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Supplementary Methods

Gaussian Network Model (GNM)

The GNM is an elastic network model developed for characterizing the collective dynamics of
biomolecular structures using information on their inter-residue contact topology (1-3). Each node in the
GNM is identified by a residue (n of them for a structure of n residues), and residue pairs i and ;j are
connected by an elastic springs of force constant y;; provided that they are located within an interaction

range (e.g. closer than a cutoff distance recu).

The major ingredient of the GNM is the n x n Kirchhoff matrix, I, the off-diagonal elements of which
account for the stiffness of interactions (see Eq 1). In the GNM, a uniform force constanty;; =y is
adopted for all pairs such that I' becomes equivalent to a connectivity matrix or Laplacian commonly
used in graph theory, multiplied by the spring constant y. The network is assumed to be at a global

energy minimum under equilibrium conditions. The movements of the nodes away from their
equilibrium positions entail a potential of the form

Vonu = SIS0 Ty (Ar; — Arj)” =% [AR]' T [AR] (S1)

where Ar; represents the displacement of node i with respect to its equilibrium position, [AR]"is the n-
dimensional row vector [Ar; Ar, ....Ar,] of the displacement of all nodes, [AR] is the corresponding
column vector. Using Eq S1, the cross-correlations < Ar; . Ar; > between the fluctuations of the nodes
i and j can be evaluated as a thermodynamic average over all fluctuations, to obtain (1-3)

< Ari Arj > = 3kBT [F_l]ij (82)

Here kg is the Boltzmann coefficient, T is the absolute temperature, and [I'"];;and designates the "

element of the inverse of I'. The evaluation of the cross-correlation therefore requires the inversion of T.
But T is not invertible (its diagonal elements are evaluated as the negative sum of off-diagonal terms in
the same row (see Eq 1). Instead, we evaluate the pseudoinverse. To this aim, we first diagonalize T



and reconstruct it (or its pseudoinverse) after removing its zero eigenvalue. Diagonalization of T yields
a unitary matrix, U, composed of the eigenvectors, u,, of ', and a diagonal matrix A composed of the
eigenvalues 1, (with1g =0and A, < 4, ... < 1,,_4)
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Here 1, = 0. The nonzero eigenvectors u,x (1 < k < n-1) form an orthonormal basis set representing the
collective displacements or fluctuations (of all nodes) along a given mode (k) axis, and the eigenvalue
Ar scales with the squared frequency of collective fluctuations along mode k. Using Eq S3, the
pseudoinverse of T is obtained as

r=UA U =311/ [, wT] (S4)

which, substituted in Eq S2, yields the Eq 2 in the main text. The modes with smaller eigenvalue, or
lower frequency describe the so-called global or soft motions of the macromolecule, which embody the
entire structure. These modes are usually relevant to biological function. The other end of the spectrum
refers to local motions described by fast modes. The zero eigenmode corresponds to the rigid
translation of the system. If there are more than one zero eigenvalue, it usually indicates that the
system contains disconnected regions.

Cross-correlations are organized in a n X n covariance matrix

T
m Uk U
k=1 /1k

C = (ARART) = 3kzT [T =) (S5)

C can be reconstructed using all modes (m = n — 1) or fewer modes (m < n — 1) with the following
equation: Note that u; is a n x 1 column vector, therefore the dyadic product in the numerator is an
n X n matrix. Usually a subset of slow modes provides a good representation of the full covariance. The
diagonal elements of C represent the mean-square fluctuations (MSFs) in the positions of the nodes.
The plot of MSFs as a function of node index yields the mobility profile of the structure.

Removal of Unmapped Regions

In the Hi-C map there are regions where no cross-linked DNA fragments can be mapped. These
unmapped regions are isolated from the system, and their existence may lead to multiple zero-
eigenvalue modes. These unmapped regions are not constrained by other loci, so they may cause
large fluctuations that obscure the signal from other regions. These extra zero-eigenvalue modes and
unphysically large fluctuations were removed by discarding the unmapped regions. Note that the
removal of the unmapped regions will not cause disconnections because the chromosomes are highly
compact, so the loci next to the unmapped regions remained connected to the loci located at the other
end of the region.



