The 5' UTR of the type I toxin ZorO can both inhibit and enhance translation

Jia Wen#, John R. Harp, and Elizabeth M. Fozo*

Author Affiliations

Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996 USA #Current address: Department of Molecular Genetics and Microbiology, Duke University, Durham, NC *To whom correspondence should be addressed. Tel: +1 865 974 4028; Fax: +1 865-974-4007; Email: efozo@utk.edu

Name	Relevant genotype or description	Source
Escherichia coli EDL933	E. coli O157:H7, EHEC	D. Friedman
DJ480	MG1655 Δ <i>lacX74</i>	D. Jin, (55)
UTK007	DJ480 PCP18-araE	(18)
UTK011	UTK007 Δrnc::kan	(18)
Plasmids		
pFA6a-GFP(S65T)-kanMX6	Amp ^R ; Km ^R	(23)
pEF21	Cm^{R} ; P_{BAD} promoter	(9)
pEF21-zorO full-length	Cm ^R	(18)
pEF21-zorO Δ28	Cm ^R	This study
pAZ3	Cm^{R} ; P_{BAD} promoter	(8)
pAZ3-zorO full-length	Cm ^R	This study
pAZ3-zorO Δ28	Cm ^R	This study
pAZ3-zorO Δ34	Cm ^R	This study
pAZ3-zorO Δ50	Cm ^R	This study
pAZ3-zorO Δ82	Cm ^R	This study
pAZ3-zorO Δ82 RBS	Cm ^R	This study
pAZ3-zorO UTR-gfp	Cm ^R	This study
pAZ3-∆28 UTR-gfp	Cm ^R	This study
pBR-pLac	Amp ^R ; P _{LlacO} promoter	(55)
pBR-pLac-orzO	Amp ^R	(18)
pGEM®-3Zf(+)	Amp ^R ; T7 promoter	Promega
pGEM-T7-zorO full-length	Amp ^R	This study
pGEM-T7-zorO Δ50	Amp ^R	This study
pGEM-T7-zorO $\Delta 82$	Amp ^R	This study
pGEM-T7-zorO ∆82 RBS	Amp ^R	This study

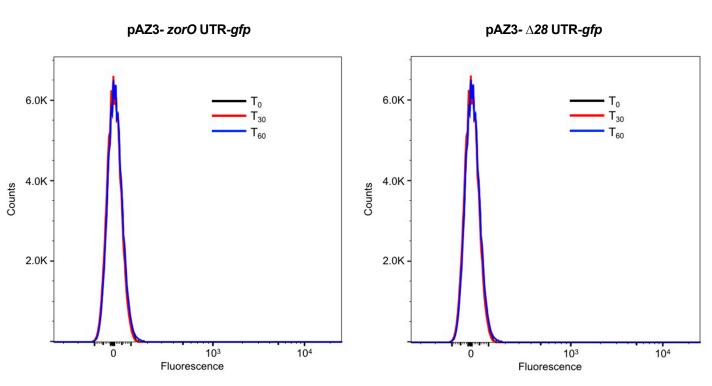
Supplementary Table S2. Oligonucleotides used in this study.

