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1 Experimental procedure
To capture the data, fluorescence microscopy was performed using a Nikon TE300 microscope with a
Xenon lamp light source. Cultures of axenic Dictyostelium discoideum expressing mRFPmars (TRED
marker) [1] and the Epac1camps FRET sensor [2] were starved for 4-5 hours, counted in a hemocytometer
and mixed in a 1:9 ratio. Appropriate volumes to achieve the 10% TRED fraction were plated on glass.
To ensure a flattened 2-dimensional image, the cells were then covered with a sheet of 1% ultra-pure
agarose measuring 0.5mm in thickness. To cover a larger field of view, 16 images were taken in a 4x4
grid, each image capturing an area of 300µm x 300µm for a total field of view of 1.2mm x 1.2mm. At
each position, three fluorescent images were taken: an image to detect the ECFP component of the
Epac1camps molecule, an image to detect the EYFP component of the Epac1camps molecule, and a
Mars Red component to detect the cells expressing mRFPmars. Exposures for the ECFP and EYFP
images were 20ms while the exposure for the Mars Red image was 100ms. Images were taken with a
period of around 45 seconds. The FRET signal, which is proportional to cytosolically produced cAMP,
is calculated by the negative ratio of the EYFP and ECFP fluorescence intensities of the respective
acceptor and donor fluorophores, corrected for photobleaching and cytosolic pH changes. For further
details see [2, 3].

2 Primer on spatial information
Shannon’s concept of entropy was originally applied to telecommunication and broadcasting to under-
stand the principles and constraints of information transmission [4, 5]. Suppose we have a random
variable x, produced by a random but nevertheless well-defined process. We ask how much uncertainty
do we have prior to receiving the outcome, such as a particular value for x. The amount of uncertainty
can also be regarded as the ‘degree of surprise’ on learning the outcome. For the outcome of an improb-
able event we are very surprised, and we were uncertain to begin with. In contrast, for a very probably
result we are little surprised and we were also little uncertain at the start.

A general measure of uncertainty (or entropy) h(x) should therefore depend on the probability of
observing x. Specifically, it should depend monotonically on the probability p(x). Furthermore, the
information of observing two independent events x and y should add up h(x, y) = h(x)+h(y). Since for
such events p(x, y) = p(x)p(y), the logarithm has the desired monotonicity and additivity properties.
Specifically, we use

h(x) = − log2 p(x), (S1)

where the negative sign ensures that the entropy is positive. The choice of the base 2 of the logarithm
is arbitrary but provides the entropy in units of bits. The uncertainty of one bit corresponds to a choice
of two possible, equally likely outcomes for a random variable.

To calculate the average amount of entropy over several trials of transmitting outcomes, we average
h(x) over the probability distribution p(x) and obtain Shannon’s entropy formula

H[x] = −
∑
x

p(x) log2 p(x). (S2)

To show that the definition makes sense, let us consider a couple of simple examples. First, let us assume
that one outcome x0 occurs with absolute certainty, so that p(x0) = 1 and p(x 6= x0) = 0. Hence, both
the former, 1 log(1) = 0, and latter, 0 log(0) = 0, contribute no entropy (uncertainty). Hence, as the
outcome is clear, there is no entropy to start with. Second, consider a Gaussian distributed random
variable, p(x) = 1/

√
2πσ2 exp{−(x− µ)2/(2σ2)} with average µ and variance σ2. This distribution has

the entropy value H = 1/2{1+ln(2πσ2)}. Hence, as expected, the narrower the distribution, the smaller
the entropy.
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We can now use the concept of Shannon’s entropy to define ‘information’, or spatial information of
a cell distribution in our case. The spatial information SI can be defined as the entropy of a maximally
disordered (maximum entropy) cell distribution minus the entropy of the actually, potentially peaked
cell distribution

SI = Hmax − Hactual. (S3)

Hence, the more ordered (peaked or structured) the actual cell distribution, the higher the spatial
information as the entropy (uncertainty about where cells are) decreases with increasing order (S1 Fig).
To apply this concept to two-dimensional (2D) images, it is convenient to define this spatial information
in k-space (or Fourier space) using a superposition of waves with different amplitude and wave length,
leading to the formulas provided in the Materials and Methods section of the main text (see also [6] for
a formal derivation).

