CHEMISTRY A European Journal

Supporting Information

Expanding Water/Base Tolerant Frustrated Lewis Pair Chemistry to Alkylamines Enables Broad Scope Reductive Aminations

Valerio Fasano and Michael J. Ingleson^{*[a]}

chem_201605466_sm_miscellaneous_information.pdf

Supporting Information for:

Expanding Water/Base Tolerant FLP Chemistry to Alkylamines Enables Broad Scope Reductive Aminations

Valerio Fasano and Michael J. Ingleson*

Michael.ingleson@manchester.ac.uk

School of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.

Table of Contents

1. General Remarks	2
2. Borane adducts with water and amines/imines	3
3. Decomposition of Ph_3B-OH_2 in the presence of amines	14
4. Initial screening of reaction conditions	17
5. Screening of the hydrosilanes as reductant	21
6. Imine consumption vs water dehydrosilylation	26
7. Reductive amination benzaldehyde/aniline with $B(C_6F_5)_3$ and BPh_3	27
8. Hydrosilylation of <i>N</i> -benzylidene aniline and <i>N</i> -benzylidene benzylamine	29
9. Reduction of protonated imine with [Et ₄ N][HBPh ₃]	31
10. Attempted imine reduction with Ph ₂ BOH, PhB(OH) ₂ and Ph ₃ BOH ⁻ as catalyst	33
11. Attempted reductive amination using HNO ₃ and HCl as catalysts	36
12. Carbonyl substrate scope	38
13. Amine substrate scope	43
14. Synthesis of <i>N</i> -benzyl-1-adamantylamine	46
15. Reductive amination benzaldehyde/benzhydrylamine with $B(C_6F_5)_3$ and BPh_3	47
16. Reductive aminations using NaBArCl as catalyst precursor	49
17. Synthesis of Piribedil	56
18. BPh ₃ decomposition sealed under air	57
19. References	58
20. NMR and GC-MS data of all compounds	59

1. General Remarks

Unless otherwise indicated all manipulations were conducted under ambient conditions. Unless otherwise indicated, all compounds and solvents were purchased from commercial sources and used as received unless otherwise stated. BPh₃ was bought and kept under argon to prevent decomposition. NaBArcl was produced using the previously published procedure.¹ [Et₄N][HBPh₃] was synthesised by Mr John McGough from Na[HBPh₃] and [Et₄N]I in accordance with the literature.² Solvents for column chromatography were of technical grade and used without further purification. Column chromatography was performed on silica gel (230-400 mesh). NMR spectra were recorded with a Bruker AV-400 spectrometer (400 MHz ¹H; 100 MHz ¹³C; 128 MHz ¹¹B; 376 MHz ¹⁹F; 79 MHz ²⁹Si). ¹H NMR chemical shifts are reported in ppm relative to *protio* impurities in the deuterated solvents and ¹³C NMR using the solvent resonances unless otherwise stated. ¹¹B NMR spectra were referenced to external BF₃:Et₂O, ¹⁹F to Cl₃CF and ²⁹Si to Si(CH₃)₄. Coupling constants J are given in Hertz (Hz), while the multiplicity of the signals are indicated as "s", "d", "t" "pent", "sept" or "m" for singlet, doublet, triplet, pentet, septet or multiplet, respectively. Mesitylene (distilled from K) was used as an internal standard to determine the NMR yields. GC-MS analysis was performed on an Agilent Technologies 7890A GC system equipped with an Agilent Technologies 5975C inert XL EI/CI MSD with triple axis detector. The column employed was an Agilent J&W HP-5ms ((5%-Phenyl)-methylpolysiloxane) of dimensions: length, 30 m; internal diameter, 0.250 mm; film, 0.25 µm. Mass spectra were recorded on a Waters QTOF mass spectrometer.

2. Boranes adducts with water and amines

BPh₃ in MeCN: A J. Youngs NMR tube equipped with d_6 -DMSO capillary was charged with BPh₃ (7.0 mg, 0.028 mmol, 1.0 eq.) in distilled acetonitrile (0.5 mL). Upon heating at 100°C for 20 hours, minimal decomposition was observed, with Ph₃B-MeCN adduct observed as the main species.

Figure S1. In situ ¹H-NMR spectra of BPh₃ in acetonitrile. Blue (t = 5 min, r.t.), green (after t = 3 hours at 100° C), red (after 20 hours at 100° C).

Figure S2. In situ ¹¹B-NMR spectra of BPh₃ in acetonitrile. Blue (t = 5 min, r.t.), green (after t = 3 hours at 100°C), red (after 20 hours at 100°C). Impurity at 47 ppm is Ph₂BOH present in commercial material which does not increase on prolonged heating in the absence of H₂O.

BPh₃/H₂O (1:10): A J. Youngs NMR tube equipped with d_6 -DMSO capillary was charged with BPh₃ (11.3 mg, 0.044 mmol, 1.0 eq.) and H₂O (8 µL, 0.445 mmol, 10.0 eq.) in distilled acetonitrile (0.5 mL). Upon heating at 100°C for 3 hours, BPh₃ decomposition was observed.

Figure S3. In situ ¹H-NMR spectra of BPh₃/H₂O (1:10) in acetonitrile. Blue (t = 5 min, r.t.), red (after 3 hours at 100° C).

Figure S4. In situ ¹¹B-NMR spectra of BPh₃/H₂O (1:10) in acetonitrile. Blue (t = 5 min, r.t.), red (after 3 hours at 100° C).

BPh₃/H₂O/PhNH₂ (1:1:1): A J. Youngs NMR tube was charged with BPh₃ (14.0 mg, 0.055 mmol, 1.0 eq.), H₂O (1 μ L, 0.055 mmol, 1.0 eq.) and PhNH₂ (5 μ L, 0.055 mmol, 1.0 eq.) in d_3 -acetonitrile (0.5 mL). Both –NH₂ and H₂O protons were observed as a broad feature centered at 2.3 ppm.

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Chemical Shift (ppm)

Figure S5. *In situ* ¹H-NMR spectra of PhNH₂ (blue), BPh₃/PhNH₂ 1:1 (green) and BPh₃/H₂O/PhNH₂ 1:1:1 (red) in d₃-acetonitrile.

Figure S6. *In situ* ¹¹B-NMR spectra of BPh₃/PhNH₂ 1:1 (blue), BPh₃/H₂O/PhNH₂ 1:1:1 (green) and BPh₃/H₂O 1:1 (red) d₃-acetonitrile.

In an attempt to reach the slow exchange regime, a VT-NMR analysis was performed, but the equilibrium still persisted at -40°C in d_3 -MeCN.

Figure S7. In situ ¹H-NMR spectra of BPh₃/H₂O/PhNH₂ 1:1:1 in d₃-acetonitrile. Dark blue (- 40° C), green (- 30° C), brown (- 20° C), pink (- 10° C), yellow (0° C), light blue (10° C), black 20° C), red (25° C).

Figure S8. In situ ¹¹B-NMR spectra of BPh₃/H₂O/PhNH₂ 1:1:1 in d₃-acetonitrile. Dark blue (-40°C), green (-30°C), brown (-20°C), pink (-10°C), yellow (0°C), light blue (10°C), black 20°C), red (25°C).

BPh₃/H₂O/BnNH₂ (1:1:1): A J. Youngs NMR tube was charged with BPh₃ (14.0 mg, 0.055 mmol, 1.0 eq.), H₂O (1 μ L, 0.055 mmol, 1.0 eq.) and BnNH₂ (6 μ L, 0.055 mmol, 1.0 eq.) in d_3 -acetonitrile (0.5 mL). Ph₃B-H₂NBn adduct was detected as the main species.

Figure S9. In situ ¹H-NMR spectra of BnNH₂ (blue), BPh₃/BnNH₂ 1:1 (green) and BPh₃/H₂O/BnNH₂ 1:1:1 (red) in d₃-acetonitrile.

Figure S10. *In situ* ¹¹B-NMR spectra of BPh₃/BnNH₂ 1:1 (blue), BPh₃/H₂O/BnNH₂ 1:1:1 (green) and BPh₃/H₂O 1:1 (red) in d₃-acetonitrile.

B(C₆F₅)₃/H₂O/BnNH₂ (1:1:1): A J. Youngs NMR tube was charged with B(C₆F₅)₃ (30.0 mg, 0.055 mmol, 1.0 eq.), H₂O (1 μ L, 0.055 mmol, 1.0 eq.) and BnNH₂ (6 μ L, 0.055 mmol, 1.0 eq.) in *d*₃-acetonitrile (0.5 mL). (F₅C₆)₃BOH⁻ was detected as the main species (at -4.4 ppm in the ¹¹B-NMR). The peaks observed for B(C₆F₅)₃/BnNH₂ 1:1 could not be assigned unambiguously (we tentatively assign them to the adducts of B(C₆F₅)₃ with the amine and MeCN).

Figure S12. In situ ¹¹B-NMR spectra of $B(C_6F_5)_3/BnNH_2$ 1:1 (blue) and $B(C_6F_5)_3/H_2O/BnNH_2$ 1:1:1 (red) in d₃-acetonitrile.

B(C₆F₅)₃/H₂O/BnNH₂1:1:1 (red) in d₃-acetonitrile.

To confirm the $(F_5C_6)_3BOH^-$ formation, an equimolar mixture of $B(C_6F_5)_3/H_2O/^tBuNH_2$ was dissolved in DCM, observing quantitative formation of $(F_5C_6)_3BOH^-$. Then, the system was dried in vacuo and the solid obtained was dissolved in d_3 -acetonitrile, obtaining ¹¹B and ¹⁹F-NMR resonances for $(F_5C_6)_3BOH^-$ comparable to those observed for $B(C_6F_5)_3/H_2O/BnNH_2$ mixture.

Figure S14. ¹¹B-NMR spectra of $(F_5C_6)_3BOH^-$ (blue) and $B(C_6F_5)_3/H_2O/BnNH_2$ 1:1:1 (red) in d₃-acetonitrile.

