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Transcriptional Regulatory Networks. In transcription regulatory networks the nodes represent transcrip-
tion factors and genes while the links describe regulation-based interactions. Each link is directed, point-
ing from the transcription factor to the gene that it regulates. To compare the topological properties of
transcription-regulatory networks to those of metabolic and protein-protein interaction networks, we have stud-
ied their undirected version where each directed link is replaced by an undirected one. The transcription net-
work data of Escherichia coli has been reported in [2] and it is available from www.weizmann.ac.il/mcb/UriAlon.
The transcription network data of Saccharomyces cerevisiae has been reported in [8], and it is available from
http://www.weizmann.ac.il/mcb/UriAlon/Papers/networkMotifs/sma.html.

Metabolic Networks. Metabolic networks represent the sum of all biochemical reactions taking place in an or-
ganism. Different network representations are possible, depending on the purpose [4]. In our work we associate
nodes with metabolites. Undirected links connect each substrate to the products of the reaction in which the sub-
strate participates. The metabolic networks of E. coli and S. cerevisiae where obtained from the WIT database
(http://igweb.integratedgenomics.com/IGwit), and they are also available www.nd.edu/∼networks .

Protein-Protein Interaction Networks. In the protein-protein interaction network nodes represent proteins
and undirected links describe the pairwise interactions between them. We focus on the protein-protein interaction
network of S. cerevisiae. The data source is the Database of Interacting Proteins (DIP) available at http://dip.doe-
mbi.ucla.edu. For a comparison between the different protein interaction databases see [1].

In summary, we constructed an undirected network representation of the transcription, the metabolic and the
protein-protein interaction networks of E. coli and S. cerevisiae. In order to have a coherent basis of comparison we
have reduced the original networks by removing self-loops, double links (i.e., if we have simultaneous links from node
A to node B and from B to A, we draw only one undirected link joining the two A and B) and isolated nodes. The
basic quantities characterizing the resulting networks are summarized in Tab. 3.

Basic Topological Properties

We denote by N the number of nodes in the network, usually referred to as the network size, and by E the number
of links (or edges). Each node i is characterized by the degree ki and the clustering coefficient Ci.

The degree ki counts the number of interactions that node i has with the other nodes in the network. By averaging
ki over all nodes in the network we obtain the average degree

〈k〉 ≡
1

N

N
∑

i=1

ki =
2E

N
. (1)

The last equality follows from the fact that each link connects two nodes, and hence contributing to the degree of two
nodes. The values of N , E and 〈k〉 for the investigated biological networks are given in Table 3. Note that for each
network 〈k〉 ¿ N , meaning that biological networks are sparse, i.e. on average each node is connected to only a few
other nodes.

The clustering coefficient Ci is a measure of the fraction of connected neighbors of node i. A node with ki links
can have at most

(

ki

2

)

= ki(ki − 1)/2 pairs of its neighbors connected to each other. If we denote by ti the number of
links among the neighbors of node i, then the clustering coefficient is defined as

Ci ≡
2ti

ki(ki − 1)
. (2)

The average of Ci over all nodes in the network is

〈C〉 ≡
1

N

N
∑

i=1

Ci . (3)

The values of 〈C〉 for the analyzed biological networks are given in Table 3. For comparison we also list the clustering
coefficient of a random network with the same parameters N and E. Note that 〈C〉 À 〈k〉 /N ; therefore, biological
networks are characterized by a high degree of local clustering [5].

The average values 〈k〉 and 〈C〉 do not characterize exhaustively the topology since biological networks exhibit
marked degree fluctuations [3, 4]. Indeed, the probability P (k) for a node to have degree k is given by the power law



P (k) = Ak−γ , (4)

where A is a constant and γ is the degree exponent.
The highly inhomogeneous nature of P (k) prompted the study of the clustering coefficient as a function of the

degree. Instead of taking the average over all nodes in the network, as in Eq. (3), the average is taken over nodes
with the same degree, providing

C(k) =

∑N
i=1 Ciδkik

∑N
i=1 δkik

, (5)

where δkik = 1 if ki = k, and zero otherwise. For biological networks C(k) follows a power law

C(k) = C0k
−α , (6)

where C0 is a constant and α is the hierarchical exponent. The hierarchical exponent characterizes the network’s
overall modularity, indicating the presence of many small, highly interconnected modules forming larger, less cohesive
topological modules.

