Genetic Markers of Human Evolution Are Enriched in Schizophrenia

Supplementary Information

Contents

Table S1. Genome-wide association studies samples with available summary statistics.

Table S2. Neanderthal selective sweep, squared z-score regression and binomial proportion test after removal of major histocompatibility complex SNPs.

Table S3. Neanderthal selective sweep, squared z-score regression and binomial proportion test using affiliation scores.

Table S4. SNPs associated with schizophrenia conditioned on Neanderthal selective sweep score.

Fig. S1. Distribution of Neanderthal selective sweep scores.

Fig. S2. Q-Q and fold enrichment plots of schizophrenia stratified according to Neanderthal selective sweep score after exclusion of major histocompatibility complex SNPs.

Fig. S3 Q-Q and fold enrichment plots of schizophrenia stratified according to Neanderthal selective sweep region affiliation scores after Green *et al.* and Prüfer *et al.*.

Fig. S4. Q-Q and fold enrichment plots of three psychiatric phenotypes stratified according to Neanderthal selective sweep scores.

Fig. S5. Q-Q and fold enrichment plots of three neurological phenotypes stratified according to Neanderthal selective sweep scores.

Fig. S6. Q-Q and fold enrichment plots of the first edition of the schizophrenia genome-wide association studies by the Psychiatric Genomic Consortium stratified according to Neanderthal selective sweep scores.

Fig. S7. Direction of effect for human allele z-score versus Neanderthal selective sweep score.

Fig. S8. Effect size comparison.

Fig. S9. Q-Q and fold enrichment plots of schizophrenia autosome and X chromosome genomewide association study stratified according to Neanderthal selective sweep score.

Supplemental Methods & Materials

Author Notes

Supplemental References

Р	henotype	Sample Size (N)	Number of SNPs Total (NSS)				
Central nervous system	Alzheimer's disease (1) (AD)	54,162	2,436,961 (382,008)				
(CNS) disorders	Attention-deficit/hyperactivity disorder (2) (ADHD)	19,210	1,163,004 (192,272)				
	Bipolar disorder (3) (BD)	16,731	2,406,338 (375,625)				
	Major depressive disorder (4) (MDD)	18,759	1,170,068 (193,732)				
	Migraine (5)	118,710	1,834,101 (301,046)				
	Multiple sclerosis (6) (MS)	27,148	458,752 (77,506)				
	Schizophrenia (PGC1) (7)	21,856	1,171,056 (193,841)				
	Schizophrenia (PGC2) (8)	82,315	2,538,794 (395,798)				
Anthropometric	Body mass index (9) (BMI)	123,865	2,400,377 (374,879)				
measures	Height (10)	183,727	2,398,527 (374,673)				
	Waist hip ratio (11) (WHR)	77,167	2,376,820 (370,838)				
Cardiovascular disease (CVD) risk factors	Systolic blood pressure (12) (SBP)	203,056	2,382,073 (371,417)				
	Total cholesterol (13) (TC)	100,184	2,508,369 (391,044)				
	Triglycerides (13) (TG)	96,568	2,508,363 (391,050)				
Immune-mediated	Crohn's disease (14) (CD)	51,109	942,858 (162,435)				
diseases	Celiac disease (15) (CeD)	15,283	517,873 (86,870)				
	Rheumatoid arthritis (16) (RA)	25,708	2,462,228 (385,820)				
	Ulcerative colitis (17) (UC)	26,405	1,273,589 (209,118)				

Table S1. Genome-wide association studies samples with available summary statistics.

Genome-wide association studies analyzed. The table shows the phenotypes, the sample size (i.e. the number of subjects, N); the total number of SNPs entering our analyses and the number of SNPs with Neanderthal selective sweep scores (NSS, within parentheses). PGC: Psychiatric Genomics Consortium, results from the first edition of the schizophrenia study by the Psychiatric Genomics Consortium (PGC1) and the second larger edition of the schizophrenia PGC study (PGC2).