This spatial information can also be thought of as a measure of the confidence to predict the presence
(or absence) of a cell at a given point on the 2D surface (see S2 Fig for details). Alternatively, compression
algorithms can be applied to images to mimic spatial information as illustrated by applying GZip to JPG
data images (S3 Fig). Image compression reduces uncertainty by identifying and eliminating statistical
redundancy in an image, resulting in a smaller file size.

3 Single-cell model
To reproduce the dynamics of single Dictyostelium cells, we extended a detailed model previously de-
signed in our group [7]. In this model the cell membrane is represented by a contour evolving according
to the Meinhardt model [8]. Three interacting molecular species are modeled by means of partial dif-
ferential equations numerically solved along the 1D cell contour: a local activator a, a global inhibitor b
and a local inhibitor c. The dynamics of these equations depend on sensing of extracellular cAMP con-
centration by means of a “chemosensation” contribution, calculated by a sum of three terms: the actual
environmental stimulus, Poisson-like noise, and an auto-activation term. The movement of the contour
of the cell was determined by the force acting on the membrane. This was calculated by subtracting
cytosolic pressure and membrane tension from the outward force proportional to the concentration of
the local activator a (for details see Supplementary Information of [7]).

Intra- and extracellular dynamics of cAMP were added to this model, along with the intracellular
(extracellular) dynamics of RegA (PDE), responsible for degrading cAMP. In particular, to reproduce the
cAMP dynamics we adopted the FitzHugh-Nagumo model [9, 10]. Two ordinary differential equations
represent the concentrations of intracellular cAMP and intracellular phosphodiesterase RegA:

dcAMP

dt
=k1[(cAMP − cAMP0)−

1

3
(cAMP − cAMP0)

3 (S4)

−RegA+ k2] + k3 · S − cAMPl

dRegA

dt
=

1

k1
(k4 · cAMP − k5 ·RegA− k6 · S). (S5)

The input sensation S is calculated as the maximum amount sensed by a node along the contour of the
cell. In Eq. S4, cAMP0 is set as a reference threshold, such that the cell is pulsing if the term (cAMP −
cAMP0) > 0, therefore secreting in the environment at a rate proportional to 1

3 (cAMP − cAMP0)
3. If

instead the concentration of intracellular cAMP is smaller than cAMP0, the cell is just leaking cAMP
at a rate proportional to cAMPl, assumed to be constant.

The secretion of cAMP occurs at the rear of the cell [11, 12]. In order to simulate this secretion,
cAMP is added to the environment grid in proximity to the contour points opposite to the direction of
motion with the greatest membrane curvature. PDE is also released into the environment at a constant
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rate to simulate the secretion of the specific phosphodiesterase DdPDE1 [13], resulting in

dcAMPex

dt
=− k7 · cAMPex − k8 · PDE +D1∇2cAMP (S6)

dPDE

dt
=− k9 · PDE +D2∇2PDE (S7)

In addition to diffusive and degradation terms for extracellular cAMP and PDE, the concentrations of
secreted cAMP and PDE are also added to the environment at the corresponding grid points. Both
extracellular cAMP and PDE are free to diffuse in the environment without absorption by cells. Pa-
rameter values are provided in S1 Table. After pulsing, a cell undergoes a refractory period, lasting
about 400 s during which the cell cannot repolarize. Furthermore, during the following 400 s the cell
can repolarize but cannot secrete pulses of cAMP.

4 Coarse-grained model
Model description. The coarse-grained model is designed to reproduce the behavior of an entire cell
population based on a minimal set of single-cell features. Cells are represented as point-like objects,
and free to move in space, without any spatial grid. This avoids discretizing their position and the
concentration of cAMP in the environment.