The degree and hierarchical exponents, γ and α respectively, rather than the average degree 〈k〉 and the average
clustering coefficient 〈C〉, are the two important topological quantities characterizing biological networks. Their values
for the studied biological networks are summarized in Table I.

Statistical Properties of Subgraphs

Number of Triangles Passing by a Node. To develop an intuition for the statistical properties of general
subgraphs we first study the occurrence of triangles. Since each connected pair of neighbors forms a triangle with the
central node i, then ti defined in (2) also represents the number of triangles passing by node i. The average of ti over
nodes of same degree k, denoted by T (k), is

T (k) =

(

k

2

)

C(k) . (7)

Using
(

k
2

)

∼ k2/2, we find

T (k) ∼ kβ , (8)

with

β = 2 − α . (9)

Combining Eqs. (4) and (8), we predict that the probability that a randomly selected node participates in T triangles
follows a power law

P (T ) ∼ T−δ , (10)

where

δ = 1 +
γ − 1

β
. (11)

P (T ) and T (k) for the studied biological networks are plotted in Fig. 4 together with the power law fits. The β and
δ exponents provided by the fit are listed in Table I, indicating that the predicted values are in good agreement with
the measured ones.

Number of Small Subgraphs Passing by a Node. The above analysis based on triangles can be extended to
other small subgraphs as well. We consider subgraphs with n nodes and m links that can be decomposed into a



central node and n − 1 neighbors. More precisely, we have n − 1 interactions from the central node to its neighbors
and

t = m − (n − 1)

interactions among the n − 1 neighbors. In the paper we have used m together with n to classify each motif; here,
to simplify the calculations we use t instead of m. The total number of n-node subgraphs that can pass by a node
with degree k is

(

k
n−1

)

, which tells us in how many different ways we can choose a group of n − 1 nodes out of the

total k. Each of these n-node subgraphs can have at most np = (n− 1)(n− 2)/2 links between the n− 1 neighbors of
the central node. The probability that there is a link between two neighbors of a node with degree k is by definition
C(k), and the probability that two neighbors are not connected is 1 − C(k). Therefore, the probability to obtain t
connected pairs and np − t disconnected pairs is given by the binomial distribution

bnt(k) =

(

np

t

)

C(k)t[1 − C(k)]np−t . (12)

The average number of subgraphs formed by n − 1 neighbors and t interactions among them and centered at a node
with degree k is given by

Nnt(k) =

(

k

n − 1

)

bnt(k) . (13)

We readily obtain that if k is large, then Nnt(k) scales as

Nnt(k) ∼ kβnt , (14)

where

βnt = n − 1 − αt = n − 1 − α(m − n + 1) . (15)

Using Eqs. (4) and (14) we find that the probability for a randomly selected node to participate in Tnt subgraphs
(n, t) scales as

P (Tnt) ∼ T−δnt

nt , (16)

where

δnt = 1 +
γ − 1

βnt

. (17)

In particular, triangles correspond to n = 3 and t = 1 (i.e., m = 3), leading to β31 = 2 − α and δ31 = 1 + (γ − 1)/δ,
and we thus recover the expressions (9) and (11) derived earlier for triangles.

Note that this approach can be generalized to higher order cycles, such as squares, pentagons and others.

Over- (Type I) and Under-represented (Type II) Subgraphs. Here we use the scaling relations derived above
to address the abundance of (n, t) subgraphs in scale-free and hierarchical networks.