Figure S15. In situ ¹⁹F-NMR spectra of $(F_5C_6)_3BOH^-$ (blue) and $B(C_6F_5)_3/H_2O/BnNH_2$ 1:1:1 (red) in d₃-acetonitrile.

BPh₃/H₂O/^tBuNH₂ (1:1:1): A J. Youngs NMR tube was charged with BPh₃ (14.0 mg, 0.055 mmol, 1.0 eq.), H₂O (1 μ L, 0.055 mmol, 1.0 eq.) and ^tBuNH₂ (6 μ L, 0.055 mmol, 1.0 eq.) in *d*₃-acetonitrile (0.5 mL).

Figure S16. In situ ¹H-NMR spectra of ^tBuNH₂ (blue), BPh₃/^tBuNH₂ 1:1 (green) and BPh₃/H₂O/^tBuNH₂ 1:1:1 (red) in d₃-acetonitrile.

Figure S17. *In situ* ¹¹B-NMR spectra of BPh₃/^tBuNH₂ 1:1 (blue), BPh₃/H₂O/^tBuNH₂ 1:1:1 (green) and BPh₃/H₂O 1:1 (red) d₃-acetonitrile.

The VT-NMR analysis revealed that ${}^{t}BuN(H_2)N-BPh_3$ is a minor component and not observable at temperature higher than 10°C, however an additional dynamic process is not frozen out at -40°C in d_3 -MeCN.

Figure S18. In situ ¹H-NMR spectra of BPh₃/H₂O/^tBuNH₂ 1:1:1 in d₃-acetonitrile. Dark blue (-40°C), green (-30°C), brown (-20°C), pink (-10°C), yellow (0°C), light blue (10°C), black 20°C), red (25°C).

Figure S19. In situ ¹¹B-NMR spectra of BPh₃/H₂O/^tBuNH₂ 1:1:1 in d₃-acetonitrile. Dark blue (-40°C), green (-30°C), brown (-20°C), pink (-10°C), yellow (0°C), light blue (10°C), black 20°C), red (25°C).

BPh₃/Ph(H)C=NBn (1:1): A J. Youngs NMR tube was charged with BPh₃ (14.0 mg, 0.055 mmol, 1.0 eq.) and *N*-benzylidene benzylamine (11 μ L, 0.055 mmol, 1.0 eq.) in *d*₃-acetonitrile (0.5 mL). Water traces induced a small degree of imine hydrolysis. Adding BnNH₂ (6 μ L, 0.055 mmol, 1.0 eq.), BnNH₂-BPh₃ was observed as the main species. The unchanged chemical shift of the aldimine protons upon BnNH₂ addition may indicate weak imine coordination to BPh₃.

Figure S20. *In situ* ¹H-NMR spectra of BPh₃/Ph(H)C=NBn 1:1 in d₃-acetonitrile. Blue (after 5 min at r.t.), red (after BnNH₂ addition).

Figure S21. *In situ* ¹¹B-NMR spectra of BPh₃/Ph(H)C=NBn 1:1 in d₃-acetonitrile. Blue (after 5 min at r.t.), red (after BnNH₂ addition).

3. Decomposition of Ph₃B-OH₂ in the presence of amines

BPh₃/H₂O/PhNH₂ (1:10:10): A J. Youngs NMR tube equipped with d_6 -DMSO capillary was charged with BPh₃ (7.0 mg, 0.028 mmol, 1.0 eq.), H₂O (5 µL, 0.275 mmol, 10.0 eq.) and PhNH₂ (25 µL, 0.275 mmol, 10.0 eq.) in acetonitrile (0.5 mL). Upon heating at 100°C for 20 hours, full BPh₃ decomposition was observed.

Figure S22. In situ ¹H-NMR spectra of BPh₃/H₂O/PhNH₂ (1:10:10) in acetonitrile. Blue (t = 5 min, r.t.), green (after t = 3 hours at 100°C), red (after 20 hours at 100°C).

Figure S23. In situ ¹¹B-NMR spectra of BPh₃/H₂O/PhNH₂ (1:10:10) in acetonitrile. Blue (t = 5 min, r.t.), green (after t = 3 hours at 100°C), red (after 20 hours at 100°C).

BPh₃/H₂O/BnNH₂ (1:10:10): A J. Youngs NMR tube equipped with d_6 -DMSO capillary was charged with BPh₃ (7.0 mg, 0.028 mmol, 1.0 eq.), H₂O (5 µL, 0.275 mmol, 10.0 eq.) and BnNH₂ (30 µL, 0.275 mmol, 10.0 eq.) in acetonitrile (0.5 mL). Upon heating at 100°C for 20 hours, minimal decomposition was observed as based on the absence of significant PhH.

Figure S24. In situ ¹H-NMR spectra of BPh₃/H₂O/BnNH₂ (1:10:10) in acetonitrile. Blue (t = 5 min, r.t.), green (after t = 3 hours at 100°C), red (after 20 hours at 100°C).

Figure S25. In situ ¹¹B-NMR spectra of BPh₃/H₂O/BnNH₂ (1:10:10) in acetonitrile. Blue (t = 5 min, r.t.), green (after t = 3 hours at 100° C), red (after 20 hours at 100° C).

BPh₃/H₂O/^tBuNH₂ (1:10:10): A J. Youngs NMR tube equipped with d_6 -DMSO capillary was charged with BPh₃ (7.0 mg, 0.028 mmol, 1.0 eq.), H₂O (5 µL, 0.275 mmol, 10.0 eq.) and ^tBuNH₂ (30 µL, 0.275 mmol, 10.0 eq.) in acetonitrile (0.5 mL). Upon heating at 100°C for 20 hours, partial BPh₃ decomposition was observed (PhH present in the ¹H NMR spectrum), but tetracoordinated L.B.-BPh₃ species were still the main species.

Figure S26. In situ ¹H-NMR spectra of BPh₃/H₂O/^tBuNH₂ (1:10:10) in acetonitrile. Blue (t = 5 min, r.t.), green (after t = 3 hours at 100°C), red (after 20 hours at 100°C).

Figure S27. In situ ¹¹B-NMR spectra of BPh₃/H₂O/^tBuNH₂ (1:10:10) in acetonitrile. Blue (t = 5 min, r.t.), green (after t = 3 hours at 100°C), red (after 20 hours at 100°C).

4. Initial screening of reaction conditions

General Procedure: A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with the catalyst in the appropriate solvent. Then, benzaldehyde (1.00 eq.), benzylamine (1.20 eq.) and dimethylphenylsilane (3.50 eq.) were added. After the monitoring of the initial reaction mixture by multinuclear NMR spectroscopy, the J. Youngs NMR tube was heated up at 60 or 100°C for 25 hours and then monitored by ¹H, ¹¹B and ²⁹Si-NMR spectroscopy. Subsequent addition of mesitylene (25 μ L) to the reaction mixture allowed the determination of the NMR yields based on the protons attached to the α -carbons. The reaction mixture was then concentrated under reduced pressure and the crude analysed by multinuclear NMR spectroscopy and by GC-MS analysis. Both analysis revealed the main species present were PhMe₂SiOH, (PhMe₂Si)₂O and the desired product. Purification by flash column chromatography on silica gel gave isolated yields which were in good agreement with the NMR yields.

$H + H_2N + PhMe_2Si-H \xrightarrow{Catalyst}_{Solvent} H + H_1N + PhMe_2Si-H \xrightarrow{Catalyst}_{Solvent} H + H_1N + PhMe_2Si-H + PhMe_2Si$									
Entry	Solvent	Eq. silane	Eq. Cat.	Temp.	Yield	$(\%)^{a}$			
					B(C ₆ F ₅) ₃	BPh ₃			
1	o-DCB	1.2	10 % mol	100 °C	< 5	< 5			
2	MeCN	1.2	10 % mol	100 °C	< 5	33			
3	o-DCB	3.5	10 % mol	100 °C	< 5	< 5			
4	MeCN	3.5	10 % mol	100 °C	< 5	$87 (80)^{b}$			
5	MeCN	3.5	5 % mol	100 °C	< 5	35			
6	MeCN	3.5	10 % mol	60 °C	< 5	6			

^aNMR yield using mesitylene as standard. ^bIsolated yield.

The reaction in entry 4 was repeated with the same batch of BPh₃ obtaining similar NMR conversion (82% vs 87%). A new batch of BPh₃ was opened and left under ambient conditions for two weeks: repeating the standard reaction with this batch of BPh₃ revealed slower activity (52% NMR yield).

Reductive amination with B(C₆F₅)₃ in o-DCB (Entry 3): Following the general procedure, a J. Youngs NMR tube was loaded with B(C₆F₅)₃ (12.3 mg, 0.024 mmol, 0.10 eq.) in odichlorobenzene (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), benzylamine (32 μ L, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 μ L, 0.843 mmol, 3.50 eq.). After heating at 100°C for 25 hours, multinuclear NMR spectroscopy revealed minimal reduction of the imine.

Figure S28. In situ ¹H and ²⁹Si-NMR spectra of the reductive amination of benzaldehyde/ benzylamine with $B(C_6F_5)_3$ in o-dichlorobenzene, using PhMe₂SiH (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 25 hours at 100°C).

Reductive amination with BPh₃ in MeCN (Entry 4): Following the general procedure, a J. Youngs NMR tube was loaded with BPh₃ (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), benzylamine (32 μ L, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 μ L, 0.843 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signal of the protons attached to α -carbons appeared at δ = 3.77 ppm (NMR yield = 87%).

Figure S29. In situ ¹H and ²⁹Si-NMR spectra of the reductive amination of benzaldehyde/ benzylamine with BPh₃ in acetonitrile, using PhMe₂SiH (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 25 hours at 100° C).

After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and dibenzylamine. The crude was purified by flash column chromatography (Pet. Et. : EtOAc 9:1) obtaining dibenzylamine as yellow oil (38 mg, 0.193 mmol, 80%). R_f = 0.30. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.28-7.21 (m, 8H), 7.20-7.13 (m, 2H), 3.72 (s, 4H), 1.79 (br, 1H) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 140.2, 128.4, 128.1, 126.9, 53.1 ppm. GC-MS: *m/z* calculated for C₁₄H₁₅N, 197.1; found 197.1. GC-MS retention times of analyte: 10.43 minutes (Dibenzylamine).The data were in agreement with those reported in the literature.³

Figure S30. GC-MS of reaction crude.