This coarse-grained model keeps the main features and results of our detailed model, while being
much faster and computationally less expensive. In particular, the concentration of cAMP secreted
by a single cell, when pulsing or leaking, was extracted from the detailed simulations. In this way
the partial differential equations representing diffusion of cAMP and its degradation by PDE can be
excluded from the computation. The spatial cAMP profile was extracted by considering the spatial
concentration of leaked or pulsed cAMP at the rear of the cell in the direction opposite to the cell
motion. More specifically, an exponential profile was used, with maximal value and time dependence
derived from detailed simulations. A spatial decay constant of 0.1 µm−1 was chosen, slightly different
from the constant of 0.2 µm−1 estimated from the detailed model. This choice allowed us to introduce
volume exclusion for wider streams of cells when aggregating, closer to the experimental results. See S4
Fig for a comparison of the secretion profiles.

To simulate secretion at the rear of the cell, secretion is maximal in the direction opposite to the
direction of motion. For the other directions we rescaled the amount of secretion according to the cosine
of the angle between the direction opposite to motion and direction considered. If this angle is greater or
equal to π/2, secretion is set to zero. The physical cell dimension is considered as follows: the secretion
profile is set to the maximum value within a radius of 10-13 µm from the cell centre, rescaled according
to the direction of motion. Knowing the positions and spatio-temporal secretion profiles of each cell,
we were able to estimate the amount of cAMP that every cell senses and the gradient of the cAMP
concentration they experience. To these concentration values, we added Poisson-like sensing noise as
done for the detailed model. Furthermore, cAMP leakage increases linearly with development time for
every cell, up to a maximum reached when the cells become “movement competent” (discussed next; all
cells stop increasing cAMP leakage at most after 10,000 seconds ' 2.8 hours).

To represent the movement by pseudopod extension (with angle ' 55°between old and new pseu-
dopods [14]), we allow the cells to move in just two possible directions, each forming an angle of
±27.5°relative to the previous direction of motion. When the cAMP concentration is low, cells move by
randomly choosing between these two possible directions. When instead the cell becomes “movement
competent” it chooses the closest-to-best direction according to cAMP gradient from the two available.

As shown in the schematic of S5 Fig, when cells sense a cAMP concentration above a certain threshold
c1 (equal to 1200), they “spike”, emitting the cAMP concentration as estimated for a pulse from the
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single-cell model over the same time course. After pulsing cells enter a refractory period that lasts for 6
minutes in line with experiments [2]. A second threshold ∇c2 (equal to 200) characterizes cell movement:
when a cell perceives a cAMP gradient greater or equal ∇c2, it switches to the “movement competent”
state, in which it moves according to the concentration of cAMP in the environment (and leakage is not
increased any further). Once a cell is “movement competent”, it remains polarized during the refractory
period, thus keeping the same direction of motion for half of the refractory period (again mimicking the
single-cell behavior of the detailed model). Finally, cell speed is set equal to 25 nm/s, in line with the
speed we estimated from our experimental data.

We also introduced a minimal cell-to-cell distance of 3 µm to avoid complete overlapping of pairs
of cells. This volume exclusion condition was relaxed at later stages of aggregation, considering high
density when space was completely filled inside a neighborhood radius of 18 µm around the cell.

Cells are initially uniformly distributed in space and move randomly, without secreting cAMP, for
the first 100 iterations (about 7 minutes). Cell density is taken from experimental data and set to
6.6 · 10−3 cells/µm2 for simulations of N=1000 cells. Space dimension (L=389 µm) was then fixed for
simulations with N=1200, 800 and 600 cells.

Estimating connected correlations. The method for estimating the connected correlations, de-
scribed in the main text in the Directional correlations and susceptibility section of Materials and
methods, is reported in more detail in S6 Fig. Briefly, instead of subtracting the global average to
calculate the fluctuations in direction (panel A) [15], we subtract the local averages (B), thus avoiding
an overestimation of the correlations.

Perturbations and ‘steering’. Here, we considered the dynamics of aggregation more closely. When
increasing the density of cells in our simulations, we noticed that cells aggregate faster at higher cell
densities as measured by the slope of the spatial information (S7 Fig A). This increase in speed appears
to reflect the increased ability to relay the signal as nearby cells can become excited and pulse themselves,
facilitating aggregation. To test this prediction, we attempted to quantify the speed of aggregation in
our time-lapse movies as well. Unfortunately, the experimental movies were too noisy or variable to
confirm this trend (S7 Fig B; the dark blue dashed curve violates the trend).