The expected number of (n, t) subgraphs in a network is given by Eq. (13)

Nnt = gntN

kmax
∑

k=1

P (k)Nnt(k) , (18)

where kmax is the maximum degree and the factor gnt takes into account that the same subgraph can have more than
one node as a center (see Fig. 5). Eqs. (4), (6) and (12-18) lead to



Nnt = NAgnt

(

np

t

)

Ct
0

kmax
∑

k=1

k−γ−αt

(

k

n − 1

)

[1 − C0k
−α]np−t . (19)

We recognize the existence of two regimes. There is a regime where the sum in the above expression is dominated by
the large k region; this means that we can approximate

(

k
n−1

)

by kn−1/(n − 1)! and 1 − C0k
−α by 1, being left with

Nnt ≈ N
Agnt

(

np

t

)

Ct
0

(n − 1)!

kmax
∑

k=1

kn−1−γ−αt . (20)

Type I subgraphs. if n − γ − αt > 0 the sum in the above expression diverges with kmax, allowing us to approximate
it by an integral yielding

N I
nt ≈ ηI

ntNkn−γ−αt
max , (21)

where

ηI
nt =

Agnt

(

np

t

)

Ct
0

(n − γ − αt)(n − 1)!
. (22)

Type II subgraphs. If n − γ − αt < 0, we are in the second regime, as the sum in (19) does not diverge with kmax,
leading to

N II
nt ≈ ηII

ntN , (23)

where

ηII
nt = Agnt

(

np

t

)

Ct
0

∞
∑

k=1

k−γ−αt

(

k

n − 1

)

[1 − C0k
−α]np−t . (24)

Note that ηI
nt and ηII

nt do not depend on the network size N . Since kmax is large in biological networks, the number
of Type I subgraphs (21) will be significantly larger than the number of Type II subgraphs (23). In particular, we
find that the density (number of subgraphs/N) of Type II subgraphs is independent of N , and the density of Type I
subgraphs increases with the total number of nodes in the system.

To emphasize the difference between Type I and Type II subgraphs we introduce the normalized subgraph count

Cnt =
Nnt

∑np

s=0 Nns

, (25)

representing the fraction of interaction patterns of n nodes and t interactions relative to the total number of n-node
subgraphs (within the subgraph class defined above). For large networks, the sum in the denominator is dominated
by the s = 0 term, and thus substituting Eqs. (21) and (23) into (25) we obtain

CI
nt ≈

ηI
nt

ηI
n0

k−αt
max , (26)

CII
nt ≈

ηII
nt

ηI
n0

k−(n−γ)
max (27)

The comparison of these predictions with the direct subgraph count for each biological network is shown in Fig. 1.



Directed Subgraphs. Many biological networks, from the transcription regulatory to the metabolic network, are
directed. Next we generalize our calculations to describe directed subgraphs as well, showing that distinction between
Type I and Type II subgraphs is relevant for directed networks as well. As an example, we study the aggregation of
the three node subgraph shown in Fig. 6, often called feed-forward loop (FFL). For simplicity, we will consider the
set of subgraphs made of n nodes, with one central node and n − 1 in-neighbors (see Fig. 6). In this case the central
node (open circle in Fig. 6) is characterized by in-degree kin. Each subgraph will be characterized by the number
of nodes n, as well as t copies of FFLs in the subgraph (see Fig. 6b). In analogy with the clustering coefficient, we
define an FFL clustering coefficient, denoted by CFFL, as the number t of FFLs passing by a node divided by the
maximum number of FFLs that can pass by it, given kin. Since there may be directed links between the in-neighbors
(see Fig. 6), the total number of FFLs that can pass by a node with in-degree kin is kin(kin − 1), obtaining

CFFL(kin) =
t

kin(kin − 1)
. (28)

Note that CFFL(kin) represents the probability that two in-neighbors form an FFL, allowing us to compute the
number of n node subgraphs with t FFLs (see Fig. 6b) passing by a node with kin.

