 (m, 1H), 1.47-1.63 (m, 3H), 1.56-1.75 (m, 1H), 1.68-1.74 (m, 1H), 1.75-1.86 (m, 2H), 1.89-1.98 (m, 1H), 2.03-2.21 (m, 3H, H-4a), 2.33-2.46 (m, 2H, H-3a, H-4), 2.57 (*virt.* dt, ${}^{2}J$ = 17.8 Hz, ${}^{3}J \approx 3.9$ Hz, 1H, H-6).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ (ppm) = 14.7 (q, CH₃), 20.9 (t), 26.7 (t), 26.9 (t), 31.3 (d, C-4), 32.5 (t), 39.0 (t), 39.6 (t), 43.3 (d, C-3a), 47.4 (s, C-8a), 56.0 (d, C-4a), 214 (s, C-6).

minor Diastereoisomer trans-6

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ (ppm) = 0.94 (d, ${}^{3}J$ = 7.5 Hz, 3H, CH₃), 1.29-1.39 (m, 1H, H-3), 1.49-1.63(m, 5H, H-1, H-1, H-3, H-8, H-8), 1.75-1.84 (m, 2H, H-2), 1.89-1.98 (m, 2H, H-7), 1.98-2.04 (m, 1H, H-3a), 2.04-2.14 (m, 2H, H-4, H-6), 2.40 (virt. dt, ${}^{2}J$ = 18.4 Hz, ${}^{3}J \approx 3.6$ Hz, 1H, H-6). 2.52 (d, ${}^{3}J$ = 11.2 Hz, 1H, H-4a).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ (ppm) = 17.3 (q, CH₃), 21.3 (t, C-7), 25.2 (t, C-2), 32.5 (t, C-8*), 33.0 (t, C-1*), 33.3 (d, C-4), 40.6 (t, C-3), 41.1 (t, C-6), 45.8 (s, C-8a), 47.9 (d, C-3a), 51.3 (d, C-4a), 214.9 (q, C-5).

* assignment is interconvertible

Important NOE contacts

Minor diastereoisomer *trans*-**6** was isolated in a different reaction in pure form. Therefore complete assignment was possible for this isomer. The major diastereoisomer *cis*-**6** was not isolated as a single product and an assignment of all NMR signals was not possible.

6. Deprotection of 1,3-Dithianes

Octahydrocyclopenta[1,4]cyclobuta[1,2]benzen-5(6H)-one (5)

For oxidative deprotection 30.0 mg dithiane (2a) (11.8 µmol, 1.00 eq.) were dissolved in 0.45 mL and 0.05 mL this MeOH water. To solution 76.0 mg [bis(trifluoroacetoxy)iodo]benzene (17.7 µmol, 1.50 eq.) were added and the mixture was stirred for one hour at room temperature before 4.0 mL sat. NaHCO₃ solution were added. The aqueous phase was extracted with Et₂O (3×15 mL), combined organic layers were dried over Na₂SO₄, filtrated and the solvent was removed in vacuo. The corresponding ketone 5 was obtained as a colorless oil in 84% yield (16.0 mg, 99.0 µmol), after column chromatography $(SiO_2, P/Et_2O = 10:1).$

TLC: $R_f = 0.26$ (P/Et₂O = 10/1, [KMnO₄]).