Critical-like behavior is the tipping point between order and robustness on one side and disorder and
chaos on the other side. This point may highten the sensitivity of the collective to detect changes in
external cAMP concentration and to help cells make decisions on when and where to aggregate. Here,
we attempted to investigate this with our simulations. For this purpose, we applied both local and
global cAMP perturbations to our system of cells; local perturbations represent a short local pulse of
cAMP released on the 2D surface, while a global perturbation represents an overall pulse of cAMP on
the whole area of observation. The localized cAMP instead was simulated considering 2D diffusion of a
point-like source equation:

cAMP (r, t) = c0
e−

r2

4Dt

4πDt

with r being the distance from the source and D representing the diffusion coefficient of cAMP (250
µm2/s) [16, 17]. The source position was chosen randomly with c0 = 5 · 104(4πD) to keep the initial
amplitude equal to global perturbation.

These perturbations were applied at two different time points, during prestreaming, i.e. after 2, 000
s (∼33 min) of the start of simulations, and during streaming, after 6, 200 s (∼103 min). The global
release had a peak amplitude of 5 · 104 (for units see caption of Table ??) and an exponential decay in
time with a constant of 0.025 s−1. Results are shown in movies S6-S9. In these movies, the pulse timing
(and position in case of local perturbations) are shown by a yellow asterisk. For local perturbations, a
colormap is also used underneath the cells to represent the external concentration of cAMP. Note that
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these simulations deal with cAMP propagation based on diffusion of cAMP (with diffusion coefficient
of 250 µm2/s). Consequently, cAMP propagates much faster than cell movement with maximal speed
of 0.5 µm/s [18].

Whether the perturbations were applied before and during streaming had a noticeable different effect
on aggregation. A local perturbation prior to streaming induces aggregation at the location of the pulse,
although the aggregation centre may shift later during the simulation. A global perturbation prior to
streaming has a similar affect, although the location of aggregation cannot be influenced. In contrast,
applying such perturbations during streaming has largely no effect. While local perturbation may
somewhat influence the location of aggregation, the overall dynamics stay the same. Indeed, comparing
the time courses of the spatial information, we notice that the shape of the curve always stays the same,
and only the onset of aggregation can be shifted to earlier times with local or global cAMP perturbations
(S7 Fig C). In particular, early local perturbations allow the possibility of steering cells to locations of
aggregation.

Comparison with recent analyses and models. Model and experimental data presented in this
manuscript were compared with recently published models and analyses, which also focused on Dic-
tyostelium cell populations and the FitzHugh-Nagumo model for the excitatory cell behavior [2, 3, 19].
S8 Fig shows how oscillations in intracellular concentration of cAMP are captured by our coarse-grained
model (panels A and B), and we successfully reproduce spatial propagation of cAMP waves (panels C
and D) [2]. Moreover, similar to the FitzHugh-Nagumo model described in [3], in our detailed model
the single-cell adaptation time in response to step changes of cAMP increases with increasing input
concentration (S9 Fig A). The external cAMP rate also plays an important role in shaping the response
of single cells. In fact, as shown in [3], responses to step changes are different to responses to exponential
ramps of extracellular cAMP, even though the final maximal concentrations are the same. This behavior
changes in the case of high concentrations of cAMP. S9 Fig B shows the responses of our detailed model,
while S9 Fig C shows the corresponding results of our coarse-grained model.
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5 Experimental data analysis
In this section we present additional details and results from the image analysis of the experimental
movies considered in the main text.