Figure S31. ¹H-NMR spectrum of the isolated dibenzylamine (CDCl₃).

Figure S32. ¹³C-NMR spectrum of the isolated dibenzylamine (CDCl₃).

5. Screening of the hydrosilanes as reductant

General Procedure: A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with the BPh₃ (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 µL, 0.241 mmol, 1.00 eq.), benzylamine (32 µL, 0.289 mmol, 1.20 eq.) and the appropriate silane (3.50 eq.). The reaction mixture was then heated at 100°C and monitored periodically by multinuclear spectroscopy. Subsequent addition of mesitylene (25 µL) to the reaction mixture allowed the determination of the NMR yields based on the protons attached to the α -carbons (δ = 3.8 ppm). The reaction mixture was then concentrated under reduced pressure and analysed by GC-MS analysis.

H + H ₂ N	+ R ₃ Si-	$\mathbf{H} \frac{10\% \mathrm{mol}}{\mathrm{MeCN}, 100}$	
Entry	Silane	Time (h)	Yield $(\%)^a$
1	PhMe ₂ SiH	25	87
2	Ph ₂ MeSiH	25	8
3	PhMeSiH ₂	25	55
4	PhSiH ₃	20	56
5	Ph_2SiH_2	20	86

^aNMR yield using mesitylene as standard.

Reductive amination using Ph₂MeSiH (Entry 2): Following the general procedure, a J. Youngs NMR tube was loaded with BPh₃ (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), benzylamine (32 μ L, 0.289 mmol, 1.20 eq.) and methyldiphenylsilane (173 μ L, 0.843 mmol, 3.50 eq.). After heating at 100°C for 25 hours, the NMR yield was 8%. GC-MS: *m/z* calculated for C₁₄H₁₅N, 197.1; found 197.1. GC-MS retention times of analyte: 10.42 minutes (Dibenzylamine).The data were in agreement with those reported in the literature.³

3.5 mm πp 4.0 mm mm ηn mm mm 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.0 2.5 2.0 1.5 1.0 0.5 Chemical Shift (ppm)

Figure S33. *In situ* ¹H and ²⁹Si-NMR spectra of the reductive amination of benzaldehyde/ benzylamine with BPh₃ in acetonitrile, using Ph₂MeSiH (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 25 hours at 100° C).

Figure S34. GC-MS of crude reaction.

Reductive amination using PhMeSiH₂ (Entry 3): Following the general procedure, a J. Youngs NMR tube was loaded with BPh₃ (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), benzylamine (32 μ L, 0.289 mmol, 1.20 eq.) and methylphenylsilane (118 μ L, 0.843 mmol, 3.50 eq.). After heating at 100°C for 25 hours, the NMR yield was 55%. GC-MS: *m/z* calculated for C₁₄H₁₅N, 197.1; found 197.1. GC-MS retention times of analyte: 10.42 minutes (Dibenzylamine).The data were in agreement with those reported in the literature.³

Figure S35. *In situ* ¹H and ²⁹Si-NMR spectra of the reductive amination of benzaldehyde/ benzylamine with BPh₃ in acetonitrile, using PhMeSiH₂ (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 25 hours at 100°C).

Figure S36. GC-MS of crude reaction.

Reductive amination using PhSiH₃ (Entry 4): Following the general procedure, a J. Youngs NMR tube was loaded with BPh₃ (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), benzylamine (32 μ L, 0.289 mmol, 1.20 eq.) and phenylsilane (107 μ L, 0.843 mmol, 3.50 eq.). After heating at 100°C for 20 hours, the NMR yield was 56%. GC-MS: *m/z* calculated for C₁₄H₁₅N, 197.1; found 197.1. GC-MS retention times of analyte: 10.42 minutes (Dibenzylamine).The data were in agreement with those reported in the literature.³ Upon heating, a dark orange solution was obtained. EtNH₂ (from the reduction of MeCN) was also present in the reaction mixture, due to the high excess of H equivalent.

Figure S37. In situ ¹H and ²⁹Si-NMR spectra of the reductive amination of benzaldehyde/ benzylamine with BPh₃ in acetonitrile, using PhSiH₃ (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 20 hours at 100° C).

Figure S38. GC-MS of crude reaction.

Reductive amination using Ph₂SiH₂ (Entry 5): Following the general procedure, a J. Youngs NMR tube was loaded with BPh₃ (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), benzylamine (32 μ L, 0.289 mmol, 1.20 eq.) and diphenylsilane (161 μ L, 0.843 mmol, 3.50 eq.). After heating at 100°C for 20 hours, the NMR yield was 86%. GC-MS: *m/z* calculated for C₁₄H₁₅N, 197.1; found 197.1. GC-MS retention times of analyte: 10.42 minutes (Dibenzylamine).The data were in agreement with those reported in the literature.³

Figure S39. In situ ¹H and ²⁹Si-NMR spectra of the reductive amination of benzaldehyde/ benzylamine with BPh₃ in acetonitrile, using Ph₂SiH₂ (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 20 hours at 100° C).

Figure S40. GC-MS of crude reaction.

6. Imine consumption vs water dehydrosilylation

Imine consumption: Following the general procedure, a J. Youngs NMR tube was loaded with BPh₃ (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), benzylamine (32 μ L, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 μ L, 0.843 mmol, 3.50 eq.). Then, mesitylene (25 μ L, 0.179 mmol, 0.74 eq.) was added as internal standard to quantify the imine present. The reaction mixture was periodically monitored by ¹H-NMR spectroscopy after each 2 hours upon heating at 100°C (no induction period was observed).

Figure S41. Imine consumption vs time at 100°C.

Water dehydrosilylation: A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with BPh₃ (5.8 mg, 0.024 mmol, 0.10 eq.), water (5 µL, 0.241 mmol, 1.00 eq.) and dimethylphenylsilane (132 µL, 0.843 mmol, 3.50 eq.) in acetonitrile (0.5 mL). The reaction mixture was periodically monitored by ²⁹Si-NMR spectroscopy after each hour upon heating at 100°C (after 2 hours upon heating, siloxane formation was still in progress).

Figure S42. *In situ* ²⁹Si-NMR spectra of water dehydrosilylation in acetonitrile: -16.85 ppm = PhMe₂SiH, -0.89 ppm = (PhMe₂Si)₂O, 4.27 ppm = PhMe₂SiOH. Blue (t = 5 min, r.t.), green (after 1 hour at 100°C), black (after 2 hours at 100°C), red (after 3 hours at 100°C).

7. Reductive amination benzaldehyde/aniline with B(C₆F₅)₃ and BPh₃

B(C₆F₅)₃ as catalyst: Following the general procedure, a J. Youngs NMR tube was loaded with B(C₆F₅)₃ (6.5 mg, 0.012 mmol, 0.05 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 µL, 0.241 mmol, 1.00 eq.), aniline (27 µL, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (45 µL, 0.289 mmol, 1.20 eq.). After heating at 100°C for 1 hour, in the ¹H-NMR the signal of the protons attached to α-carbons appeared at δ = 4.31 ppm (NMR yield = 96%).. GC-MS: *m/z* calculated for C₁₃H₁₃N, 183.1; found 183.1. GC-MS retention times of analyte: 10.39 minutes (*N*-benzylaniline).The data were in agreement with those reported in the literature.⁴

Figure S43. In situ ¹H-NMR spectra of the reductive amination of benzaldehyde/ aniline with $B(C_6F_5)_3$ in acetonitrile, using PhMe₂SiH (1.20 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 1 hour at 100°C).

BPh₃ as catalyst: Following the general procedure, a J. Youngs NMR tube was loaded with BPh₃ (3.1 mg, 0.012 mmol, 0.05 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), aniline (27 μ L, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (45 μ L, 0.289 mmol, 1.20 eq.). After heating at 100°C for 1 hour, no significant reduction of the imine was observed by ¹H-NMR spectroscopy, while complete degradation of BPh₃ was noted in the ¹¹B-NMR spectra.

Figure S44. *In situ* ¹H and ¹¹B-NMR spectra of the reductive amination of benzaldehyde/ aniline with BPh₃ in acetonitrile, using PhMe₂SiH (1.20 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 1 hour at 100° C).

8. Hydrosilylation of *N*-benzylidene aniline and *N*-benzylidene benzylamine under anhydrous conditions.

General procedure: The reactions were carried out under nitrogen. Both acetonitrile and dimethylphenylsilane were distilled over CaH₂ for these reactions. A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with BPh₃ (0.10 eq.) in acetonitrile (0.5 mL), followed by addition of the appropriate *N*-benzylidene amine (1.00 eq.) and dimethylphenylsilane (1.20 eq.). After the monitoring of the initial reaction mixture by multinuclear NMR spectroscopy, the reaction mixture was then heated at 100°C and periodically monitored by multinuclear spectroscopy. Upon heating at 100°C for 3 hours, the addition of mesitylene (25 µL) to the reaction mixture allowed the determination of the NMR conversion based on the relative integral of the benzylic protons attached to the aminated carbon. Due to the use of unpurified imine substrates, trace of siloxane could be detected in the ²⁹Si-NMR spectra.

N-benzylidene aniline: A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with BPh₃ (7.0 mg, 0.027 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by addition of *N*-benzylidene aniline (50 mg, 0.273 mmol, 1.00 eq.) and dimethylphenylsilane (51 µL, 0.328 mmol, 1.20 eq.). NMR yield = 44%. Diagnostic peaks of BnN(Ph)SiMe₂Ph: ¹H-NMR (400 MHz, MeCN): δ 4.64 (s, 2H, -CH₂-), 0.51 (s, 6H, SiMe₂) ppm. ²⁹Si-NMR (81 MHz, MeCN): δ 1.26 ppm. The data were in accordance with those reported in the literature.⁵ Adding 2.5 µL of water to the reaction mixture, almost quantitative hydrolysis of the product was observed after few minutes at r.t.