¹**H** NMR (500 MHz, CDCl₃, 300 K): δ (ppm) = 1.34 (*virt.* td, ${}^{2}J \approx {}^{3}J \approx 12.6$ Hz, ${}^{3}J = 6.8$ Hz, 1H, H-1), 1.50 – 1.58 (m, 2H, H-8), 1.58 – 1.65 (m, 3H, H-1, H-3), 1.77 – 1.85 (m, 2H, H-2, H-4), 1.85 – 1.93 (m, 1H, H-2), 1.94 – 2.05 (m, 2H, H-7), 2.05 – 2.11 (m, 1H, H-4), 2.17 (dddd, ${}^{2}J = 18.0$ Hz, ${}^{3}J = 11.5$ Hz, ${}^{3}J = 6.9$ Hz, ${}^{4}J = 0.9$ Hz, 1H, H-6), 2.36 – 2.43 (m, 1H, H-3a), 2.48 (dd, ${}^{3}J = 11.4$ Hz, ${}^{3}J = 6.9$ Hz, H-4a), 2.56 (dt, ${}^{2}J = 18.0$ Hz, ${}^{3}J = 4.2$ Hz, 1H, H-6).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ (ppm) = 21.3 (t, C-7), 25.1 (t, C-2), 27.0 (t, C-4), 33.0 (t, C-8*), 33.2 (t, C-3*), 39.6 (d, C-3a), 39.7 (t, C-6), 40.5 (t, C-1), 47.4 (d, C-4a), 50.1 (s, C-8a), 215.5 (s, C-5).

* assignment is interconvertible

The obtained data match with those reported in the literature.^[20]

7,7-Dimethyldecahydrocyclopenta[1,4]cyclobuta[1,2]benzene (4)

Raney®-Ni (440 mg) was washed with dry methanol (3×1 mL) before use.

Dithiane **2b** (18.0 mg, 63.7 μ mol) was dissolved in dry methanol (2.5 mL), *Raney*®-Ni was added and the mixture was stirred at 63°C for four hours in a closed flask. After cooling to room temperature, Ni was filtered off and washed with MeOH, water and pentane. Layers were separated and the organic layer was washed with water (3×5 mL), dried over Na₂SO₄ and filtered. Pentane was carefully removed in vacuo (20°C, 700 mbar). The product was obtained as a colorless oil in 75% yield (8.5 mg, 63 μ mol).

TLC: $R_{\rm f} = 1.0$ (P) [KMnO₄].

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2925 (s, sp³-CH), 2854 (m, sp³-CH), 1463 (w, sp³-CH).

MS (EI, 70 eV): m/z (%) = 178 (19) [M]⁺, 163 (100) [M-CH₃]⁺, 136 (31) [M-CH₃-C₂H₄]⁺, 122 (45), 93 (44), 81 (73).

¹**H NMR** (500 MHz, CD₂Cl₂, 298 K): δ (ppm) = 0.85 (s, 3H, CH₃), 0.95 (s, 3H, CH₃), 1.07-1.14 (m, 1H, H-1), 1.14-1.20 (m, 1H, H-6), 1.22-1.27 (m, 2H, H-2, H-8), 1.39-1.46 (m, 2H, H-1, H-3), 1.51 (ddd, ${}^{3}J$ = 12.5 Hz, ${}^{3}J$ = 9.0 Hz, ${}^{3}J$ = 3.8 Hz, 1H, H-4), 1.55-1.60 (m, 2H, H-6, H-8), 1.60-1.62 (m, 1H, H-3), 1.62-1.67 (m, 1H, H-2), 1.74 (*virt.* dtd, ${}^{2}J$ = 8.6 Hz, ${}^{3}J \approx$ 6.9 Hz, ${}^{3}J$ = 5.2 Hz, 1H, H-5), 1.79-1.85 (m, 1H, H-4), 1.86-1.96 (m, 2H, H-4a, H-5), 2.12-2.18 (m, 1H, H-3a).

¹³C NMR (126 MHz, CD₂Cl₂, 300 K): δ (ppm) = 25.9 (t, C-2), 26.9 (t, C-5), 28.8 (t, C-4), 29.6 (s, C-8a), 29.7 (q, CH₃), 32.5 (q, CH₃), 32.9 (t, C-3), 35.4 (d, C-4a), 35.5 (t, C-1), 43.1 (t, C-6), 44.0 (d, C-3a), 47.3 (t, C-8), 47.6 (s, C-7).

Important NOE contacts

HRMS (EI, 70 eV): calculated: (C₁₃H₂₂): 178.1716; found: 178.1708.

7. SC- XRD Determination of Compound 2g (CCDC 1528600)

A clear colorless plate-like specimen of $C_{15}H_{24}S_2$, approximate dimensions 0.019 mm x 0.124 mm x 0.181 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker D8 Venture Duo IMS system equipped with a Helios optic monochromator and a Mo IMS microsource ($\lambda = 0.71073$ Å).