		Std.			
GWAS	β (Min, Max)	Error	<i>p-</i> Value	C.I.	BPT(p) 1%(Min, Max)
AD	-0.012 (-0.029, 0.012)	0.016	4.90E-01	-0.041, 0.021	2.5E-01 (7.6E-04, 5.9E-01)
ADHD	0.003 (-0.013, 0.017)	0.013	8.50E-01	-0.022, 0.027	4.4E-01 (3.5E-02, 6.2E-01)
BD	-0.004 (-0.020, 0.013)	0.01	7.40E-01	-0.023, 0.016	4.8E-01 (1.4E-02, 9.1E-01)
MDD	-0.017 (-0.034, -0.006)	0.012	2.10E-01	-0.042, 0.007	5.6E-01 (1.1E-01, 9.4E-01)
Migraine	-0.006 (-0.029, -0.001)	0.013	6.90E-01	-0.032, 0.020	7.4E-01 (2.3E-01, 9.2E-01)
MS	-0.008 (-0.034, 0.023)	0.019	7.00E-01	-0.046, 0.030	5.0E-01 (8.7E-03, 8.5E-01)
SCZ 1	-0.039 (-0.051, -0.024)	0.013	5.40E-03	-0.064, -0.015	1.6E-01 (1.6E-02, 6.1E-01)
SCZ 2	-0.069 (-0.076, -0.058)	0.01	2.10E-09	-0.089, -0.049	8.7E-02 (5.3E-06, 3.4E-01)
BMI	-0.050 (-0.061, -0.036)	0.016	4.50E-03	-0.079, -0.023	4.1E-01 (6.1E-02, 9.2E-01)
Height	-0.074 (-0.095, -0.058)	0.015	8.80E-06	-0.104, -0.045	1.1E-01 (3.4E-04, 6.9E-01)
WHR	-0.026 (-0.040, -0.019)	0.011	2.80E-02	-0.047, -0.005	2.3E-01 (7.0E-03, 5.1E-01)
SBP	-0.015 (-0.023, -0.003)	0.01	1.90E-01	-0.035, 0.005	3.7E-01 (9.4E-02, 7.3E-01)
ТС	-0.001 (-0.019, 0.023)	0.019	9.60E-01	-0.038, 0.039	5.2E-01 (3.1E-01, 8.6E-01)
TG	-0.017 (-0.024, -0.003)	0.015	3.30E-01	-0.048, 0.014	4.3E-01 (8.1E-03, 8.3E-01)
CD	-0.025 (-0.050, 0.003)	0.019	2.50E-01	-0.062, 0.014	5.3E-01 (2.6E-01, 8.6E-01)
CeD	-0.000 (-0.024, 0.018)	0.018	9.90E-01	-0.037, 0.035	3.7E-01 (1.2E-01, 8.4E-01)
RA	-0.005 (-0.020, 0.009)	0.011	6.90E-01	-0.027, 0.017	5.6E-01 (2.0E-02, 8.8E-01)
UC	-0.017 (-0.028, 0.015)	0.015	3.20E-01	-0.047, 0.014	5.2E-01 (1.6E-01, 9.2E-01)

Table S2. Neanderthal selective sweep, squared z-score regression and binomial proportion test after removal of major histocompatibility complex SNPs.

Phenotypes: psychiatric and other neurological diseases (Alzheimer's disease (AD), attentiondeficit/hyperactivity disorder (ADHD), bipolar disorder (BD), major depressive disorder (MDD), migraine, multiple sclerosis (MS), first and second edition of the schizophrenia GWAS by the Psychiatric Genomic Consortium (SCZ1 and SCZ2)), anthropometric measures (body mass index (BMI), height, waist-hip ratio (WHR)), cardiovascular risk factors (systolic blood pressure (SBP), total cholesterol (TC), triglycerides (TG)), immune-mediated diseases (Crohn's disease (CD), celiac disease (CeD), rheumatoid arthritis (RA), ulcerative colitis (UC)).