Estimating fraction of TRED cells. As previously explained, a subpopulation of cells was imaged
expressing the TRED marker. This allowed us to distinguish single cells even in high-density movies
and to track their movement. In order to understand the effect of cell number on critical behavior,
it is important to estimate the total number of cells in the experiments, and to make sure that the
fraction of TRED cells is the same for the different movies, thus avoiding artifacts in the evaluation of
connected correlations. The TRED fraction was estimated by considering the area covered by TRED
cells and comparing this area with the area occupied by the whole cell population, estimated from
the CFP images. For the first 200 frames, individual TRED and CFP images were pretreated with
MATLAB function imadjust, which expands the range of intensities of the image such that the dimmest
(brightest) 1% of the total pixels are saturated at low (high) intensities. After this, graythresh and
im2bw functions were applied in order to create a mask separating cell and non-cell pixels, choosing
the intensity threshold, which minimizes the intraclass variance of black and white sets. Results for
the number of tracked TRED cells and the TRED/CFP cell-area ratio are presented in S10 Fig. We
considered the peak of the TRED number during the streaming phase for determining the number of
cells reported in the legend of Fig 3D, of the main text. For dataset 6 (represented in yellow), since the
ratio of TRED cells is consistently higher (see S10 FigB), we randomly down sampled the number of
TRED cells, considering about half of the tracked cells. Hence, we obtained a TRED fraction similar to
the other datasets.

Further evidence of criticality. Here, we illustrate further features of the experimental system,
consistent with criticality, using dataset 3 as an example. We first considered the speed of cells, estimated
from the average movement per frame of all the tracked cells (see S11 Fig A). Cell speed is not constant
during aggregation; instead a slowing down of cells is clearly noticeable before the streaming phase,
which is a common signature of critical systems [20]. Note the oscillations in speed during the first
part of the movie. If we compare these oscillations with the ones present in the FRET signal we can
notice that they have the same period but are anticorrelated (see S11 Fig B). Since the FRET signal
is low when intracellular cAMP in high and vice versa, these results suggest that cells slow down when
secreting cAMP, and that they speed up when accumulating cAMP internally.

When dealing with criticality, the increase of correlations in fluctuations is often accompanied by a
departure from a Gaussian distribution of these fluctuations [21]. We thus considered the distribution
of the different angles of these fluctuations and compared them with the von Mises distribution (i.e.
the Gaussian probability distribution on a circle), generated by using MATLAB function circ_vmrnd
(Berens and Velasco, 2009). Frames corresponding to a duration of 50 minutes were clustered together
and from all the fluctuations of the individual cells we randomly down sampled 105 data points. We
then fitted the von Mises distribution to these data, thus estimating mean and variance of the best fit.
Data distribution and best fit are shown in S11 Fig C. After that, we performed a Kolmogorov-Smirnov
test as a measure of the goodness of the fit, indicating if the initial 105 data points belonged to the
same distribution as other 105 data points randomly sampled from the von Mises distribution. This
hypothesis was rejected during the streaming phase (H = 1), thus confirming that distribution of the
directional fluctuations deviates from the von Mises distribution.

Another feature of criticality commonly investigated is wether cluster size follows a power-law distri-
bution [22]. To study this in our system, we clustered cells that are moving in a similar direction. More
specifically, we first coarse-grained the image into 100 squares and computed the average direction of
cells inside every square. An adjacency matrix defining the nearest neighbors of every square (left, right,
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top, bottom and first elements on the diagonal) was built. We then computed cluster sizes by moving
over the nearest neighbors and clustering cells according to their direction, considering cells belonging
to the same cluster if their direction differed less than π/5. As shown in S11 Fig D, before aggregation
cells move individually, thus the distribution is skewed on the left, with many small clusters. At a later
stage during streaming, cells all move towards the same aggregation center, thus leading to one large
cluster with few cells left out. Immediately before streaming we obtain medium-size patches instead,
with a cluster-size distribution resembling a power-law.