A total of 2564 frames were collected. The total exposure time was 20.12 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 36482 reflections to a maximum θ angle of 25.08° (0.84 Å resolution), of which 2439 were independent (average redundancy 14.958, completeness = 99.8%, R_{int} = 8.47%, R_{sig} = 3.40%) and 2041 (83.68%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 34.16(2) Å, <u>b</u> = 6.682(4) Å, <u>c</u> = 12.551(9) Å, β = 105.66(4)°, volume = 2759.(3) Å³, are based upon the refinement of the XYZ-centroids of 9938 reflections above 20 $\sigma(I)$ with 4.945° < 2 θ < 51.23°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.940. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9370 and 0.9930.

The final anisotropic full-matrix least-squares refinement on F² with 227 variables converged at R1 = 3.10%, for the observed data and wR2 = 6.84% for all data. The goodness-of-fit was 1.032. The largest peak in the final difference electron density synthesis was 0.284 e⁻/Å³ and the largest hole was -0.227 e⁻/Å³ with an RMS deviation of 0.048 e⁻/Å³. On the basis of the final model, the calculated density was 1.293 g/cm³ and F(000), 1168 e⁻.

Figure 1. Ortep drawing with 50% ellipsoids for BreCh2 AP8183-100.

Table 2. Sample and crystal data for BreCh2 AP8183-100.

Identification code	BreCh2 AP8183-100	
Chemical formula	$C_{15}H_{24}S_2$	
Formula weight	268.46	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.019 x 0.124 x 0.181 m	m
Crystal habit	clear colorless plate	
Crystal system	monoclinic	
Space group	C 1 2/c 1	
Unit cell dimensions	a = 34.16(2) Å	$\alpha = 90^{\circ}$
	b = 6.682(4) Å	$\beta = 105.66(4)^{\circ}$
	c = 12.551(9) Å	$\gamma = 90^{\circ}$
Volume	2759.(3) Å ³	
Z	8	

Density (calculated)	1.293 g/cm ³
Absorption coefficient	0.363 mm ⁻¹
F(000)	1168

 Table 1. Data collection and structure refinement for BreCh2 AP8183-100.

Diffractometer	Bruker D8 Venture Duo IMS	
Radiation source	IMS microsource, Mo	
Theta range for data collection	2.48 to 25.08°	
Index ranges	-40<=h<=40, -7<=k<=7, -15<=l<=15	
Reflections collected	36482	
Independent reflections	2439 [R(int) = 0.0847]	
Coverage of independent reflections	99.8%	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.9930 and 0.9370	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)	
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	
Data / restraints / parameters	2439 / 0 / 227	
Goodness-of-fit on F ²	1.032	
Δ/σ_{max}	0.002	
Final R indices	2041 data; I>2σ(I)	R1 = 0.0310, wR2 = 0.0654
	all data	R1 = 0.0442, wR2 = 0.0684
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0278P) ² +3.8302P] where P=(F_o^2 +2 F_c^2)/3	
Extinction coefficient	0.0007(1)	
Largest diff. peak and hole	0.284 and -0.227 eÅ ⁻³	
R.M.S. deviation from mean	0.048 eÅ ⁻³	

8. Additional UV/Vis Spectra

a) Dithiane 1a in the presence of more equivalents of Tf₂NH

UV/Vis spectra were measured in CH₂Cl₂ [0.5 mM]

b) Comparison of Dithiane 1a and Dithiolane 25

UV/Vis spectra were measured in CH₂Cl₂ [0.5 mM]

c) Spectra of Dithiane 1a in the presence of CSA and $C_6F_5CHTf_2$

UV/Vis spectra were measured in CH₂Cl₂ [0.5 mM]

d) Dithiane **1e** under acidic conditions

 $\lambda_{\rm max} = 356 \ {\rm nm} \qquad \lambda_{\rm max}$

 $\lambda_{max} = 337 \text{ nm}$

UV/Vis spectra were measured in CH₂Cl₂ [0.5 mM]