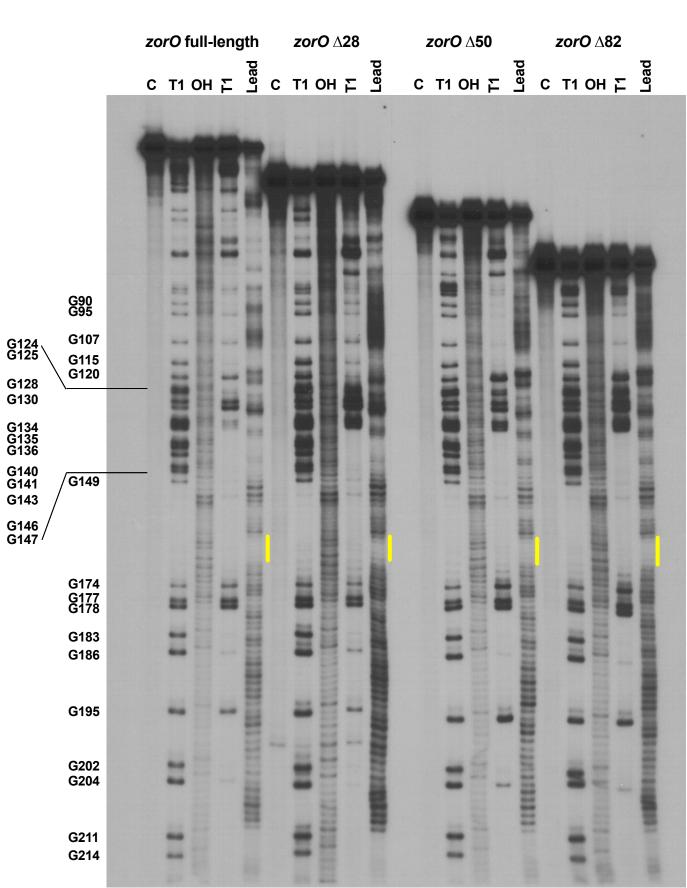
Name	Sequence ^a	Use
EF524	GTTGGTACGAAACGTTGCTCTCCG	Northern analysis of zorO, zorO UTR-gfp and their derivatives
EF1432	CGGCGCTACGGCGTTTCACTTCTG	Northern analysis of 5s
EF1065	CAGTGAGTGAGATTTATAATC <u>GAATTC</u> GTTGGGAG	pAZ3- <i>zorO</i> full-length PCR; pAZ3- <i>zorO</i> UTR- <i>gfp</i> PCR; pGEM-T7- <i>zorO</i> full-length PCR
EF1068	ATACTCAAGCTTATTAAAGTCGCAGCACATGCAAC	pAZ3-zorO full-length PCR; pAZ3-zorO Δ28 PCR; pAZ3- zorO Δ50 PCR; pAZ3-zorO Δ82 PCR; pEF21-zorO Δ28 PCR
EF1141	GGTTGTGCCGGATCG <u>GAATTC</u> TTTTAAGTCCTGGCTGC	pAZ3-zorO Δ28 PCR; pAZ3-Δ28 UTR-gfp PCR
EF1127	GACCAA <u>GAATTC</u> GTCCTGGCTGCCGGACGGGTGGTGCCGC	pAZ3-zorO Δ 34 PCR
EF1066	GATAATT <u>AAGCTT</u> GCAGCACATGCAACTTGAAG	pAZ3-zorO Δ 34 PCR
EF1170	CAATTTTAAGTCCTGGCTG <u>GAATTC</u> GGGTGGTGCCGCAGGC	pAZ3-zorO Δ50 PCR; pGEM-T7-zorO Δ50 PCR
EF392	GCCCTG <u>GAATTC</u> AGAGCAACGTTTCGTACCAAC	pAZ3-zorO Δ82 PCR; pGEM-T7-zorO Δ82 PCR
EF1290	GTGTAAGGGTAAGGTGCTGGTGTTGCG TTGGTA AATAAGGA GAGCGGATGGACACGCTGAC	pAZ3-zorO Δ82 RBS PCR; pGEM-T7-zorO Δ82 RBS PCR
EF1291	GTCAGCGTGTCCATCCGCTCTCCTTATT TACCAA CGCAACAC CAGCACCTTACCCTTACAC	pAZ3-zorO Δ82 RBS PCR; pGEM-T7-zorO Δ82 RBS PCR
EF1181	GAAAAGTTCTTCTCCTTTCATCCGCTCTCCTTATTAAGG	pAZ3-zorO UTR-gfp PCR
EF1182	CCTTAATAAGGAGAGCGGATGAAAGGAGAAGAACTTTTC	pAZ3-zorO UTR-gfp PCR
EF1183	GAAATTCGCTTATTTAG <u>AAGCTT</u> CGCGCCCTATTTGTATAG	pAZ3-zorO UTR-gfp PCR
EF1328	GGTTGTGCCGGATCG <u>CTGCAG</u> TTTTAAGTCCTGGCTGC	pEF21-zorO Δ28 PCR
EF1343	GAGTATAGCT <u>CCCGGG</u> AAGGGGGAAACGGTATTC	pGEM- T7 <i>zorO</i> full-length PCR; pGEM-T7- <i>zorO</i> Δ50 PCR; pGEM-T7- <i>zorO</i> Δ82 PCR; T7- <i>zorO</i> Δ28 PCR
EF1408	GAGTCTGCAG <u>AAGCTT</u> TAATACGACTCACTATAGGGCGAAT TCTTTTAAGTCCTGGCTGCCGGACGGGTG	T7-zorO $\Delta 28$ PCR