Figure S45. *In situ* ¹H-NMR spectra of the hydrosilylation of *N*-benzylidene aniline with PhMe₂SiH using BPh₃ as catalyst in acetonitrile. Blue (t = 5 min, r.t.), red (after 5 hours at 100° C). In black, the ²⁹Si-NMR spectrum after 3 hours at 100° C.

N-benzylidene benzylamine: A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with BPh₃ (6.7 mg, 0.026 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by addition of *N*-benzylidene benzylamine (50 µL, 0.263 mmol, 1.00 eq.) and dimethylphenylsilane (50 µL, 0.316 mmol, 1.20 eq.). NMR yield = 80%. Diagnostic peaks of Bn₂NSiMe₂Ph: ¹H-NMR (400 MHz, MeCN): δ 3.87 (s, 4H, -CH₂-), 0.49 (s, 6H, SiMe₂) ppm. ²⁹Si-NMR (81 MHz, MeCN): δ 0.55 ppm. The data were in accordance with those reported in the literature.⁵ Adding 2.5 µL of water to the reaction mixture led to almost quantitative hydrolysis of the product was observed after few minutes at r.t.

Figure S46. In situ ¹H-NMR spectra of the hydrosilylation of *N*-benzylidene benzylamine with PhMe₂SiH using BPh₃ as catalyst in acetonitrile. Blue (t = 5 min, r.t.), red (after 3 hours at 100°C). In black, the ²⁹Si-NMR spectrum after 3 hours at 100°C.

9. Reduction of protonated imine with [Et₄N][HBPh₃] under anhydrous conditions.

N-benzylidene aniline: A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with *N*-benzylidene aniline (20 mg, 0.109 mmol, 1.00 eq.) and a 1M solution of hydrogen chloride in Et₂O (109 µL, 0.109 mmol, 1.00 eq.). Et₂O was then removed, leaving a yellow solid that partially redissolved in freshly distilled MeCN (0.5 mL). ¹H-NMR spectroscopy confirmed the formation of protonated imine (downfield of the aldimine proton). To the obtained system, [Et₄N][HBPh₃] (43 mg, 0.109 mmol, 1.00 eq.) was added. After few minutes at r.t., the reaction mixture became completely homogeneous. ¹H-NMR spectroscopy revealed partially reduction of the protonated imine to form the corresponding BnN(H)Ph (-CH₂- peak at 4.30 ppm). The formation of the product was also confirmed by GC-MS analysis (GC-MS: m/z calculated for C₁₃H₁₃N, 183.1; found 183.1. GC-MS retention times of analyte: 10.39 minutes (*N*-benzylaniline).

Figure S47. *In situ* ¹H-NMR spectra of the reduction of protonated *N*-benzylidene aniline with $[Et_4N][HBPh_3]$ in acetonitrile. Blue (*N*-benzylidene aniline and HCl), red (few minutes after the addition of $[Et_4N][HBPh_3]$).

N-benzylidene benzylamine: A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with *N*-benzylidene benzylamine (21 µL, 0.110 mmol, 1.00 eq.) and a 1M solution of hydrogen chloride in Et₂O (110 µL, 0.110 mmol, 1.00 eq.). Et₂O was then removed, leaving a white solid that partially redissolved in freshly distilled MeCN (0.5 mL). ¹H-NMR spectroscopy confirmed the formation of protonated imine (downfield of the aldimine proton). To the obtained system, [Et₄N][HBPh₃] (44 mg, 0.110 mmol, 1.00 eq.) was added. After few minutes at r.t., the reaction mixture became completely homogeneous. ¹H-NMR spectroscopy revealed almost quantitative reduction of the protonated imine to form the corresponding Bn₂NH (-CH₂- peak at 3.80 ppm). The formation of the product was also confirmed by GC-MS analysis (GC-MS: m/z calculated for C₁₄H₁₅N, 197.1; found 197.1. GC-MS retention times of analyte: 10.42 minutes (dibenzylamine).

Figure S48. In situ ¹H-NMR spectra of the reduction of protonated *N*-benzylidene benzylamine with $[Et_4N][HBPh_3]$ in acetonitrile. Blue (*N*-benzylidene benzylamine and HCl), red (few minutes after the addition of $[Et_4N][HBPh_3]$).

10. Attempted imine reduction with Ph₂BOH, PhB(OH)₂ and Ph₃BOH⁻

Ph₂BOH as catalyst: A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with BPh₃ (5.3 mg, 0.022 mmol, 0.10 eq.) in acetonitrile, followed by addition of H₂O (4 µL, 0.221 mmol, 1.00 eq.). The system was heated at 100°C for 3 hours until full degradation of BPh₃. Then, *N*-benzylidene benzylamine (42 µL, 0.221 mmol, 1.20 eq.) and dimethylphenylsilane (121 µL, 0.774 mmol, 3.50 eq.) were added. The reaction mixture was heated at 100°C for 25 hours, but no significant reduction of the imine was observed by ¹H-NMR spectroscopy (imine left > 85%).

Figure S49. In situ ¹H-NMR spectra of *N*-benzylidene benzylamine reduction after BPh₃-OH₂ degradation in acetonitrile, using PhMe₂SiH (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 25 hours at 100° C). Inset, ¹¹B-NMR spectrum before imine/silane addition.

PhB(OH)₂ as catalyst: A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with phenylboronic acid (2.9 mg, 0.024 mmol, 0.10 eq.) in acetonitrile, followed by addition of benzaldehyde (25 µL, 0.241 mmol, 1.00 eq.), benzylamine (32 µL, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 µL, 0.843 mmol, 3.50 eq.). The reaction mixture was then heated at 100°C for 25 hours, but no significant reduction of the imine was observed by ¹H-NMR spectroscopy (imine left > 85%).

Figure S50. In situ ¹H-NMR spectra of the attempted reductive amination of benzaldehyde/ benzylamine with PhB(OH)₂ in acetonitrile, using PhMe₂SiH (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 25 hours at 100° C).

Ph₃BOH as catalyst: A J. Youngs NMR tube equipped with a DMSO-*d*₆ capillary was loaded with BPh₃ (8.9 mg, 0.035 mmol, 0.10 eq.) and [Bu₄N][OH] 30H₂O (30 mg, 0.037 mmol, 0.11 eq.) in THF (0.5 mL). After initial monitoring by multinuclear spectroscopy, the system was dried in-vacuo and then redissolved in MeCN (0.5 mL). Then, benzaldehyde (36 μ L, 0.350 mmol, 1.00 eq.), benzylamine (46 μ L, 0.420 mmol, 1.20 eq.) and dimethylphenylsilane (192 μ L, 1.225 mmol, 3.50 eq.) were added. The reaction mixture was heated at 100°C for 25 hours, but no significant reduction of the imine was observed by ¹H-NMR spectroscopy (imine left > 75%).

Figure S51. *In situ* ¹H-NMR spectra of *N*-benzylidene benzylamine reduction after BPh₃-OH₂ degradation in acetonitrile, using PhMe₂SiH (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 25 hours at 100°C). Inset, ¹¹B-NMR spectrum before imine/silane addition.
11. Attempted reductive amination using HNO₃ and HCl as catalysts

HNO₃ as catalyst: A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with benzaldehyde (25 µL, 0.241 mmol, 1.00 eq.), benzylamine (32 µL, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 µL, 0.843 mmol, 3.50 eq.) in acetonitrile (0.5 mL), followed by the addition of a solution (70% wt./wt.) of HNO₃ (1.5 µL, 0.024 mmol, 0.10 eq.). The reaction mixture was then heated at 100°C for 25 hours, but no significant reduction of the imine was observed by ¹H-NMR spectroscopy.

Figure S52. In situ ¹H-NMR spectrum of the attempted reductive amination of benzaldehyde/ benzylamine with HNO₃ in acetonitrile, using PhMe₂SiH (3.50 eq.) as reductant, after 25 hours at 100° C.

HCl as catalyst: A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with benzaldehyde (25 µL, 0.241 mmol, 1.00 eq.), benzylamine (32 µL, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 µL, 0.843 mmol, 3.50 eq.) in acetonitrile (0.5 mL), followed by the addition of a 4M solution of hydrogen chloride in 1,4-dioxane (6 µL, 0.024 mmol, 0.10 eq.). The reaction mixture was then heated at 100°C for 25 hours, but no significant reduction of the imine was observed by ¹H-NMR spectroscopy.

Figure S53. *In situ* ¹H-NMR spectrum of the attempted reductive amination of benzaldehyde/ benzylamine with HCl in acetonitrile, using PhMe₂SiH (3.50 eq.) as reductant, after 25 hours at 100°C.

12. Carbonyl substrate scope

General Procedure: All reagents/solvent used without any purification. A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with triphenylborane (0.10 eq.) in acetonitrile (0.5 mL). Then, the appropriate carbonyl compound (1.00 eq.), benzylamine (1.20 eq.) and dimethylphenylsilane (3.50 eq.) were added and the tube sealed. After the monitoring of the initial reaction mixture by multinuclear NMR spectroscopy, the J. Youngs NMR tube was heated up at 100°C for 25 hours (unless otherwise indicated) and then monitored by ¹H, ¹¹B and ²⁹Si-NMR spectroscopy. Subsequent addition of mesitylene (25 µL) to the reaction mixture allowed the determination of the NMR yields based on the protons attached to the α-carbons. The reaction mixture was then concentrated under reduced pressure and the crude analysed by multinuclear NMR spectroscopy and by GC-MS analysis. Both analysis revealed the main present species were the PhMe₂SiOH (²⁹Si NMR, $\delta \sim 3.5$ ppm), (PhMe₂Si)₂O (²⁹Si NMR $\delta \sim -1.0$ ppm) and the desired product. Some reactions were purified by flash column chromatography on silica gel, obtaining isolated yields in good agreement with the NMR yields. Due to the overlap with siloxane/silanol aromatic resonances, the *in-situ* data reported are referred to the diagnostic peaks of the aliphatic region.