Hi-C Data Normalization

We tested three types of normalization methods applied to the Hi-C contact map: Vanilla-Coverage
normalization (referred to as VCnorm), square-root Vanilla-Coverage normalization (referred to as
sqrtVC) (4) and Knight-Ruiz normalization (referred to as KRnorm) (5). All three methods aim to
eliminate the so-called “one-dimension bias” (6). We found that the GNM performed best on Hi-C maps
normalized by VCnorm when benchmarked against experimental data (Fig. $5-S7). Not only are the
correlations with the chromatin accessibility lower, but also the square fluctuations become flatter and
flatter by adding more modes in the calculation when KRnorm or sqrtVC has been applied on the
contact map. In the extreme case, when all the modes are used, the square fluctuations become almost
completely flat along the chromosome using KRnorm. This is because KRnorm ensures that every row
and column sums to 1. As a consequence, all loci become almost equally constrained and the
differences in their square fluctuations are suppressed.

In addition, computations with the three normalization methods were repeated at different resolutions,
and VCnorm yielded the most robust agreement between theoretically predicted MSFs and
experimentally observed accessibilities across all resolutions. Both KRnorm and sqrtVC showed poor
correlations at high resolution (5kb) (Fig. S6 and S7). Furthermore, VCnorm showed the expected
improvement in correlation using increasing number of modes included in the analysis, while KRnorm
or sqrtVC led to inconsistent results, even at 50kb resolution (Fig. S6). Due to the better performance
across resolutions and numbers of modes, shown by agreement with experimental data, we chose VC
normalized contact maps to perform further analyses.

Variation of Information (VI) metric

This metric is based in information theory, and measures the difference in information contained in two
clusterings, or partitions, of a data set. If we consider each domain to be a cluster of nodes/points, this
type of comparison becomes very natural. Formally, for two sets of clusters C and C’, VIl is defined as
follows:

VI(C,C) = H(C) + H(C") — 2I(C,C" (S6)

where H(C) represents the entropy of a set of clusters C, and /(C,C’) is the mutual information between
the two partitions, given by

H(C) = —X¥-1 P(k)log P(k) (S7)

P(k,k"
P(k)P(k")

1c,cn =YKk  ¥5_, Pk k") log (S8)

where the probability of picking a node in cluster Cy, P(k), is simply the number of points in that cluster
divided by the total number of points in the data set. In this work, a “cluster” is the set of loci placed into
the same domain or compartment.

Note that this is a true metric on the space of clusterings; VI is commutative, satisfies the triangle
inequality, and is always non-negative and equal to zero if and only if the two clusterings are identical.