^a 5' - 3', restriction sites underlined, nucleotides altered via site directed mutagenesis in red.

Supplemental Figure S1. No difference in fluorescence intensity between the uninduced controls of pAZ3- *zorO* UTR-*gfp* and pAZ3- Δ 28 UTR-*gfp*. Shown are flow cytometry analyses of the fluorescence intensity of GFP from cells harboring pAZ3-*zorO* UTR-*gfp* or pAZ3- Δ 28 UTR-*gfp* without arabinose induction. Lines indicate time post induction. Shown is a representative of three independent experiments.

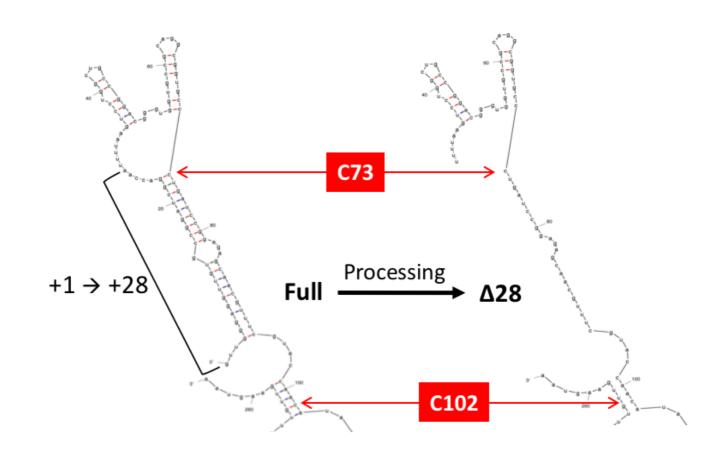
Supplemental Figure S2. *In vitro* structure probing of 3'-end-labeled *zorO* and its derivatives. 3'-end-labeled *zorO* full-length, *zorO* Δ 28, *zorO* Δ 50, or *zorO* Δ 82 RNA (1.67 µM) was subjected to RNase T1 and lead(II) acetate cleavage as outlined in Figure 3A. The position of selected cleaved G residues is given at the left of the T1 ladder. Yellow lines indicate the corresponding RBS of *zorO* full-length, *zorO* Δ 28, *zorO* Δ 50, and *zorO* Δ 82. For clarity, all positions are given as for *zorO* full-length mRNA from the 5' end of the transcript even though nucleotide numbers might be different in mutant RNAs.