N-benzyl-1-(2-chlorophenyl)methanamine (1a): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (6.4 mg, 0.026 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of 2-

chlorobenzaldehyde (30 µL, 0.264 mmol, 1.00 eq.), benzylamine (35 µL, 0.316 mmol, 1.20 eq.) and dimethylphenylsilane (145 µL, 0.923 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at δ = 3.86 and 3.79 ppm (NMR yield = 80%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and N-benzyl-1-(2chlorophenyl)methanamine. The crude was purified by flash column chromatography (Pet. Et. : EtOAc 9:1) obtaining **1a** as yellow oil (45 mg, 0.194 mmol, 74%). $R_f = 0.32$. ¹H NMR (CDCl₃, 400 MHz, 298 K): § 7.39-7.26 (m, 6H), 7.24-7.13 (m, 3H), 3.87 (s, 2H), 3.77 (s, 2H), 1.73 (br, 1H) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 140.1, 137.6, 133.8, 130.2, 129.5, 128.4, 128.3, 128.2, 127.0, 126.8, 53.1, 50.7 ppm. GC-MS: m/z calculated for C₁₄H₁₄ClN, 231.1; found 231.1. GC-MS retention times of analyte: 11.20 minutes (N-benzyl-1-(2-chlorophenyl)methanamine). The data were in agreement with those reported in the literature.⁶

N-benzyl-1-(naphthalen-1-yl)methanamine (1b): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (6.2 mg, 0.025 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of 1-naphthaldehyde (35 μ L, 0.245 mmol, 1.00 eq.), benzylamine

(32 μ L, 0.294 mmol, 1.20 eq.) and dimethylphenylsilane (134 μ L, 0.857 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at δ = 4.19 and 3.87 ppm (NMR yield = 96%). After concentration under reduced pressure, in the crude the main species detected were

(PhMe₂Si)₂O and *N*-benzyl-1-(naphthalen-1-yl)methanamine. The crude was purified by flash column chromatography (Pet. Et. : EtOAc 9:1) obtaining **1b** as yellow oil (58 mg, 0.234 mmol, 95%). $R_f = 0.30$. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 8.12 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 7.3 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.58-7.49 (m, 3H), 7.47 (d, J = 7.0 Hz, 1H), 7.42-7.36 (m, 4H), 7.33-7.28 (m, 1H), 4.29 (s, 2H), 3.96 (s, 2H), 1.88 (br, 1H) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 140.2, 135.7, 133.9, 131.8, 128.7, 128.4, 128.2, 127.8, 127.0, 126.1, 126.0, 125.6, 125.3, 123.7, 53.6, 50.8 ppm. GC-MS: *m/z* calculated for C₁₈H₁₇N, 247.1; found 247.1. GC-MS retention times of analyte: 12.73 minutes (*N*-benzyl-1-(naphthalen-1-yl)methanamine). The data were in agreement with those reported in the literature.⁷

N-benzyl-1-(4-methoxyphenyl)methanamine (1c): Following the N^{-Bn} general procedure, a J. Youngs NMR tube was loaded with triphenylborane (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of 4-methoxybenzaldehyde (30 µL, 0.242 mmol, 1.00 eq.), benzylamine (32 µL, 0.290 mmol, 1.20 eq.) and dimethylphenylsilane (132 µL, 0.846 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at $\delta = 3.76$ and 3.71 ppm (NMR yield = 98%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and N-benzyl-1-(4-methoxyphenyl)methanamine. The crude was purified by flash column chromatography (Pet. Et. : EtOAc 9:1) obtaining 1c as yellow oil (52 mg, 0.229 mmol, 95%). $R_f = 0.25$. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.36-7.29 (m, 4H), 7.28-7.22 (m, 1H), 7.26 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 3.80 (s, 2H + 3H), 3.75 (s, 2H), 1.67 (br, 1H) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 158.6, 140.3, 132.4, 129.3, 128.3, 128.1, 126.9, 113.7, 55.2, 53.0, 52.5 ppm. GC-MS: m/z calculated for C₁₅H₁₇NO, 227.1; found 227.1. GC-MS retention times of analyte: 11.56 minutes (N-benzyl-1-(4methoxyphenyl)methanamine). The data were in agreement with those reported in the literature.⁸

N-benzyl-1-(4-(tert-butyl)phenyl)methanamine (1d): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (6.3 mg, 0.026 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of 4-tert-butylbenzaldehyde (45 μ L, 0.261

mmol, 1.00 eq.), benzylamine (35 μL, 0.313 mmol, 1.20 eq.) and dimethylphenylsilane (143 μL, 0.913 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α-carbons appeared at δ = 3.78 and 3.75 ppm (NMR yield = 77%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and *N*-benzyl-1-(4-(tert-butyl)phenyl)methanamine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.85 (s, 2H, *CH*₂), 3.83 (s, 2H, *CH*₂), 1.40 (s, 9H, *tBu*) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 52.9 (1C, *C*H₂), 52.5 (1C, *C*H₂), 31.3 (3C, *tBu*) ppm. GC-MS: *m/z* calculated for C₁₈H₂₃N, 253.1; found 253.1. GC-MS retention times of analyte: 11.81 minutes (*N*-benzyl-1-(4-(tert-butyl)phenyl)methanamine). The data were in agreement with those reported in the literature.⁹

Br N Br

N-benzyl-1-(3-bromophenyl)methanamine (1e): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (6.0 mg, 0.025 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the

addition of 3-bromobenzaldehyde (30 µL, 0.250 mmol, 1.00 eq.), benzylamine (33 µL, 0.299 mmol, 1.20 eq.) and dimethylphenylsilane (137 µL, 0.874 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at δ = 3.75 and 3.73 ppm (NMR yield = 85%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and *N*-benzyl-1-(3-bromophenyl)methanamine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.91 (s, 2H, *CH*₂), 3.88 (s, 2H, *CH*₂) 2.25 (br, 1H) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 53.0 (1C, *C*H₂), 52.4 (1C, *C*H₂) ppm. GC-MS: *m/z* calculated for C₁₄H₁₄BrN, 275.0; found 275.0. GC-MS retention times of analyte: 11.72 minutes (*N*-benzyl-1-(3-bromophenyl)methanamine). The data were in agreement with those reported in the literature.⁸

MeO₂ MeO₂ MeO₂ Methyl 4-((benzylamino)methyl)benzoate (1f): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of methyl 4-formylbenzoate (40 mg, 0.239 mmol, 1.00 eq.), benzylamine (32 µL, 0.287 mmol, 1.20 eq.) and dimethylphenylsilane (131 µL, 0.836 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α-carbons appeared at δ = 3.81 and 3.75 ppm (NMR yield = 92%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and methyl 4-((benzylamino)methyl)benzoate. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.98 (s, 3H, -OCH₃), 3.92 (s, 2H, CH₂), 3.87 (s, 2H, CH₂) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 53.0 (1C, -OCH₃), 52.5 (1C, CH₂), 51.9 (1C, CH₂) ppm. GC-MS: *m/z* calculated for C₁₆H₁₇NO₂, 255.1; found 255.1. GC-MS retention times of analyte: 12.38 minutes (methyl 4-((benzylamino)methyl)benzoate). The data were in agreement with those reported in the literature.⁹

4-((benzylamino)methyl)benzonitrile (1g): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (6.2 mg, 0.025 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the

addition of 4-formylbenzonitrile (34 mg, 0.254 mmol, 1.00 eq.), benzylamine (34 µL, 0.305 mmol, 1.20 eq.) and dimethylphenylsilane (139 µL, 0.889 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at δ = 3.79 and 3.73 ppm (NMR yield = 70%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and 4-((benzylamino)methyl)benzonitrile. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.69 (s, 2H, *CH*₂), 3.64 (s, 2H, *CH*₂) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 53.0 (1C, *C*H₂), 52.3 (1C, *C*H₂) ppm. GC-MS: *m/z* calculated for C₁₅H₁₄N₂, 222.1; found 222.1. GC-MS retention times of analyte: 11.97 minutes (4-((benzylamino)methyl)benzonitrile). The data were in agreement with those reported in the literature.¹⁰

N-Bn

N-benzyl-1-(4-nitrophenyl)methanamine (1h): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (6.3 mg, 0.026 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the

addition of 4-nitrobenzaldehyde (40 mg, 0.259 mmol, 1.00 eq.), benzylamine (34 μ L, 0.311 mmol, 1.20 eq.) and dimethylphenylsilane (142 μ L, 0.908 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at δ = 3.84 and 3.75 ppm (NMR yield = 32%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O, dibenzylamine and *N*-benzyl-1-(4-nitrophenyl)methanamine. The formation of dibenzylamine was not prevented neither using 1.20 eq. of silane or reducing the reaction time and its formation is attributed to trans-imination during the reaction. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.73 (s, 2H, -*CH*₂-), 3.66 (s, 2H, -*CH*₂-) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 53.0 (1C, *CH*₂), 52.0 (1C, *CH*₂) ppm. GC-MS: *m/z* calculated for C₁₄H₁₄N₂O₂, 242.1; found 242.1. GC-MS retention times of analyte: 12.48 minutes (*N*-benzyl-1-(4-nitrophenyl)methanamine). The data were in agreement with those reported in the literature.¹¹

N-benzyl-1-(4-ethynylphenyl)methanamine (1i): Following the general procedure, a J. Youngs NMR tube was loaded with

triphenylborane (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of methyl 4-ethynylbenzaldehyde (32 mg, 0.241 mmol, 1.00 eq.), benzylamine (32 μL, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 μL, 0.843 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α-carbons appeared at $\delta = 3.76$ and 3.74 ppm (NMR yield = 94%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and *N*-benzyl-1-(4-ethynylphenyl)methanamine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.90 (s, 2H, *CH*₂), 3.89 (s, 2H, *CH*₂) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 83.6 (1C, -CCH), 76.9 (1C, -CCH), 53.0 (1C, *CH*₂), 52.6 (1C, *CH*₂) ppm. GC-MS: *m/z* calculated for C₁₆H₁₅N, 221.1; found 221.1. GC-MS retention times of analyte: 11.39 minutes (*N*-benzyl-1-(4-ethynylphenyl)methanamine). The data were in agreement with those reported in the literature.¹²