GWAS	β	Std. Error	<i>p</i> -Value	C.I. Lower	C.I. Upper	BPT(p) 1%
AD	0.000	0.013	9.75E-01	-0.025	0.024	2.20E-03
ADHD	0.005	0.013	7.42E-01	-0.017	0.029	6.00E-01
BD	0.008	0.009	4.19E-01	-0.009	0.025	7.10E-01
MDD	0.000	0.013	9.74E-01	-0.026	0.024	5.80E-01
Migraine	0.022	0.010	5.67E-02	0.001	0.042	4.00E-02
MS	0.022	0.021	3.52E-01	-0.024	0.062	5.40E-02
SCZ 1	0.022	0.013	1.33E-01	-0.003	0.048	2.70E-03
SCZ 2	0.053	0.009	4.03E-07	0.035	0.072	2.30E-06
BMI	-0.004	0.010	7.47E-01	-0.024	0.017	9.40E-04
Height	0.010	0.012	4.44E-01	-0.013	0.035	6.10E-04
WHR	0.004	0.009	6.71E-01	-0.013	0.022	2.90E-01
SBP	-0.008	0.009	4.13E-01	-0.026	0.009	1.40E-01
ТС	0.017	0.016	3.62E-01	-0.015	0.051	1.00E-01
TG	0.006	0.016	7.33E-01	-0.025	0.036	5.40E-06
CD	0.003	0.022	9.14E-01	-0.036	0.043	7.10E-01
CeD	0.013	0.020	5.45E-01	-0.025	0.055	7.00E-01
RA	0.006	0.009	5.43E-01	-0.012	0.025	9.80E-02
UC	0.003	0.015	8.80E-01	-0.026	0.034	4.10E-01

Table S3. Neanderthal selective sweep, squared z-score regression and binomial proportion test using affiliation scores.

Phenotypes: psychiatric and other neurological diseases (Alzheimer's disease (AD), attentiondeficit/hyperactivity disorder (ADHD), bipolar disorder (BD), major depressive disorder (MDD), migraine, multiple sclerosis (MS), first and second edition of the schizophrenia GWAS by the Psychiatric Genomic Consortium (SCZ1 and SCZ2)), anthropometric measures (body mass index (BMI), height, waist-hip ratio (WHR)), cardiovascular risk factors (systolic blood pressure (SBP), total cholesterol (TC), triglycerides (TG)), immune-mediated diseases (Crohn's disease (CD), celiac disease (CeD), rheumatoid arthritis (RA), ulcerative colitis (UC)).

Table S4. SNPs associated with schizophrenia conditioned on Neanderthal selective sweep score.