More intuitively, VI is a measure of the amount of information that is lost and gained by changing from
one clustering to another, without any assumptions placed on the clusterings themselves or how they
were generated. More information can be found in (7).
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Supplementary Figure S1 (continued)
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Supplementary Figure S1. GNM-predicted mobility profiles of gene loci compare favorably with
accessibilities measured by ATAC and DNase-seq experiments in GM12878. Results are presented for
all chromosomes. MSFs are based on 500 GNM modes (at the lowest frequency end of the spectrum)
using Hi-C map at 5kb resolution obtained by Rao et al. for GM12878 (6). Spearman correlations
between theoretical (MSFs) and experimental (ATAC (8) and DNase-seq (9)) data are shown for each
chromosome in the corresponding legend box.
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Supplementary Figure $S2. GNM-predicted mobilities (MSFs) of chromosomal loci for IMR90 cells
show good agreement with experimental data from chromatin accessibility experiments. (A) — (C)
Mobility profiles obtained from GNM analysis of the equilibrium dynamics of chromosomes 1, 17, and X,
respectively, shown in blue, are compared to the DNA accessibilities probed by ATAC-seq (yellow) and
DNA-seq (red) experiments. GNM results are based on 500 slowest modes. r; is the Spearman
correlations between GNM predictions and DNase-seq experiments; and r; is that between GNM and
ATAC-seq. (D) Spearman correlations between theory and experiments for all chromosomes (red and
yellow bars, as labeled). The Spearman correlation between the computed MSFs and experimental
ATAC-seq data averaged over all chromosomes is 0.63 + 0.08, and that between MSFs and DNase-
seq data is 0.82 + 0.03. For comparison, we also display the Spearman correlation between the two
sets of experimental data (brown bars); the average in this case is 0.81 £ 0.06.
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Supplementary Figure $3. GNM computations of mobility profiles using different subsets of modes
show the robust convergence of results with a small subset of modes. Results are presented here for
GM12878 chromosome 17, at 5kb resolution. (A) — (C) Comparisons between experimental data and
computed MSF profiles obtained using 10, 100, and 500 GNM modes. (D) Spearman correlations
between experimental and computationally predicted fluctuation/accessibility profiles obtained with
different numbers of modes. (E) Spearman correlations between MSFs computed from slowest i modes
and i+1 modes. Note that the abscissa is in logarithmic scale in panels D and E. The correlation levels
off at around a few hundreds of modes, showing that the addition of higher modes does not practically
change the predicted MSF profile, and a small subset of < 500 modes can be efficiently used for
evaluating the MSFs.
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Supplementary Figure S4. Mobility profile of GM12878 chromosome 17 predicted by the GNM based
on Hi-C maps at different resolutions. The three panels display the correlations between chromatin
accessibility data (ATAC and DNase-seq) and GNM-predicted fluctuation profiles based on the Hi-C
contact map for chromosome 17 at (A) 50kb, (B) 10kb, and (C) 5kb resolution. GNM results are
computed using 500 lowest-frequency modes. The level of agreement between computational
predictions and experimental observations is insensitive to the resolution of experimental data.
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Supplementary Figure S5. Comparison of the MSFs obtained from different number of GNM modes
(rows), and three different normalization methods (columns): Vanilla Coverage normalization (left),
Knight-Ruiz normalization (middle), and square root Vanilla Coverage normalization (right). MSFs in
this figure are calculated from Hi-C data at 50kb resolution for GM1287 chromosome 17.
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Supplementary Figure S6. The scanning of correlations between chromatin accessibility data from
experiments and square fluctuations from theory calculated as a function of the number of modes
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columns compare those computed from three different normalization methods. Note the poor
performance of KRnorm and SQRTVCnorm.
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(right). MSFs in this figure are calculated using m = 100 slowest modes.
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compartments (lower VI indicates greater agreement). Box plots show the distribution of VI values
obtained by randomly shuffing GNM domains and comparing to original TAD and compartment
boundaries. Blue dots represent the VI value of the true GNM domains with TADs and compartments,
respectively. Data was incomplete for computing TADs on chromosome 9, so this was left out. All

comparisons were statistically significant except one chromosome with TADs, and three with
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Supplementary Figure S10. Comparison of GNM domains with (A) compartments and (B) TADs for
chromosome 14. In both panels, the background is a heat map of the Hi-C contact matrix for this
chromosome, and the red and white lines represent the domains identified by the two indicated
methods. The two axes represent the loci numbers. Data for compartments are from the work of
Lieberman-Aiden et al. (4). TADs are computed using Armatus (10).