N-benzyl-1-phenylethan-1-amine (1j): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (5.3 mg, 0.021 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of acetophenone (25 µL, 0.210 mmol, 1.00 eq.), benzylamine (28 µL, 0.252 mmol, 1.20 eq.) and dimethylphenylsilane (115 µL, 0.735 mmol, 3.50 eq.). After heating at 100°C for 48 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at δ = 3.78, 3.60, and 3.58 ppm (NMR yield = 75%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and *N*-benzyl-1-phenylethan-1-amine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.73 (q, *J* = 6.6 Hz, 1H, *CH*), 3.57 (d, *J* = 13.1 Hz, 1H, NCH_{*a*H_b), 3.51 (d, *J* = 13.1 Hz, 1H, NCH_{*a*H_b}), 1.28 (d, *J* = 6.6 Hz, 3H, -CH₃) ppm. Note that the benzylic protons are diastereotopic as reported in the literature. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 57.4 (1C, *C*H₂), 51.5 (1C, *C*H), 24.4 (1C, -*C*H₃) ppm. GC-MS: *m/z* calculated for C₁₅H₁₇N, 211.1; found 211.1. GC-MS retention times of analyte: 10.39 minutes} (*N*-benzyl-1-phenylethan-1-amine). The data were in agreement with those reported in the literature.¹³

N-benzylpropan-2-amine (1k): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (6.9 mg, 0.027 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition acetone (20 μ L, 0.270 mmol,

1.00 eq.), benzylamine (36 µL, 0.324 mmol, 1.20 eq.) and dimethylphenylsilane (148 µL, 0.944 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at δ = 3.79 and 2.83 ppm (NMR yield = 92%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and *N*-benzylpropan-2-amine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.80 (s, 2H, *CH*₂), 2.88 (sept, *J* = 6.3 Hz, 1H, *CH*), 1.13 (d, *J* = 6.3 Hz, 6H, *CH*₃) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 51.5 (1C, *C*H₂), 48.0 (1C, *C*H), 22.8 (2C, *C*H₃) ppm. GC-MS: *m/z* calculated for C₁₀H₁₅N, 149.1; found 149.1. GC-MS retention times of analyte: 7.40 minutes (*N*-benzylpropan-2-amine). The data were in agreement with those reported in the literature.¹⁴

4-(1-(cyclohex-1-en-1-yl)ethyl)morpholine (11): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of 1-acetyl-1-cyclohexene (32 µL, 0.241 mmol, 1.00 eq.), morpholine (26 µL, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 µL, 0.845 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the proton attached to aminated carbons appeared at $\delta = 2.55$ ppm (NMR yield = 87%, with anisole as standard). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and 4-(1-(cyclohex-1-en-1-yl)ethyl)morpholine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 5.66 (s, 1H, -C=CH), 3.79 (t, J = 4.8 Hz, 4H, -CH₂OCH₂-), 2.68 (q, J = 6.5 Hz, 1H, CH), 2.56-2.39 (m, 4H, $-CH_2N(R)CH_2$ -), 2.18-2.03 (m, 4H), 1.81-1.58 (m, 4H), 1.22 (d, J = 6.5 Hz, 3H, $-CH_3$) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 67.3 (2C, C-O) 67.2 (1C, -CHMe), 51.2 (broad, 2C, C-N), 25.1 (1C), 24.0 (1C), 22.8 (1C), 22.8 (1C), 16.5 (1C, -CH₃) ppm. GC-MS: m/z calculated for C₁₂H₂₁NO, 195.2; found 195.2. GC-MS retention times of analyte: 9.23 minutes (4-(1-(cyclohex-1-en-1-yl)ethyl)morpholine). The data were in agreement with those reported in the literature.¹⁵

13. Amine Substrate Scope

General Procedure: All reagents/solvent are used without any purification. A J. Youngs NMR tube equipped with a DMSO- d_6 capillary was loaded with triphenylborane (0.10 eq.) in acetonitrile (0.5 mL). Then, benzaldehyde (1.00 eq.), the appropriate amine (1.20 eq.) and dimethylphenylsilane (3.50 eq.) were added. After the monitoring of the initial reaction mixture by multinuclear NMR spectroscopy, the J. Youngs NMR tube was heated up at 100°C for 25 hours (unless otherwise indicated) and then monitored by ¹H, ¹¹B and ²⁹Si-NMR spectroscopy. Subsequent addition of mesitylene (25 µL) to the reaction mixture allowed the determination of the NMR yields based on the protons attached to the α -carbons. The reaction mixture was then concentrated under reduced pressure and the crude analysed by multinuclear NMR spectroscopy and by GC-MS analysis. Both analysis revealed the main present species were the PhMe₂SiOH (²⁹Si NMR, $\delta \sim 3.5$ ppm), (PhMe₂Si)₂O (²⁹Si NMR $\delta \sim -1.0$ ppm) and the desired product.

Ph N H

N-benzyl-1-(m-tolyl)methanamine (1m): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (5.8

mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 μL, 0.241 mmol, 1.00 eq.), 3-methylbenzylamine (37 μL, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 μL, 0.843 mmol, 3.50 eq.). After heating at 100°C for 40 hours, in the ¹H NMR spectrum the signals of the protons attached to α-carbons appeared at δ = 3.76 and 3.72 ppm (NMR yield = 70%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and *N*-benzyl-1-(m-tolyl)methanamine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.96 (s, 2H, -NCH₂), 3.93 (s, 2H, -NCH₂), 2.50 (s, 3H, CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 53.0 (1C, NCH₂), 52.9 (1C, NCH₂), 21.3 (1C, CH₃) ppm. GC-MS: *m/z* calculated for C₁₅H₁₇N, 211.1; found 211.1. GC-MS retention times of analyte: 10.83 minutes (*N*-benzyl-1-(m-tolyl)methanamine). The data were in agreement with those reported in the literature.¹⁶

N-benzyl-1-(4-fluorophenyl)methanamine (1n): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the

addition of benzaldehyde (25 µL, 0.241 mmol, 1.00 eq.), 4-fluorobenzylamine (34 µL, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 µL, 0.843 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at δ = 3.75 and 3.73 ppm (NMR yield = 78%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and *N*-benzyl-1-(4-fluorophenyl)methanamine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.93 (s, 2H, -NCH₂), 3.90 (s, 2H, -NCH₂) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 52.9 (1C, NCH₂), 52.1 (1C, NCH₂) ppm. ¹⁹F{¹H} NMR (CDCl₃, 100 MHz, 298 K): 115.9 ppm. GC-MS: *m/z* calculated for C₁₄H₁₄NF, 215.1; found 215.1. GC-MS retention times of analyte: 10.43 minutes (*N*-benzyl-1-(4-fluorophenyl)methanamine). The data were in agreement with those reported in the literature.⁹

N-benzylbutan-1-amine (10): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde

(25 µL, 0.241 mmol, 1.00 eq.), *n*-butylamine (29 µL, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 µL, 0.843 mmol, 3.50 eq.). After heating at 100°C for 30 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at δ = 3.75 and 2.57 ppm (NMR yield = 45%). The other major products observed were derived from overalkylation or enamine isomerization. After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and *N*-benzylbutan-1-amine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.91 (s, 2H, CH₂), 2.75 (t, *J* = 7.5 Hz, 2H, CH₂) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 53.7 (1C, -NCH₂Ph), 48.8 (1C, -CH₂), 51.9 (1C, -NCH₂CH₂) ppm. GC-MS: *m/z* calculated for C₁₁H₁₇N, 163.1; found 163.1. GC-MS retention times of analyte: 8.36 minutes (*N*-benzylbutan-1-amine). The data were in agreement with those reported in the literature.¹⁷

N-benzylpropan-2-amine (1p): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), isopropylamine (25 μ L, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 μ L, 0.843 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at δ = 3.76 and 2.80 ppm (NMR yield = 78%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and *N*-benzyl-2-methylpropan-2-amine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.78 (s, 2H, CH₂), 2.86 (sept, *J* = 6.3 Hz, 1H, CH), 1.11 (d, *J* = 6.3 Hz, 6H, CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 51.1 (1C, CH₂), 48.0 (1C, CH), 22.4 (2C, CH₃) ppm. GC-MS: *m/z* calculated for C₁₀H₁₅N, 149.1; found 149.1. GC-MS retention times of analyte: 7.40 minutes (*N*-benzylpropan-2-amine). The data were in agreement with those reported in the literature.¹⁴

Ph H NMR spectrum the signals of the protons attached to α-carbons appeared at $\delta = 3.79$ and 2.45 ppm (NMR yield = 84%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and *N*-benzylcyclohexanamine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.73 (s, 2H, -NCH₂), 2.47-2.36 (m, 1H) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 56.0 (1C, NCH₂), 50.7 (1C, NCH) ppm. GC-MS: *m/z* calculated for C₁₃H₁₉N, 189.1; found 189.1. GC-MS retention times of analyte: 9.73 minutes (*N*benzylcyclohexanamine). The data were in agreement with those reported in the literature.¹⁸

N-benzyl-2-methylpropan-2-amine (1r): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 µL, 0.241 mmol, 1.00 eq.), t-butylamine (31 µL, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 µL, 0.843 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signal of the protons attached to α -carbon appeared at $\delta = 3.74$ ppm (NMR yield = 93%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and N-benzyl-2-methylpropan-2-amine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.88 (s, 2H, CH₂), 1.33 (s, 9H, *tBu*) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 50.8 (1C, CH₂), 47.1 (1C, -C(CH₃)₃), 28.9 (3C, -CH₃)ppm. GC-MS: m/z calculated for C₁₁H₁₇N, 163.1; found 163.1. GC-MS retention times of analyte: 7.77 minutes (N-benzyl-2-methylpropan-2-amine). The data were in agreement with those reported in the literature.¹⁷