						NCC	NEC	All	All				Anostrol					
					Cond	Replication	Rep	Rep	Rep		LD	Total	Allele	PhyloP	PhyloP	Hetero-		Associated
SNP ID	Gene	HAZ	p Value	FDR	FDR	Rate	SD	rate	SD	NSS	Count	LD	Frequency	Primates	Mammals	zygosity	Function	Phenotypes
																	Encodes an ATP binding	
																	protein which is	
											501	253 3	0.77	0.37	0.72	0.14	involved in metallocarb-	
rs946106	AGBL4	4 48	1 22E-04	9 22E-02	1 31E-04	NaN	NaN	0 176	0.090	-0 403	(97%)	(95%)	(27%)	(13%)	(41%)	(15%)	and tubulin binding	Celiac disease
105 10100	HODE		1.222.01		1.512 01		1.001.0	0.170	0.070	0.105	() () ()	()0/0)	(2170)	(1570)	(1170)	(1070)	Encodes kinases	contae ansease
																	involved in cell	Melanoma,
											315	161.4	0.30	-0.68	-0.75	0.14	signalling in for insulin	carcinomas,
rs2291409	AKT3	4.16	8.83E-04	1.97E-01	8.04E-04	NaN	NaN	0.330	0.128	-1.056	(87%)	(86%)	(7%)	(43%)	(53%)	(14%)	and growth factors	prostate cancer
																	Encodes a vesicle-coat	
																	protein complex. Some	
											254	124.7					or which are expressed	Carcinomas and
rs10906984	AP3B2	4 732	1 47E-04	9 37E-02	1 62E-04	NaN	NaN	0.312	0 140	-0 129	(80%)	(79%)	-	-	_	-	(18)	melanomas
1510700701	111702	1.752	1.172 01	7.572 02	1.022 01		1.001.0	0.512	0.110	0.12)	126	82.5	0.87	0.32		0.13	(10)	Lymphocytic
rs13084588	BBX	-3.695	3.30E-03	7.40E-01	6.97E-03	0.273	0.081	0.156	0.048	-0.314	(54%)	(64%)	(33%)	(6%)	0.80 (68%)	(11%)	Encodes for a protein	gastritis
																	Might be involved in	
											104	54.8					transcriptional regulation	
rs7901209	C10orf76	3.643	3.21E-03	7.40E-01	6.97E-03	0.237	0.081	0.135	0.051	-0.203	(46%)	(48%)	-	-	-	-	(19)	Alzheimer's
											75	22.4					Encodes membrane	0
rs4369701	CDH11	4 258	2 73E-04	9 70F-02	2 53E-04	0.235	0 107	0 147	0.084	-0.166	(34%)	(20%)	-	-	_	_	cellular adhesion	in cancer cells
134507701	CDIIII	4.250	2.751-04	9.70L-02	2.551-04	0.235	0.107	0.147	0.004	-0.100	(3470)	(2070)					Encodes protein that is	in cancer cents
																	component of the	
																	centrosome and is	
											353	164.8	0.49	-0.70	0.53	0.13	involved in microtubule	Ciliary
rs10926976	CEP170	5.078	4.80E-05	7.81E-02	7.94E-05	0.329	0.109	0.227	0.098	-0.742	(89%)	(87%)	(13%)	(46%)	(13%)	(11%)	organization (20)	dyskinesia
rc11688307	CUI 3	1 362	2 01E 04	9 50E 02	2.02E.04	NaN	NaN	NaN	NaN	0.480	105	64.7 (54%)					Protein coding gene	Blood vessel
13110883377	COLS	-4.502	2.011-04	9.501-02	2.021-04	India	INdin	INdin	Indin	-0.409	(4770)	(3470)	-	-	-	-	Encodes a membrane	manormations
																	protein involved in	
																	functioning of voltage	Asthma, autism
											369	128.6				0.13	gated potassium	spectrum
rs11123288	DPP10	-3.489	3.06E-03	7.40E-01	6.97E-03	0.290	0.089	0.170	0.073	-0.067	(90%)	(80%)	0.77 (26%)	-0.33 (2%)	-0.59 (23%)	(11%)	channels (21)	disorders
											200	100.2				0.16	Not known but	
ro1421750	EI 122620	4 082	5 32E 04	1 22E 01	5.04E.04	NoN	NoN	0 166	0.086	0.462	200	(71%)	0 22 (89/)	0.80 (60%)	0.64 (25%)	0.16	expressed in brain and	Canaar
181421730	TLJ55050	-4.062	5.52E-04	1.25E-01	5.04E-04	Indin	Indin	0.100	0.080	-0.403	(7270)	(/1/0)	0.55 (876)	-0.89 (0076)	-0.04 (3376)	(2170)	Encodes for protein in	Cancer
																	the forkhead box	
																	transcription factor	Mental
																	family. Plays important	retardation with
																	roles in the regulation of	language
											222	101.1					transcription during both	impairment and
m17662229	EOVP1	2 16	2 54E 02	7 40E 01	6 07E 02	NoN	NoN	0.225	0.126	0.607	(76%)	121.1					development and	autistic features,
181/002328	FUAPI	-3.40	3.34E-03	7.40E-01	0.9/E-03	inain	inain	0.223	0.150	-0.09/	289	144.6	- 0.50	- 2 11	0.63	- 0.13	Zinc finger protein.	Mental
rs1127091	GATAD2B	-3.809	2.24E-03	5.36E-01	2.51E-03	0.275	0.085	0.154	0.047	-0.265	(84%)	(83%)	(13%)	(95%)	(22%)	(11%)	coding gene	retardation
		/									41	19.5	0.97	-2.37	-1.26	0.21	Encodes for a histone	
rs2230653	HIST1H1C	3.891	2.70E-03	6.41E-01	3.94E-03	0.287	0.104	0.174	0.073	-0.321	(17%)	(16%)	(41%)	(96%)	(78%)	(39%)	protein	NA