9. Data Sheets and Emission Spectra of Light Sources

LED 398 nm

ehrstuhl OC 1 - TUM 200 nm 1 250 nm 1 300 nm	n 1350 nm 1400 nm 1450 nm 1500 nm 1530 nm 1600 nm 1680 nm
Datasheet	400 / 10 W
Basic Information	Ultra-High-Power Violet (400)
Туре	High-Power-LED
Description	
Manufacturer / Supplier	LED-Engine Mouser
Order number / Date of purch.	LZ4-40UA00-00U6 / 01/2016
Internal lot / serial number	2016-01 / LED026
Specification Manufactur	er
Type / size	quattro emitter / not spec.
Mechanical specification	
Electrical specification	700 mA @15 V
Wavelength (range, typ.)	
Spectral width (FWHM)	
Datasheet	LZ4-00UA-series.pdf
Characterization	
Description of measurement	Measured with Ocean-optics USB4000 spectrometer using a
	calibrated setup (cosine corrector/fibre).
	The distance between the emitting surface and the surface of
	the cosine corrector was 20 mm. The LED was operated at
	500 mA on a passive heat-sink at approx. 20 °C
Measured wavelength	398 nm
Measured spectral width	15 nm
Integral Reference intensity	272000 μW/cm² (360-480 nm @ 20 mm distance, 4 mmcosine corr.)
Spectrum	
1,60E+04	
1,40E+04	<u>A</u>
1,20E+04	<u> </u>
E 1,00E+04	
8,00E+03	
3 1 1 5 005+03	
- 0,00000	
4,00E+03	
2,00E+03	
0,00E+00	
300 350	ν 400 450 500 550 600 λ[nm]

LED 405 nm

Lehrstuhl OC 1 - TUM 200 nm 1290 nm 1300 nm	- 1350 nm - 1400 nm - 1450 nm - 1600 nm - 1660 nm - 1660 nm - 1660 nm - 1660 nm	
Datasheet	405 / 10 W	
Basic Information	Ultra-High-Power Violet (405)	
Туре	High-Power-LED	
Description		
Manufacturer / Supplier	LED-Engine Mouser	
Order number / Date of purch.	LZ4-40UA00-00U7 / 03/2016	
Internal lot / serial number	2016-03 / LED037	
Specification Manufacture	r	
Type / size	quattro emitter / not spec.	
Mechanical specification		
Electrical specification	700 mA @15 V	
Wavelength (range, typ.)		
Spectral width (FWHM)		
Datasheet	LZ4-00UA-series.pdf	
Characterization		
Description of measurement	Measured with Ocean-optics USB4000 spectrometer using a	
	calibrated setup (cosine corrector/fibre).	
	The distance between the emitting surface and the surface of	
	the cosine corrector was 20 mm. The LED was operated at	
	500 mA on a passive heat-sink at approx. 20 °C	
Measured wavelength	405 nm	
Measured spectral width	18 nm	
Integral Reference intensity	247500 μW/cm² (360-480 nm @ 20 mm distance, 4 mmcosine corr.)	
Spectrum		
1,40E+04		
1 205-04		

S59

Philips Lighting 366 nm fluorescence lamp

- 10. NMR Spectra of new Compounds
- 10.1. Substrates and Intermediate Compounds
- 8-(Pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1a)

¹H NMR (500 MHz, CDCl₃, 298 K)

10,10-Dimethyl-8-(pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1b)

¹H NMR (500 MHz, CDCl₃, 298 K)

3-(2,2-Dimethylpent-4-en-1-yl)cyclohex-2-en-1-one (9c)

¹H NMR (500 MHz, CDCl₃, 298 K)

8-(2,2-Dimethylpent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1c)

¹H NMR (500 MHz, CDCl₃, 298 K)

8-(Pent-4-yn-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (16)

¹H NMR (500 MHz, CDCl₃, 298 K)

8-(hex-4-yn-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1d)

¹H NMR (500 MHz, CDCl₃, 298 K)