N-benzyl-N-methylpropan-2-amine (1s): Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (6.9 mg, 0.027 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of acetone (20 μ L, 0.270 mmol, 1.00 eq.), N-methylbenzylamine (43 µL, 0.324 mmol, 1.20 eq.) and dimethylphenylsilane (148 µL, 0.944 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at $\delta = 3.52$ and 2.87 ppm (NMR yield = 98%). After concentration under reduced pressure, in the crude the main species detected were $(PhMe_2Si)_2O$ and N-benzyl-N-methylpropan-2-amine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.42 (s, 2H, -NCH₂), 2.81 (sept, J = 6.5 Hz, 1H, -NCH-), 2.06 (s, 3H, NMe), 1.00 (d, J = 6.5 Hz, 6H, C(CH₃)₂) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 57.5 + 52.9 (2C, CH₂NCH), 36.7 (1C, NCH₃), 17.8 (2C, C(CH₃)₂) ppm. GC-MS: *m/z* calculated for C₁₁H₁₇N, 163.1; found 163.1. GC-MS retention times of analyte: 7.69 minutes (N-benzyl-N-methylpropan-2-amine). The data were in agreement with those reported in the literature.¹⁹

14. Synthesis of N-benzyl-1-adamantaylamine on gram-scale

Phry

Control experiment in small scale: Following the general procedure, a J. Youngs NMR tube was loaded with triphenylborane (5.8 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), 1-adamantylamine (45 mg, 0.289 mmol, 1.20

eq.) and dimethylphenylsilane (132 µL, 0.843 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signal of the protons attached to α -carbon appeared at δ = 3.73 ppm (NMR yield = 96%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and *N*-benzyl-1-adamantylamine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 3.77 (s, 2H, -NCH₂), 2.14-2.06 (m, 3H, -(CH₂)₃CH) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 50.8 (1C, NCH₂), 45.0 (1C, NC(CH₂)₃), 42.8 (3C, CH₂), 36.7 (3C, CH₂), 29.6 (3C, CH) ppm. GC-MS: *m/z* calculated for C₁₇H₂₃N, 241.2; found 241.2. GC-MS retention times of analyte: 11.80 minutes (*N*-benzyl-1-adamantylamine). The data were in agreement with those reported in the literature.²⁰

Gram-scale synthesis (performed under ambient atmosphere with no purification of reagents or solvent): A 2-necked round bottomed flask was loaded with triphenylborane (122 mg, 0.5 mmol, 0.10 eq.) in acetonitrile (10 mL), followed by the addition of benzaldehyde (520 μ L, 5.0 mmol, 1.00

eq.), 1-adamantylamine (938 mg, 6.0 mmol, 1.20 eq.) and dimethylphenylsilane (2.7 mL, 17.5 mmol, 3.50 eq.). The flask was then equipped with a condenser and heated at 100°C for 25 hours (MeCN reflux). The reaction mixture was cooled down to r.t. and then diluted in more MeCN (10 ml), observing a white solid precipitate. After filtration, the clear orange solution left was dried and purified by flash-chromatography (Pet. Et. : EtOAc 9:1) obtaining *N*-benzyl-1-adamantylamine as yellow oil (1.1 g, 4.556 mmol, 90%). $R_f = 0.23$. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.38-7.28 (m, 4H), 7.23 (t, *J* = 6.8 Hz, 1H), 3.77 (s, 2H), 2.14-2.06 (m, 3H), 1.75-1.61 (m, 12H), 1.23-0.67 (brs, 1H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 141.8, 128.4, 128.2, 126.6, 50.8, 45.1, 42.9, 36.8, 29.6. The data were in agreement with those reported in the literature.²⁰

15. Reductive amination benzaldehyde/benzhydrylamine with $B(C_6F_5)_3$ and BPh_3

B(C_6F_5)₃ as catalyst: Following the general procedure, a J. Youngs NMR tube was loaded with B(C_6F_5)₃ (12.3 mg, 0.024 mmol, 0.10 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 µL, 0.241 mmol, 1.00 eq.), benzhydrylamine (52 µL, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 µL, 0.843 mmol, 3.50 eq.). After heating at 100°C for 25 hour, low imine reduction was observed (NMR conversion = 30%).

Figure S54. In situ ¹H-NMR spectra of the reductive amination of benzaldehyde/ benzhydrylamine with $B(C_6F_5)_3$ in acetonitrile, using PhMe₂SiH (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 25 hour at 100°C).

BPh₃ as catalyst: Following the general procedure, a J. Youngs NMR tube was loaded with BPh₃ (5.8 mg, 0.024 mmol, 0.05 eq.) in acetonitrile (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), benzhydrylamine (52 μ L, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 μ L, 0.843 mmol, 3.50 eq.). After heating at 100°C for 25 hour, low imine reduction was observed (NMR conversion = 30%).

Figure S55. In situ ¹H-NMR spectra of the reductive amination of benzaldehyde/ benzhydrylamine with BPh₃ in acetonitrile, using PhMe₂SiH (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 25 hour at 100°C).

16. Reductive aminations using NaBArCl as catalyst precursor

Acid induced degradation of NaBArCl: A J. Youngs NMR tube was loaded with sodium tetra(3,5-dichlorophenyl)borate (45.6 mg, 0.072 mmol, 0.30 eq.) in dichloromethane (0.5 mL) in which it is only partially soluble at this concentration, followed by the addition of trifluoromethanesulfonimide (7.1 mg, 0.024 mmol, 0.10 eq.). After few seconds from the addition, most of the insoluble white solid disappeared, obtaining a yellow heterogeneous solution. The ¹¹B-NMR spectrum of the reaction mixture revealed the decomposition of the BArCl anion with the concomitant appearance of a new peaks (the peak at 66.8 ppm is consistent with $(3,5-C_6H_3Cl_2)_3B$). The degradation was performed in a non-coordinating solvent using a weakly coordinating anion (Tf₂N⁻) in order to clearly detect the formation of borane. The impurities maybe caused by further decomposition to Ar_{3-x}B(OH)_x (peaks at 43.9 and 28.2 ppm) by trace water or are possibly species such as Aryl₂BNTf₂ (which on exposure to moisture e.g., during catalysis will form the borinic acid anyway).

Figure S56. In situ ¹¹B-NMR spectrum of NaBArCl and Tf₂NH (3:1) in DCM (with capillary inserted containing d_6 -DMSO).

The reaction mixture was then concentrated, obtaining a white solid which was dissolved in acetonitrile, followed by the addition of benzaldehyde (25 µL, 0.241 mmol, 1.00 eq.), benzhydrylamine (52 µL, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 µL, 0.843 mmol, 3.50 eq.). After heating at 100°C for 5 hours, in the ¹H NMR the signal of the protons attached to α -carbons appeared at $\delta = 4.88$ and 3.71 ppm (NMR yield = 92%). After concentration under reduced pressure, in the crude the main species detected were (PhMe₂Si)₂O and *N*-benzyl-1,1-diphenylmethanamine. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 5.06 (s, 1H, -NCH), 3.94 (s, 2H, -NCH₂) ppm. ${}^{13}C{}^{1}H$ NMR (CDCl₃, 100 MHz, 298 K): 66.4 (1C, NCH), 51.8 (1C, NCH₂) ppm. GC-MS: *m/z* calculated for C₂₀H₁₉N, 273.1; found analyte: minutes (N-benzyl-1,1-273.1. GC-MS retention times of 12.61 diphenylmethanamine). The data were in agreement with those reported in the literature.²¹

Figure S57. In situ ¹H-NMR spectra of the reductive amination of benzaldehyde/ benzhydrylamine with NaBArCl and Tf₂NH (3:1) in acetonitrile, using PhMe₂SiH (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 5 hours at 100° C).

Figure S58. ¹H-NMR spectrum of the reaction crude.

Figure S59. ¹³C-NMR spectrum of the reaction crude.

Figure S60. GC-MS of crude reaction.

Reductive amination of benzaldehyde/aniline using NaBArCl as catalyst precursor: A J. Youngs NMR tube was loaded with sodium tetra(3,5-dichlorophenyl)borate (15.2 mg, 0.024 mmol, 0.10 eq.) in o-dichlorobenzene (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), aniline (26 μ L, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (45 μ L, 0.289 mmol, 1.20 eq.). After heating at 100°C for 1 hour, in the ¹H NMR spectrum the signal of the protons attached to α -carbon appeared at δ = 4.37 ppm (NMR yield = 88%). The NMR yield is an average of two independent reactions. The data were in agreement with those previously reported.

Figure S61. In situ ¹H-NMR spectra, with wet d_6 -DMSO capillary inserted, of the reductive amination of benzaldehyde/aniline with NaBArCl in o-DCB, using PhMe₂SiH (1.20 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 1 hour at 100°C).

Reductive amination of benzaldehyde/benzhydrylamine using NaBArCl as catalyst precursor: A J. Youngs NMR tube was loaded with sodium tetra(3,5-dichlorophenyl)borate (15.2 mg, 0.024 mmol, 0.10 eq.) in o-dichlorobenzene (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), benzhydrylamine (52 μ L, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (83 μ L, 0.530 mmol, 2.20 eq.). After heating at 100°C for 20 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at δ = 5.08 and 3.93 ppm (NMR yield = 80%). The NMR yield is an average of two independent reactions. The data were in agreement with those previously reported.

Figure S62. In situ ¹H-NMR spectra, with wet d_6 -DMSO capillary inserted, of the reductive amination of benzaldehyde/benzhydrylamine with NaBArCl in o-DCB, using PhMe₂SiH (2.20 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 20 hours at 100°C).

Reductive amination of benzaldehyde/benzylamine using NaBArCl as catalyst precursor: A J. Youngs NMR tube was loaded with sodium tetra(3,5-dichlorophenyl)borate (15.2 mg, 0.024 mmol, 0.10 eq.) in o-dichlorobenzene (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), benzylamine (32 μ L, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 μ L, 0.843 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at $\delta = 3.90$ ppm (NMR yield = 60%). In this case, overalkylation was observed (Bn₃N: GC-MS: *m/z* calculated for C₂₁H₂₁N, 287.1; found 287.1. GC-MS retention times of analyte: 12.66 minutes). The NMR yield is an average of two independent reactions. The data were in agreement with those previously reported.