In order to have a complete characterization of the system, we also considered cell speed as a different
mode for which connected correlations can be computed. According to Goldstone’s theorem [23, 15], due
to breaking of rotational symmetry upon streaming we expect scale-free fluctuations in the transverse
direction (soft mode). This is indeed the case for the connected directional correlations as shown in
the main text. As cells are always moving we do not expect the same for the speed fluctuations as
no symmetry is broken in this case. However, similar to bird flocks in [15] we also see long-range
correlations in speed fluctuations. Specifically, using dataset 3 we extracted the velocity modulus of
every cell from the tracking algorithm. As done for the directional correlations, also speed correlations
were computed by considering a neighborhood radius around every cell, equal to L/4 as done in the main
text (Fig 3B). The speed correlations were calculated by using Eq. 1. Here, we substituted −→u i with the
velocity modulus of individual cells from which we subtracted the average speed of the neighborhood,
i.e. ||−→v i||− 1

N

∑N
k=1 ||

−→v k|| [15]. Interestingly, speed correlations exhibit a similar behavior as directional
correlations, increasing during streaming (see S12 Fig). This may be due to the fact that we are not
dealing with an equilibrium system or to rise in speed after slowing down, which violates momentum
conservation.

6 Mutant simulations and comparison with data
Simulation description. To investigate the robustness of aggregation, we perturbed our coarse-
grained model in various ways to better understand how cell aggregation is affected in comparison
to wild-type simulations (Fig 4 of the main text, movies S10-S14). To measure the effectiveness of
aggregation, we considered the correlation length during streaming as a proxy for the range of cell-
cell communication and the spatial information of the final cell distribution to represent the quality of
aggregation.
Uniform secretion. We first analyzed the case in which cells secrete cAMP without a preferred direction
(corresponding to uniform secretion along their contour, and not just secretion from the rear). We
found that the correlation length was reduced during streaming. Although the cells were aggregating,
they were unable to organize themselves into a single mound, but instead aggregated locally with their
nearby neighbors.
Sensing noise. Cell sensing in the wild-type simulations includes some noise, simulated by randomly
sampling from a Poisson distribution with average and variance equal to the sensed cAMP concentration.
Here, we increased the standard deviation of this distribution tenfold. Surprisingly, aggregation was
robust to this noise, with the final aggregation pattern containing just two aggregation centers and the
aggregation time even reduced slightly.
Cell-cell adhesion. In terms of cell adhesion, we added a Lennard-Jones potential, which is often used
to represent molecular interactions. This potential leads to a strong repulsion at short cell-cell distances
to capture volume exclusion (which was implemented to reflect the minimum cell-cell distance in wild-
type simulations) and to a medium cell-cell distance attraction, meant to represent cell adhesion. Even
though cells came closer to each other during the simulations, this did not result in improved aggregation.
Instead, multiple aggregation centers formed.
Asynchronous secretion. Finally, we considered a random refractory period to capture the total absence
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of synchronization in the regA mutant [2]. To achieve this in our simulations, each cell was assigned a
refractory period randomly sampled from a uniform distribution with the minimum equal to the wild-
type refractory period (6 minutes) and the maximum a hundred times longer. As a result, cells fired
at different times and consequently there was little self-organization and streaming, although some cells
came close together simply due to random movement.

Experimental data analysis We also performed a similar analysis on experimental data of wild-type
and mutant cells (regA and rdeA). Specifically, we analyzed cAMP waves and spatial cell distribution
from Fig 5 in [24]. The correlations were extracted from the left panels of Fig 5a-c. For this purpose,
we used the MATLAB autocorr function to measure 1D intensity correlations for all rows and columns
of the image. We subsequently computed the average of these to obtain a global measure of correlation.
Briefly, this Matlab function computes the autocorrelations of the pixel intensities of a vector with itself
for different distances (shifts). As expected, wild-type cells showed a characteristic correlation profile
due to the typical spiral waves, which starts from unity when the distance was zero (image perfectly
correlated with itself), decreased to become negative to reflect the light stripes, and exhibited some peaks
in correspondence to the dark stripes (S13 Fig, blue line). This pattern did not appear in the mutant
images (S13 Fig, red and green lines). In order to estimate the correlation length, these correlation
profiles were fitted with the function exp(−x/x0) cos(ωx) to reflect the decreasing correlations and the
striped pattern. The largest correlation length x0 was found for the wild-type cells, while mutant cells
exhibited smaller x0 (see inset of Fig 4 of the main text).

Spatial information was also computed for the central panels in Fig 5a-c in [24], representing cell
position during aggregation. Hence, wild-type cells achieved a higher quality of aggregation as compared
to mutant cells, suggesting defective aggregation in the latter.
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