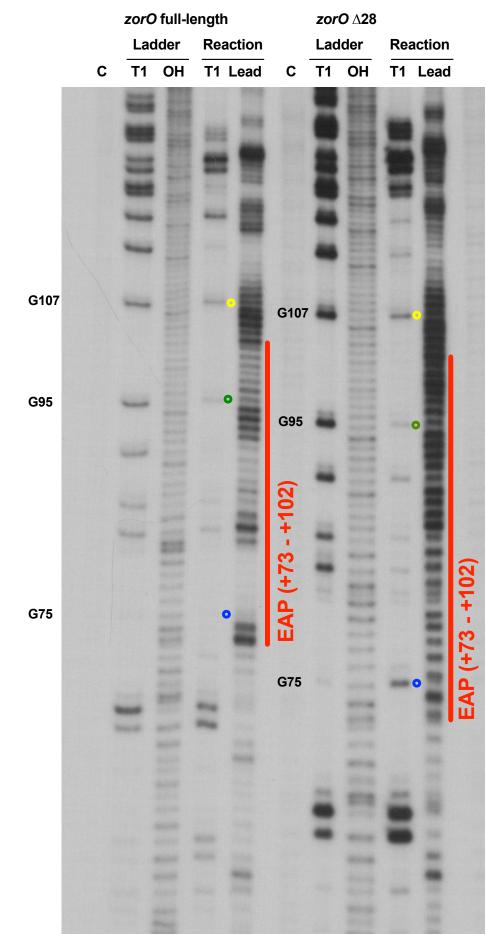

Supplemental Figure S3. Structural changes in the full-length versus *zorO* $\Delta 28$. (**A**) Schematic of structural changes upon processing of *zorO* mRNA. Removal of the first 28 nt (indicated by black bracket) in the *zorO* full-length mRNA during processing leads to opening of the EAP region. For simplicity, only part of the *zorO* 5' UTR putative structure is shown. Due to some variable cleavage by RNase T1, there may be some weak structural elements that are not accounted for in this schematic. (**B**) Variable cleavage by RNase TI. Structure probing was done as in Figure 3B. Sample positions that showed experimental variation between structure probing experiments are as follows: yellow circles indicate G107 (*zorO* $\Delta 28$ is more sensitive in this example compared to itself in Figure 3B; the full-length is less sensitive compared to itself in Figure 3B, while *zorO* $\Delta 28$ is equivalent); the same positions are indicated in Figure 3B for comparison. Position G75 (blue circles) is indicative of a residue whose cleavage was consistent across experiments. Note that the degree of sensitivity to cleavage may be variable between experiments; however, in all cases the residues indicated above were digested in *zorO* $\Delta 28$.

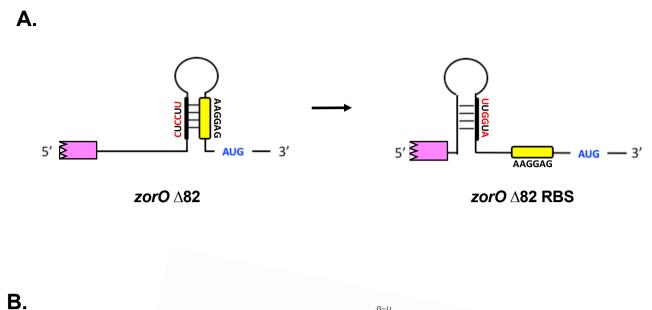

Supplemental Figure S4. Schematic diagram of the *zorO* Δ 82 RBS mutant. (A) To generate the *zorO* Δ 82 RBS mutant, the region (indicated by the black bar) that pairs with the RBS (indicated by yellow box) in the *zorO* Δ 82 were mutated to release the RBS from the stem structure. Mutated nucleotides are shown in red. (B) Putative structure of the *zorO* Δ 82 RBS mutant generated by Mfold (31). The RBS is indicated by yellow box and the region originally base pairing with the RBS is indicated by black bar.