17

(A) TADs (B)  compartments
5 ——— 35—
3l
4}
D 3¢t
4
n
2.
>
c 1t
o
©
£ 0
ke 1 357 9111315171921 X 1357 9111315171921 X
[
©
5 (© (D)
§ 4 ——rr-rrrr-r-r-eeeectrrrrT 3 —r—r-r-r-r-r-rrr-r-r-r-r-r-rrrrrrrr
t>ts 35} | I Spectral method
) 25¢ I GNM method
25 2T
ﬁ 2 1.5¢
o
015}
1}
1}
05 05}
0
1 357 9111315171921 X 1357 9111315171921 X

Chromosome number

Supplementary Figure S11. Comparison of GNM-based method for finding TADs and compartments to the
spectral method from (11) for GM12878. In all panels, blue bars represent the results from the GNM method
and red bars, those from the spectral method. A lower variation of information (VI) value demonstrates better
agreement. Compartments were calculated based on the method described in (4), and TADs were computed
using the widely-used Armatus software (10). Armatus requires a resolution parameter y, so the VI value
shown for every comparison with TADs represents the lowest VI from comparing to TAD sets obtained from y
ranging from 0 to either 0.5 (for 5kb resolution) or 1 (for 100kb resolution), with a step size of 0.05. (A)
Comparison to TADs at 5kb resolution. (B) Comparison to compartments at 5kb resolution. (C) Comparison to
TADs at 100kb resolution. (D) Comparison to compartments at 100kb resolution.
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Supplementary Figure S12. Intra-chromosomal covariance of gene loci computed for all
chromosomes at 5kb resolution in GM12878 cells. The entries in the map display the type and strength
of correlations between the gene loci indicated along the two axes. The maps are color-coded from
dark red the dark blue, with dark red indicating the gene loci pairs that show the strongest cross-
correlations in their spatial movements (same direction, same sense movements in space), and dark
blue regions refer to gene pairs undergoing anticorrelated movements (same direction, opposite sense).
Green/yellow bands refer to regions that lack Hi-C contact data. The red blocks along the diagonal are
indicative of highly coupled clusters of loci. Results are obtained using all GNM modes for the individual
chromosomes.
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Supplementary Figure S13. Reproducibility of the covariance map computed for chromosome 17
using two different levels of resolution in GM12878. (A) Results at 50kb resolution computed using all
GNM modes, (B) Results at 5kb resolution obtained with 500 slowest modes. The maps on the right of
the covariance maps show the sign of the covariance. Red indicates positive, blue indicates negative.
Most of the positively correlated gene loci are contiguous along the chromosome, except for a few off-
diagonal islands which correspond to CCDDs. The curve along the upper abscissa represent the
average covariance of corresponding loci (averaged over its correlations with all other loci). Maxima
indicate gene loci that are engaged in strong couplings with other loci.
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Supplementary Figure S14. Identification of cross-correlated distal domains (CCDDs). CCDDs are
found by searching for connected components outside of the widest point of the main diagonal. The
CCDD is then the rectangle of maximal area contained entirely within the connected component.
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Supplementary Figure $15. Comparison of the level of agreement with experiments obtained by GNM
(MSFs) and GC content profiles (GC), shown for 23 human chromosomes (GM12878 cells). Results
are presented for two sets of accessibility data, ATAC-seq (fop) and DNase-seq (bottom). GNM results
are based on 500 slowest modes obtained from Hi-C data at 5kb. GNM consistently yields better
agreement with experimental data.
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Supplementary Figure S16. GC content as a function of position with respect to domain
boundary/center does not exhibit any net (or stepwise) change at domain boundaries or centers. The
same behavior is observed for TADs (A) and compartments (B). The green line represents the average GC
content at and around boundaries of TADs (A) and compartments (B). The blue line represents average GC
content around the center of the structural domains. There is clearly no difference, so the GNM’s ability to
locate TADs and compartments cannot be attributed to the GC content covariate. (GM12878 cells)
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Supplementary Figure S17. Co-expression enrichment of CCDDs is also present with bias-
corrected RNA-seq. In each histogram, the yellow distribution represents gene pairs from CCDDs in
GM12878 and the blue distribution represents background gene pairs. The only difference between this
figure and Figure 5 from the main text is that RNA-seq values used here were calculated using
Salmon’s bias-correction. Results are qualitatively similar, except for potentially more co-expression
here in the 25M-50M range. All are showing the normalized number of gene pairs with a particular
Pearson expression correlation for gene pairs within a distance of (A) 0-25 million base pairs, (B) 25-50
million base pairs, (C) 50-75 million base pairs, and (D) 75-100 million base pairs. The more distant
pairs (50-100 million base pairs apart) within the CCDDs show enriched expression correlations as
compared to the background pairs. There were not enough gene pairs within CCDDs more than 100M
base pairs apart to draw significant conclusions.