2-(Pent-4-en-1-yl)-6,10-dithiaspiro[4.5]dec-1-ene (1e)

¹H NMR (500 MHz, CDCl₃, 298 K)

5-Methyl-3-(pent-4-en-1-yl)cyclohex-2-en-1-one (9f)

¹H-NMR (500 MHz, CDCl₃, 298 K)

10-Methyl-8-(pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1f)

¹H-NMR (500 MHz, CDCl₃, 298 K)

4-Methyl-3-(pent-4-en-1-yl)cyclohex-2-en-1-one (9g)

¹H-NMR (500 MHz, CDCl₃, 298 K)

9-Methyl-8-(pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1g)

¹H-NMR (500 MHz, CDCl₃, 298 K)

3-Ethoxy-6-ethylcyclohex-2-en-1-one (20)

¹H-NMR (500 MHz, CDCl₃, 298 K)

¹³C-NMR (126 MHz, CDCl₃, 300 K)

4-Ethyl-3-(pent-4-en-1-yl)cyclohex-2-en-1-one (9h)

¹H-NMR (500 MHz, CDCl₃, 298 K)

¹³C-NMR (126 MHz, CDCl₃, 300 K)

9-Ethyl-8-(pent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1h)

¹**H-NMR** (500 MHz, CDCl₃, 298 K)

¹³C-NMR (126 MHz, CDCl₃, 300 K)

3-(3-Methylpent-4-en-1-yl)cyclohex-2-en-1-one (9i)

¹H-NMR (500 MHz, CDCl₃, 298 K)

8-(3-Methylpent-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1i)

¹H-NMR (500 MHz, CDCl₃, 298 K)

(Z)-3-(Hex-4-en-1-yl)cyclohex-2-en-1-one (9j)

¹H NMR (500 MHz, CDCl₃, 298 K)

(Z)-8-(Hex-4-en-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (1j)

¹H NMR (500 MHz, CDCl₃, 298 K)

7-(Pent-4-en-1-yl)-1,4-dithiaspiro[4.5]dec-6-ene (25)

¹H-NMR (500 MHz, CDCl₃, 298 K)

10.2 Cyclobutanes

Octahydro-6*H*-spiro{cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-[1,3]dithiane} (2a)

¹H NMR (500 MHz, CDCl₃, 298 K)

7,7-Dimethyloctahydro-6H-spiro{cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-

[1,3]dithiane} (2b)

¹H NMR (500 MHz, CDCl₃, 298 K)

¹³C NMR (126 MHz, CDCl₃, 300 K)

7,7-Dimethyldecahydrocyclopenta[1,4]cyclobuta[1,2]benzene (4)

¹H NMR (500 MHz, CD₂Cl₂, 298 K)

¹³C NMR (126 MHz, CD₂Cl₂, 300 K)

2,2-Dimethyloctahydro-6*H*-spiro[cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-[1,3]dithiane] (2c)

¹H NMR (500 MHz, CDCl₃, 298 K)

¹³C NMR (126 MHz, CDCl₃, 300 K)

8-(Hex-4-yn-1-yl)-1,5-dithiaspiro[5.5]undec-7-ene (2d)

¹H NMR (500 MHz, CDCl₃, 298 K)

Octahydrospiro{cyclobuta[1,2:1,4]di[5]annulene-3,2'-[1,3]dithiane} (2e)

¹**H NMR** (500 MHz, CDCl₃, 298 K)

¹³C NMR (126 MHz, CDCl₃, 300 K)

7-Methyloctahydro-6*H*-spiro{cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-[1,3]dithiane} (2f)

¹H-NMR (500 MHz, CDCl₃, 298 K)

8-Methyloctahydro-6*H*-spiro{cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-[1,3]dithiane} (2g)

¹H-NMR (500 MHz, CDCl₃, 298 K)

8-Ethyloctahydro-6H-spiro[cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-[1,3]dithiane] (2h)

¹H-NMR (500 MHz, CDCl₃, 298 K)