Figure S63. In situ ¹H-NMR spectra, with wet d_6 -DMSO capillary inserted, of the reductive amination of benzaldehyde/benzylamine with NaBArCl in o-DCB, using PhMe₂SiH (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 25 hours at 100°C).

Reductive amination of benzaldehyde/t-butylamine using NaBArCl as catalyst precursor: A J. Youngs NMR tube was loaded with sodium tetra(3,5-dichlorophenyl)borate (15.2 mg, 0.024 mmol, 0.10 eq.) in o-dichlorobenzene (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), *t*-butylamine (31 μ L, 0.289 mmol, 1.20 eq.) and dimethylphenylsilane (132 μ L, 0.843 mmol, 3.50 eq.). After heating at 100°C for 25 hours, in the ¹H NMR spectrum the signals of the protons attached to α -carbons appeared at $\delta = 3.87$ ppm (NMR yield = 93%). The NMR yield is an average of two independent reactions. The data were in agreement with those previously reported.

Figure S64. *In situ* ¹H-NMR spectra, with wet d_6 -DMSO capillary inserted, of the reductive amination of benzaldehyde/ *t*-butylamine with NaBArCl in o-DCB, using PhMe₂SiH (3.50 eq.) as reductant. Blue (t = 5 min, r.t.), red (after 25 hours at 100°C).

17. Synthesis of Piribedil

Reaction performed under ambient atmosphere with no purification of reagents or solvent. A 2-necked round bottomed flask was loaded with sodium tetra(3,5-dichlorophenyl)borate (390 mg, 0.6 mmol, 0.10 eq.) in o-dichlorobenzene (10 mL), followed

by the addition of piperonal (910 mg, 6.0 mmol, 1.00 eq.), 2-(piperazin-1-yl)pyrimidine (1.0 mL, 7.2 mmol, 1.20 eq.) and dimethylphenylsilane (3.3 mL, 21.0 mmol, 3.50 eq.). The flask was then equipped with a condenser and heated at 100°C for 25 hours. The reaction mixture was cooled down to r.t. and then purified by flash-chromatography (Pet. Et. : EtOAc 1:0 to 2:1) obtaining *Piribedil* as yellow solid (1.3 g, 4.4 mmol, 74%). $R_f = 0.20$. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 8.30 (d, J = 4.8 Hz, 2H), 6.89 (s, 1H), 6.76 (s, 2H), 6.46 (t, J = 4.8 Hz, 1H), 5.95 (s, 2H), 3.82 (t, J = 5.3 Hz, 4H), 3.45 (s, 2H), 2.48 (t, J = 5.3 Hz, 4H) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 298 K): 161.6, 157.6, 147.6, 146.6, 131.8, 122.2, 109.7, 109.4, 107.8, 100.9, 62.8, 52.8, 43.6 ppm. GC-MS: m/z calculated for C16H18N4O2, 298.1; found 298.1. GC-MS retention times of analyte: 13.77 minutes. The data were in agreement with those reported in the literature.²²

18. BPh₃ decomposition sealed under air

Figure S65. ¹H-NMR spectra of BPh₃ in distilled acetonitrile (with d_6 -DMSO capillary inserted). Blue (as received), red (kept under ambient atmosphere as a solid for 15 days).

Figure S66. ¹¹B-NMR spectra of BPh₃ in distilled acetonitrile (with d_6 -DMSO capillary inserted). Blue (as received), red (kept under ambient atmosphere as a solid for 15 days).

19. References

- 1 R. Anulewicz-Ostrowska, T. Kliś, D. Krajewski, Ba. Lewandowski and J. Serwatowski, *Tetrahedron Letters*, **2003**, *44*, 7329–7331.
- 2 D. Mukherjee, H. Osseili, T. P. Spaniol and J. Okuda, J. Am. Chem. Soc., 2016, 138, 10790-10793.
- 3 K. G. Andrews, D. M. Summers, L. J. Donnelly and R. M. Denton, *Chem. Commun.*, **2016**, *52*, 1855-1858.
- 4 Y. Minghua and F. Liu, J. Org. Chem., 2007, 72, 8969-8971.
- 5 E. R. Clark and M. J. Ingleson, *Angew. Chem. Int. Ed.*, **2014**, *53*, 11306–11309.
- 6 P. R. Likhar, R. Arundhathi, M. L. Kantam and P. S. Prathima, *Eur. J. Org. Chem.*, **2009**, 5383–5389.
- 7 S. Zhang, Y. Wang, X. Feng and M.Bao, J. Am. Chem. Soc., 2012, 134, 5492-5495.
- 8 C. J. Smith, C. D. Smith, N. Nikbin, S. V. Ley and I. R. Baxendale, *Org. Biomol. Chem.*, **2011**, *9*, 1927-1937.
- 9 S. Das, B. Join, K. Junge and M. Beller, *Chem. Commun.*, **2012**, *48*, 2683-2685.
- 10 P. V. Ramachandran, P. D. Gagare, Ka. Sakavuyi and P. Clark, *Tetrahedron Letters*, **2010**, *51*, 3167–3169.
- 11 M. Lohse, K. Nowosinski, N. L. Traulsen, A. J. Achazi, L. K. S. von Krbek, B. Paulus, C. A. Schalley and S. Hecht, *Chem. Commun.*, **2015**, *51*, 9777-9780.
- 12 X. Wang, V. Ervithayasuporn, Y. Zhang and Y. Kawakami, *Chem. Commun.*, **2011**, *47*, 1282-1284.
- 13 C. Wang, A. Pettman, J. Bacsa and J. Xiao, Angew. Chem. Int. Ed., 2010, 49, 7548-7552.
- 14 L. M. Martínez-Prieto, A. Ferry, L. Rakers, C. Richter, P. Lecante, K. Philippot, B. Chaudret and F. Glorius, *Chem. Commun.*, **2016**, *52*, 4768-4771.
- 15 A. F. Abdel-Magid, K. G. Carson, B. D. Harris, C. A. Maryanoff and R. D. Shah, *J. Org. Chem.*, **1996**, *61*, 3849–3862.
- W. Chen, J. Ren, M. Wang, L. Dang, X. Shen, X. Yang and H. Zhang, *Chem. Commun.*, 2014, 50, 6259-6262.
- 17 P. Huang, Q. Lang and Y. Wang, J. Org. Chem., 2016, 81, 4235 4243.
- 18 Q. Lei, Y. Wei, D. Talwar, C. Wang, D. Xue and J. Xiao, *Chem. Eur. J.*, **2013**, *19*, 4021-4029.
- 19 H. Ahlbrecht, J. Harbagh, R. W. Hoffmann and T. Ruhland, *Liebigs Ann*, 1995, 211–216.
- 20 S. Bähn, D. Hollmann, A. Tillack, M. Beller, *Adv. Synth. Catal.*, **2008**, *350*, 2099-2103.
- 21 I. Chatterjee and M. Oestreich, Angew. Chem. Int. Ed., 2015, 54, 1965–1968.
- 22 M.-C. Fu, R. Shang, W.-M. Cheng and Y. Fu, *Angew. Chem. Int. Ed.*, **2015**, *54*, 9042–9046.

20. NMR and GC-MS Data for All Compounds

N-benzyl-1-(2-chlorophenyl)methanamine (1a)

N-benzyl-1-(naphthalen-1-yl)methanamine (1b)

In situ – ¹H-NMR spectra

Crude - GC-MS analysis

N-benzyl-1-(4-methoxyphenyl)methanamine (1c)

In situ – ¹H-NMR spectra

Bn

Isolated product by flash chromatography - ${}^{1}H$ and ${}^{13}C{}^{1}H$ -NMR spectra

N-benzyl-1-(4-(tert-butyl)phenyl)methanamine (1d)

In situ – ¹H-NMR spectra

Crude - ¹H and ¹³C{¹H}-NMR spectra and GC-MS analysis

N-benzyl-1-(3-bromophenyl)methanamine (1e)

Methyl 4-((benzylamino)methyl)benzoate (1f)

4-((benzylamino)methyl)benzonitrile (1g)

Crude - ¹H and ¹³C{¹H}-NMR spectra and GC-MS analysis

N-benzyl-1-(4-nitrophenyl)methanamine (1h)

Crude - ¹H and ¹³C{¹H}-NMR spectra and GC-MS analysis

N-benzyl-1-(4-ethynylphenyl)methanamine (1i)

Crude - ¹H and ¹³C{¹H}-NMR spectra and GC-MS analysis

N-benzyl-1-phenylethan-1-amine (1j)

Crude - ¹H and ¹³C{¹H}-NMR spectra and GC-MS analysis

N-benzylpropan-2-amine (1k)

Crude - ¹H and ¹³C{¹H}-NMR spectra and GC-MS analysis

4-(1-(cyclohex-1-en-1-yl)ethyl)morpholine (11)

Crude - ¹H and ¹³C{¹H}-NMR spectra and GC-MS analysis

N-benzyl-1-(m-tolyl)methanamine (1m)

Crude - ¹H and ¹³C{¹H}-NMR spectra and GC-MS analysis

N-benzyl-1-(4-fluorophenyl)methanamine (1n)

N-benzylbutan-1-amine (10)

Crude - ¹H and ¹³C{¹H} NMR spectra and GC-MS analysis

N-benzylpropan-2-amine (1p)

N-benzylcyclohexanamine (1q)

In situ – ¹H-NMR spectra

Crude - 1H and $^{13}C\{^1H\}\text{-}NMR$ spectra and GC-MS analysis

N-benzyl-2-methylpropan-2-amine (1r)

Crude - ¹H and ¹³C{¹H} NMR spectra and GC-MS analysis

N-benzyl-*N*-methylpropan-2-amine (1s)

Crude - ¹H and ¹³C{¹H}-NMR spectra and GC-MS analysis

N-benzyl-1-adamantylamine

In situ – ¹H-NMR spectra (small scale)

GC-MS analysis (small scale)

¹H and ¹³C{¹H}-NMR spectra of isolated product (gram-scale)

Piribedil

GC-MS analysis

