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FIG. 2: Some examples illustrating the over-counting of subgraphs. In our approach we count sub-
graphs with a central node connected to all other nodes in the subgraphs. In some cases a subgraph
may have more than one node satisfying this condition. The number of potential central nodes of
an (n, t) subgraph is counted by the combinatorial factor 1/gnt.

δnt = 1 +
γ − 1

βnt

. (17)

In particular, triangles correspond to n = 3 and t = 1 (i.e., m = 3), leading to β31 = 2 − α and
δ31 = 1 + (γ − 1)/δ, and we thus recover the expressions (9) and (11) derived earlier for triangles.
Note that this approach can be generalized to higher order cycles, such as squares, pentagons and

others.

C. Over- (Type I) and under-represented (Type II) subgraphs

Here we use the scaling relations derived above to address the abundance of (n, t) subgraphs in
scale-free and hierarchical networks.
The expected number of (n, t) subgraphs in a network is given by Eq. (13)

Nnt = gntN
kmax
∑

k=1

P (k)Nnt(k) , (18)

where kmax is the maximum degree and the factor gnt takes into account that the same subgraph
can have more than one node as a center (see Fig. 2). Eqs. (4), (6) and (12-18) lead to

Nnt = NAgnt

(

np

t

)

Ct
0

kmax
∑

k=1

k−γ−αt

(

k

n− 1

)

[1− C0k
−α]np−t . (19)

We recognize the existence of two regimes. There is a regime where the sum in the above expression
is dominated by the large k region; this means that we can approximate

(

k

n−1

)

by kn−1/(n− 1)! and

1− C0k
−α by 1, being left with

Nnt ≈ N
Agnt

(

np

t

)

Ct
0

(n− 1)!

kmax
∑

k=1

kn−1−γ−αt . (20)