3-Methyloctahydro-6*H*-spiro{cyclopenta[1,4]cyclobuta[1,2]benzene-5,2'-[1,3]dithiane} (2i)

¹H-NMR (500 MHz, CDCl₃, 298 K)

4-Methyloctahydrocyclopenta[1,4]cyclobuta[1,2]benzen-5(6H)-one (6)

¹H NMR (500 MHz, CDCl₃, 298 K)

¹³C NMR (126 MHz, CDCl₃, 300 K)

11. References

- [1] a) D. Rackl, V. Kais, P. Kreitmeier, O. Reiser, *Beilstein J. Org. Chem.* 2014, *10*, 2157-2165; b) D. Lenhart, A. Bauer, A. Pöthig, T. Bach, *Chem. Eur. J.* 2016, *22*, 6519-6523.
- [2] I. de Miguel, B. Herrad, E. Mann, Adv. Synth. Catal. 2012, 354, 1731-1736.
- [3] K. Wińska, A. Grudniewska, A. Chojnacka, A. Białońska, C. Wawrzeńczyk, *Tetrahedron: Asymmetry* 2010, 21, 670-678.]
- [4] T. Kiguchi, Y. Tsurusaki, S. Yamada, M. Aso, M. Tanaka, K. Sakai, H. Suemune, *Chem. Pharm. Bull.* 2000, 48, 1536-1540.
- [5] B. Jandeleit, Y. Li, M. A. Gallop, N. Zerangue, P. A. Virsik, W.-N. Fischer, *Externally masked neopentyl sulfonyl ester cyclization release prodrugs of acamprosate, compositions thereof, and methods of use*, United States Patent Application 20090082464, March 26, 2009.
- [6] G. Chen, X. S. Ma, Z. Guan, J. Am. Chem. Soc. 2003, 125, 697-6704.
- [7] G. Pattenden, S. J. Taegue, *Tetrahedron* **1987**, *43*, 5637-5652.
- [8] M. R. Harris, M. O. Konev, E- R. Jarvo, J. Am. Chem. Soc. 2014, 132, 7825-7828.
- [9] G. A. I. Moustafa, Y. Saku, H. Aoyama, T. Yoshimitsu, *Chem. Comm.* 2014, 50, 15706-15709.
- [10] A. Sidduri, M. J. Rozena, P. Knochel, J. Org. Chem. 1993, 58, 2694-2713.
- [11] B. B. Kikani, J. R. McKee, M. Zanger, *Synthesis* **1991**, 176.
- [12] S. Yamada, S. Karasawa, Y. Takahashi, M. Aso, H. Suemune, *Tetrahedron* 1998, 54, 15555-15566.
- [13] K. M. Foote, C. J. Hayes, M. P. John, G. Pattenden, *Org. Biomol. Chem.* 2003, *1*, 3917-3948.
- [14] B. M. Trost, R. Bream, J. Xu, Angew. Chem. Int. Ed. 2006, 45, 3109-3112.
- [15] J.P. Vigneron, R. Méric, M. Larchevêque, A. Debal, J.Y. Lallemand, G. Kunesch, P. Zagatti, M. Gallois, *Tetrahedron* 1984, 40, 3521-3529.]
- [16] N. M. Lagneau, Y. Chen, P. M. Robben, H.-S. Sin, K. Takasu, J.-S. Chela, P. D.
 Robinson, D. H. Hua, *Tetrahedron* 1998, 58, 7301-7334.]

- [17] C. U. Grünanger, B. Breit, Angew. Chem. Int. Ed. 2010, 49, 967-970.]
- [18] U. Jensen-Korte, H.-J. Schäfer, Liebigs Ann. Chem. 1982, 1532-1542.]
- [19] A. Schmidt, A. R. Nödling, G. Hilt, Angew. Chem. Int. Ed. 2014, 54, 801-804.
- [20] G. Lutteke, R. AlHussainy, P. J. Wrigstedt, B. T. B. Hue, R. de Gelder, J. H. van Maarseveen, H. Hiemstra, *Eur. J. Org. Chem.* 2008, 2008, 925-933.