Supplementary Table S1. List of Sequence Read Run (SRR) IDs for all 212 RNA-seq experiments
from the Sequence Read Archive used in co-expression calculations.(*)

SRR038295 SRR038448 SRR038449 SRR065510 SRR065514
SRR065515 SRR065532 SRR089332 SRR089333 SRR1024156
SRR1024157 SRR1066622 SRR1066623 SRR1066624 SRR1066625
SRR1066626 SRR1066627 SRR1066628 SRR1066629 SRR1066630
SRR1066631 SRR1066632 SRR1066633 SRR1066634 SRR1066635
SRR1066636 SRR1066637 SRR1066638 SRR1066639 SRR1066640
SRR1066641 SRR1153470 SRR1163655 SRR1293901 SRR1293902
SRR1803196 SRR1803197 SRR1803198 SRR1909074 SRR1909076
SRR1909078 SRR1909107 SRR1909108 SRR1909113 SRR1983907
SRR1983908 SRR1983909 SRR2192704 SRR2192705 SRR2192706
SRR2192707 SRR2192708 SRR2192709 SRR2192710 SRR2192711
SRR2192712 SRR2192713 SRR306998 SRR306999 SRR307000
SRR307001 SRR307002 SRR307003 SRR307004 SRR307005
SRR307006 SRR307007 SRR307008 SRR307009 SRR307010
SRR307011 SRR307012 SRR307897 SRR307898 SRR307899
SRR307900 SRR307921 SRR307922 SRR315297 SRR315298
SRR317058 SRR317059 SRR317060 SRR317061 SRR3191739
SRR3191740 SRR3191773 SRR3191774 SRR3191775 SRR3191776
SRR3191777 SRR3191778 SRR3191779 SRR3191849 SRR3192069
SRR3192132 SRR3192133 SRR3192134 SRR3192135 SRR3192136
SRR3192137 SRR3192138 SRR3192139 SRR3192140 SRR3192218
SRR3192396 SRR3192397 SRR3192398 SRR3192399 SRR3192400
SRR3192401 SRR3192402 SRR3192403 SRR3192406 SRR3192407
SRR3192657 SRR3192658 SRR363871 SRR390498 SRR390507
SRR390508 SRR390509 SRR390510 SRR390511 SRR390512
SRR390513 SRR390514 SRR390517 SRR390542 SRR390543
SRR390544 SRR390545 SRR521447 SRR521448 SRR521449
SRR521450 SRR521451 SRR521452 SRR521453 SRR521454
SRR521455 SRR521456 SRR521466 SRR521467 SRR521510
SRR521511 SRR521512 SRR527657 SRR527658 SRR527677
SRR527678 SRR530637 SRR530638 SRR545687 SRR545688
SRR549363 SRR549364 SRR576703 SRR764776 SRR764777
SRR764778 SRR764779 SRR764780 SRR764781 SRR764782
SRR764783 SRR764784 SRR764785 SRR764786 SRR764787
SRR764788 SRR764789 SRR764790 SRR764791 SRR764792
SRR764793 SRR764794 SRR764795 SRR764796 SRR764797
SRR764798 SRR764799 SRR764800 SRR764801 SRR764802
SRR764803 SRR764804 SRR764805 SRR764806 SRR764807
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SRR764808 SRR764809 SRR764810 SRR764811 SRR764812
SRR764813 SRR764814 SRR764815 SRR764816 SRR764817
SRR768411 SRR768412 SRR972706 SRR972707 SRR972712
SRR972713 SRR972714 SRR972715 SRR972716 SRR972717
SRR975411 SRR975412

(*) the data can be found at http://www.ncbi.nlm.nih.gov/sra
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