								All	All									
					Cond	NSS Doubing the	NSS	SNPs	SNPs		ID	Te 4-1	Ancestral	Dhada P	Dhe-L-D	Hatawa		A
SNP ID	Gene	HAZ	p Value	FDR	FDR	Rate	кер SD	кер rate	Kep SD	NSS	Count	LD	Frequency	Primates	Mammals	rietero- zygosity	Function	Phenotypes
											189	70.5	0.50	0.44	0.47	0.13	Encodes protein that	••
rs5762416	KIAA1648	-3.7	3.01E-03	7.40E-01	6.97E-03	0.175	0.051	0.105	0.022	-0.024	(70%)	(58%)	(14%)	(24%)	(6%)	(13%)	localizes in membrane	NA
																	Encodes for a trans- cription factor. Involved	
																	in myogenesis and	severe
											159	83.2					vascular development	psychomotor
rs254778	MEF2C	-4.671	2.00E-04	9.50E-02	2.02E-04	0.291	0.104	0.174	0.075	-0.245	(63%)	(64%)	-	-	-	-	(22)	retardation
											100	42.0	0.52	0.40	0.74	0.17	Emandas for DNA	Major depressive
rs4799358	NOL4	-4 724	1 39E-04	9 22E-02	1 31E-04	NaN	NaN	NaN	NaN	-0 144	(48%)	(38%)	(14%)	-0.49	(46%)	(26%)	binding nucleolar protein	cervical cancer
101777000	nobi		1.572 01	,	1.512 01					0.111	(10/0)	(3070)	(11/0)	(21/0)	(1070)	(20/0)	Encodes ligands for the	Schizophrenia,
											345	153.1	0.90	0.69	0.74	0.14	transmembrane tyrosine	Hirschsprung's
rs11190855	NRG3	3.551	2.24E-03	5.36E-01	2.51E-03	0.277	0.092	0.160	0.065	-0.506	(89%)	(85%)	(36%)	(53%)	(46%)	(17%)	kinase receptors	disease
																	Encodos protoins which	Schizophrenia,
											96	33.5	0.76	-0.31	0.95	0.17	works in the central	intellectual
rs4971695	NRXN1	4.429	4.06E-04	1.08E-01	4.00E-04	0.313	0.093	0.185	0.077	-0.745	(43%)	(30%)	(26%)	(0%)	(95%)	(28%)	nervous system (23)	disability
																		Propionic
1152055	DCCD	1.545	4.555.05	5.015.03	5 0 4 E 0 5					0.15	605	241.7	0.60	-2.94	2 00 (000)	0.18		acidemia type II,
rs11538//	РССВ	-4.767	4.55E-05	7.81E-02	7.94E-05	NaN	NaN	NaN	NaN	-0.15	(9/%)	(94%)	(17%)	(98%)	-3.09 (99%)	(29%)	Encodes protein	encephalopathy
																	regulatory subunits of	
											46	33.3					the protein phosphatase,	
rs1345154	PPP2R3A	-3.986	5.91E-04	1.52E-01	6.36E-04	NaN	NaN	NaN	NaN	-0.186	(20%)	(30%)	-	-	-	-	calcium ion binding	NA
																	Encodes a vacuolar	
																	protein expressed in the	
											514	211.0					involved in neuropentide	Alzheimer's
rs10400055	SORCS3	3.757	2.52E-03	6.41E-01	3.94E-03	NaN	NaN	0.162	0.068	-0.557	(95%)	(92%)	-	-	-	-	signaling pathway	disease
																	Long non-coding RNA	
											96	33.7					expressed in zones of	
rs1878874	SOX201	NaN	2.00E-05	4.96E-02	1.19E-04	0.112	0.011	0.079	0.004	-1.533	(43%)	(30%)	-	-	-	-	neurogenesis (24)	Anopthalmia
											240	77.0	0.14	-0.60	0.74	0.05	required for mitochon-	DNA depletion
rs10492904	TK2	NaN	2.97E-03	7.40E-01	6.97E-03	0.111	0.010	0.078	0.004	-1.106	(79%)	(61%)	(3%)	(36%)	(45%)	(0%)	drial DNA synthesis	syndrome
													· · ·				Encodes a protein that	
																	acts as an effector of	
											202	129.2	0.80	1 22	1.22	0.17	signaling pathways,	Sahizonhrania/Di
rs2196806	VRK2	4.252	7.62E-04	1.97E-01	8.04E-04	NaN	NaN	0.224	0.120	-0.006	(85%)	(80%)	(35%)	(76%)	(77%)	(28%)	tumor cell growth	polar disorder
											(00,0)	(0070)	(00,0)	((****)	((()))	(_0,0)	Encodes protein	P
																	involved in transmem-	
																	brane signaling receptor	
											126	72.2					activity and G-protein	
rs7556184	XPR1	3.645	1.70E-03	4.33E-01	1.76E-03	0.258	0.081	0.146	0.050	-0.075	(54%)	(59%)	-	-	-	-	activity	NA
											()	(22.3)					Encodes for a zinc finger	-
											254	139.4					protein involved in	Autoimmune
rs7856690	ZCCHC7	NaN	1.84E-04	9.50E-02	2.02E-04	0.111	0.010	0.078	0.004	-0.601	(80%)	(82%)	-	-	-	-	nucleic acid binding (25)	disorders
m 110000/0	7110004	4 1 2 7	4.44E.04	1.09E.01	4.005.04	NoN	NoN	NaN	NoN	0 467	131	56.5	0.72	-0.47	-0.56	0.13	Encodes for a zinc finger	Schizophrenia/
1511888068	ZINF 804A	-4.13/	4.44E-04	1.08E-01	4.00E-04	inain	inain	inain	inain	-0.40/	(30%)	(49%)	(23%)	(21%)	(15%)	(12%)	protein	ыротаг aisorder