The total number of n node subgraphs that can pass by a node with in-degree kin is given by
( kin
n−1

)

, representing

the number of groups of n − 1 in-neighbors chosen from kin nodes. Among the n − 1 in-neighbors we can form
np = (n − 1)(n − 2) pairs (note that i → j is different from j → i). The probability that t pairs form an FFL and
np − t pairs do not is given by the binomial distribution

bnt(kin) =

(

np

t

)

CFFL(kin)t[1 − CFFL(kin)]np−t . (29)

Therefore, the average number of (n, t) directed subgraphs passing by a node with in-degree kin is given by

Nnt(kin) =

(

kin
n − 1

)

bnt(kin) . (30)

Finally, summing over the in-degree distribution we obtain the total number of (n, t) directed subgraphs in the network

Nnt = N
∑

kin

P (kin)Nnt(kin) , (31)

Using CFFL(kin) ∼ k
−αFFL
in and P (kin) ∼ k−γin (see Fig. 7 and ref. [2]) and Eqs. (29)-(31), we obtain two different

subgraph phases for undirected networks. The Type I subgraphs are those satisfying n − γin − αFFLt > 0, their
number growing faster than N . The Type II subgraphs are in turn those satisfying n − γin − αFFLt < 0, their
number growing as N . These results indicate that the distinction between Type I and Type II subgraphs obtained
for undirected networks is present in directed networks as well. While the set of directed subgraphs considered above
is incomplete (i.e. one needs to derive the scaling for other directed subgraphs as well), it is sufficient to show the
appearance of Type I and II subgraphs for directed networks.

Overrepresentation Relative to Randomized Networks (Motifs). Recently, the “motif” concept has been
introduced to refer to subgraphs that are overrepresented with respect to a randomized network [2, 8]. With our
method we can compute the subgraph abundance in both the original and the randomized network, therefore we can
also predict the subgraph abundance relative to that in the randomized networks.

Some care is necessary regarding the meaning of a “randomized” network, which is not unique [9]. In general we
can consider the ensemble of random networks that preserve any of the following topological properties: (1) number
of nodes and links, (2) degree distribution, (3) total number of triangles. Depending on the choice of randomization,
one obtains different results on the abundance of specific subgraphs relative to the randomized networks.

The abundance of Type I subgraphs relative to randomized networks is given by [8]

Znt =
N

(rd)
nt

σ
(rd)
nt

(

N I
nt

N
(rd)
nt

− 1

)

, (32)



where N
(rd)
nt and σ

(rd)
nt are the average number and the standard deviation of the (n, t) subgraphs in the randomized

graph. N
(rd)
nt can be computed as shown above. We assume that the degree distribution is preserved, and that the

clustering coefficient is independent of the node degree, as it is the case for randomized graphs usually used in Refs.
[2, 8]. This means that C(k) ≈ Crd, or equivalently α = 0, which, using Eq. (19), leads to

N
(rd)
nt ≈ kn−γ

max η
(rd)
nt , (33)

where

η
(rd)
nt =

Agnt

(

np

t

)

Ct
rd

(n − γ)(n − 1)!
. (34)

Note that, in contrast to hierarchical networks with a positive α, the randomized networks are characterized by a
single phase, Type I. Substituting (21), (22), (33) and (34) into (32) we obtain

ZI
nt ≈

N
(rd)
nt

σ
(rd)
nt

(

rI
nt − 1

)

, (35)

where

rI
nt =

n − γ

n − γ − αt

(

Ckmax

Crd

)t

, (36)

Ckmax
= C0k

−α
max is the clustering coefficient of the node with maximum degree and αt − (n − γ) < 0.