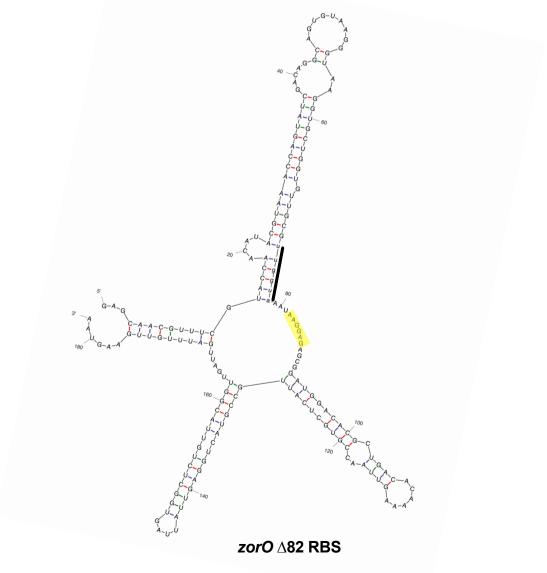
Supplemental Figure S5. OrzO sRNA rescues cells from *zorO* full-length or *zorO* $\Delta 28$ induced toxicity in *E. coli* strain UTK007 (wild type). (A) *E. coli* strain UTK011 (Δrnc) carrying pBR-plac-*orzO* and pEF21-

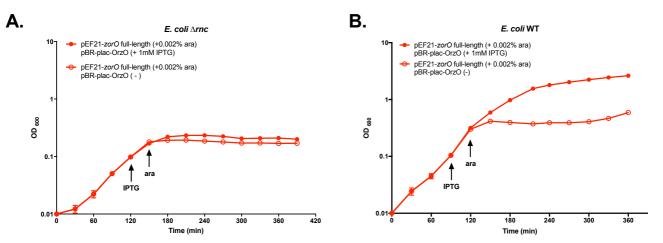
zorO was induced as indicated with arabinose (0.002%) and/or IPTG (1mM). Shown are the mean values \pm standard deviations for three independent cultures. (**B**) Rescue experiment was performed as in (A) in *E. coli* strain UTK007 (wild type). Shown are the mean values \pm standard deviations for three independent cultures. (**C**) Rescue experiment was performed as in *E. coli* strain UTK007 (wild type) with *zorO* Δ 28 expressed induced by 0.00002% arabinose and/or IPTG (1 mM). Shown are the mean values \pm standard deviations for three independent cultures.

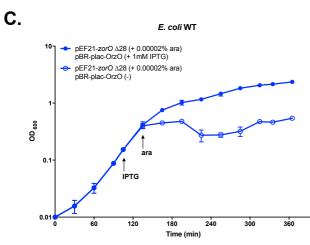

Supplemental Figure S6. The +35 to +50 region in *zorO* full-length and *zorO* Δ 28. *In vitro* structure probing was conducted as in Figure 3A. Purple bars indicate the corresponding +35 to +50 region of *zorO* full-length and *zorO* Δ 50.

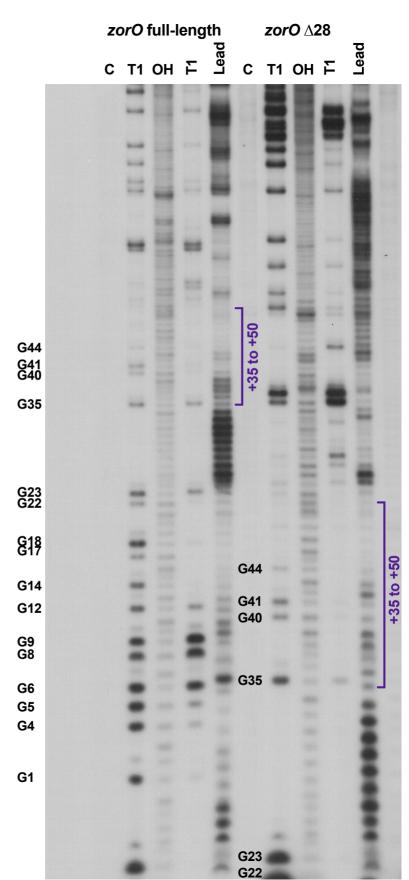



Supplemental Figure S3A


Α.






Β.