The strength of the over- or under-representation is modulated by the prefactor in Eq. (35) and its sign is determined
by Eq. (36). If rI

nt > 1 then the (n, t) subgraph is overrepresented with respect to the randomized graph; on the other
hand, if rI

nt < 1 then the (n, t) subgraphs is underrepresented. To compute rI
nt we need only the exponents γ and α,

and the clustering coefficients Ckmax
and Crd for the original and randomized networks. The clustering coefficient of

a random graph with an arbitrary degree distribution is [6]

Crd =
〈k〉

N

(

〈

k2
〉

− 〈k〉

〈k〉
2

)2

. (37)

Since the randomized network has the same degree distribution as the original one, the averages 〈k〉 and
〈

k2
〉

are
exactly the same as those for the original graph. The values of Ckmax

and Crd, Eq. (37), for the biological networks
studied in the paper are shown in Table 4. Using these values we have computed rI

nt, Eq. (36), as shown in Fig. 8. The
figure indicates that, when compared to a randomized network, Type I subgraphs can be over or underrepresented,
depending on the detailed network parameters. The absence of monotonic trends in the relative subgraph count
indicates that in order to fully understand the absence or abundance of certain subgraphs, it is simpler to inspect
their absolute number. A comparison to a randomized graph masks the clear trends seen in the absolute subgraph
counts, enhancing subgraphs that may not be particularly abundant in the network, and suppressing some abundant
subgraphs. As this is important in some applications, should one wish to determine the subgraph abundance relative
to a randomized network, the methods discussed above allow us to do so in a systematic fashion.

Subgraph Percolation and Subgraph Clusters.

The observed agglomeration of subgraphs around the hubs does not exclude the possibility that many isolated
subgraphs are still scattered around the less connected nodes. Indeed, if certain subgraphs are selected because they
have desirable signal processing properties, the underlying selection principles work only if subgraphs are indeed
isolated. In the following we show, however, that subgraphs do not occur independently in biological networks, but
the large-scale constraints forces them together into large subgraph clusters. We first focus on triangles, removing
from the network all nodes and links that do not participate in at least one triangle. If the triangle subgraphs were
independent of each other, the network would break into many independent, or lightly connected triangles. Fig. 3



in the paper shows that this is not the case: subgraphs typically form a large subgraph cluster, with at most a few
subgraphs existing in smaller clusters, and almost surely none individually.

Subgraph clusters are an inevitable consequence of the high subgraph density. Indeed, the probability that a
link connected to a node of degree k participates in a triangle is given by q(k) = 1 − [1 − C(k)]k−1, which is the
probability that the neighbor at the other end of the link is connected to at least one of the k−1 remaining neighbors. If
C(k) = C0k

−1, for large k we obtain q ≈ 1−exp(−C0), independent of the node degree. As a consequence, calculating
the size of the largest triangle cluster is equivalent with determining the largest cluster of connected nodes, after each
link is removed with probability 1− q. As scale-free networks do not break apart under random node or link removal
[3], the removal of a 1 − q fraction of links should leave behind a giant cluster of connected nodes.

This analysis can be extended to networks whose clustering coefficient scales as C(k) = C0k
−α and other subgraphs.

Let us compute the probability that a link going out from a node with degree k participates in an (n, t) subgraph,
by proceeding as in the calculation of Nnt. Consider a node i with degree k and one of its neighbors, say j. We
consider all groups of n nodes containing i, j and any other neighbor of i. The number of such groups is given by
the number of groups of n − 2 nodes (the missing two nodes are i and j) that can be made out of k − 1 nodes (the

missing neighbor is j), i.e.
(

k−1
n−2

)

. On each group, we can form np = (n − 1)(n − 2)/2 pairs of neighbors, each pair

connected with probability C(k) and disconnected with probability 1 − C(k). The probability to obtain t connected
pairs and np − t disconnected pairs is given by the binomial distribution bnt(k), Eq. (12), which we find to be small
for the biological networks studied here. The probability that the link connecting i and j participates in at least one
(n,t) subgraph having node i at its center is given by

q
(0)
nt (k) = 1 − [1 − bnt(k)](

k−1

n−2)

≈ 1 − exp

[

−

(

k − 1

n − 2

)

bnt(k)

]

. (38)

Using (13) this expression can be approximated by

q
(0)
nt (k) ≈ 1 − exp

(

−
n − 1

k
Nnt(k)

)

. (39)

Furthermore, the link (i, j) can participate in an (n, t) subgraph with j being the central node. In the absence of
degree correlations between the connected nodes, the probability that j belongs to at least one (n, t) subgraph is the
average of (39) over the degrees of its immediate neighbors, distributed as p(k)k/ 〈k〉, yielding

q
(1)
nt =

∑

k p(k)kq
(0)
nt (k)

〈k〉
. (40)

Finally, the probability that a link going out from a node with degree k participates in at least one (n,t) subgraph,
centered either at i or j, is given by

qnt(k) = 1 −
(

1 − q
(0)
nt (k)

) (

1 − q
(1)
nt

)

. (41)

Eqs. (39)-(41) tell us that the participation in an (n,t) subgraph of a link going out from a node with degree k is
related to the average number Nnt(k) of subgraphs (n,t) passing by a node with degree k. Furthermore, since the
cohesiveness of scale-free networks is essentially determined by the hubs, the existence or not of a giant cluster of
connected (n,t) subgraphs is determined from the asymptotic behavior of qnt(k) for large k. From Eq. (13) follows
that

1

k
Nnt(k) ∼ kn−2−αt (42)

for k À n. By using this expression we can distinguish two regimes. For n − 2 − αt > 0 we have

qnt ≈ 1 , (43)



and thus the links incident to high degree nodes participate with probability very close to 1 in at least one (n,t)
subgraph. Therefore, the existence of a giant cluster of (n,t) connected subgraphs is predicted. In the other regime,
n − 2 − αt < 0, we have

qnt ≈ 0 , (44)

and the links incident to high degree nodes do not participate with probability almost one in any (n,t) subgraph,
suggesting the possible fragmentation of the network. The condition n − 2 − αt = 0 gives a lower bound for the
value of t at which the relative size of the largest cluster becomes zero, but there may still be a giant component for
n− 2−αt < 0. It is worth noting that in most cases the boundary n− 2−αt = 0 coincides with the phase boundary
associated with the subgraph’s representation n − γ − αt = 0. This overlap is determined by the fact that γ is quite
close to 2 in biological networks and that t takes only discrete values.

To determine whether there is a giant component in the regime n − 2 − αt < 0 we compute the size of the largest
cluster made by nodes participating in (n, t) subgraphs. To this end we renormalize the degree distribution taking
into account that some links do not participate in any (n, t) subgraph. The effective degree distribution, incorporating
only those links that participate in at least one (n, t) subgraph, has the form

Pnt(k) =

kmax
∑

s=k

P (s)

(

s

k

)

qnt(s)
k [1 − qnt(s)]

s−k
. (45)

Assume that the graphs are random with the degree distribution given by Pnt(k), we can compute the relative size of
the giant component Snt, made of (n, t) subgraphs by applying the generating function formalism [7]. We obtain that

Snt = 1 − G
(0)
nt (unt) , (46)

where unt is the solution to the equation

unt = G
(1)
nt (unt) , (47)

and G
(0)
nt (x) and G

(1)
nt (x) are the generating functions of the node and first neighbor degree, respectively. More

explicitly

G
(0)
nt (x) =

kmax
∑

k=1

Pnt(k)xk , (48)

G
(1)
nt (x) =

∑kmax

k=1 kPnt(k)xk−1

∑kmax

k=1 kPnt(k)
. (49)

Using (45) we obtain

G
(0)
nt (x) =

kmax
∑

k=1

P (k)[1 − (1 − x)qnt(k)]k , (50)

G
(1)
nt (x) =

∑kmax

k=1 kP (k)qnt(k)[1 − (1 − x)qnt(k)]k−1

∑kmax

k=1 kP (k)qnt(k)
, (51)

which provide the generating functions in terms of the original degree distribution P (k). For each (n, t) we solve (47)
by successive approximations and substitute the result into (46); the corresponding plots are shown in Fig. 3 in the
paper.
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