Given are: genes in association, based on their proximity to the SNP; human (non ancestral) allele z-score (HAZ); SNP association *p*-value, SNP false discovery rate (FDR), SNP conditional false discovery rate (condFDR), Neanderthal selective sweep (NSS) score, linkage disequilibrium (LD) count, i.e. number of 1000G SNPs within 1 Mb and with an LD $r^2 \ge 0.2$ (in parentheses, percentage of SNPs with LD count below that); total LD, i.e. sum of the LD r^2 with the aforesaid 1000G SNPs (in parentheses, percentage of SNPs with total LD below that); ancestral allele frequency; phyloP44wayPrimate acceleration/conservation score from the UCSC genome browser (in parentheses, percentage of SNPs with absolute score below that); heterozygosity (in parentheses, percentage of SNPs with heterozygosity below that); known functions and phenotypes associated with the variant.

Fig. S1. Distribution of Neanderthal selective sweep scores. The Neanderthal selective sweep (NSS) score track was downloaded from the UCSC genome browser (S-scores, track ntSssZScorePMVar, http://genome.ucsc.edu). This track consists of two entries per SNP, which the authors call (z score + variance) and (z score – variance). Since a negative NSS-score is expected to indicate a possible positive selection in humans, the (z-score + variance) entries are conservative measures of positive selection likelihood. These were extracted for all SNPs in the genome-wide association studies of interest (**Table S1**) and follow the distribution illustrated here.

Srinivasan et al.

Fig. S2. Q-Q and fold enrichment plots of schizophrenia stratified according to Neanderthal selective sweep score after exclusion of MHC SNPs. Reported are (A) quantilequantile (Q-Q) and (B) fold enrichment plots of GWAS summary statistics *p*-values for schizophrenia, stratified on the basis of Neanderthal selective sweep scores after removing SNPs in the major histocompatibility complex (MHC) from the analysis. The enrichment of the human divergent (HD) category, represented by its deflection from the diagonal (A), is still clear, suggesting that the MHC does not have a great effect on the enrichment of HD SNPs (Fig. 1). The non-divergent (ND) SNPs also show unchanged deflection from the baseline (B; All SNPs). This suggests that there is no relevant overlap among MHC SNPs and the SCZ susceptibility SNPs in human divergent regions.

Srinivasan et al.

Fig. S3. Q-Q and fold enrichment plots of schizophrenia stratified according to Neanderthal selective sweep region affiliation scores after Green *et al.* (26) and Prüfer *et al.* (27). Reported are (A) quantile-quantile (Q-Q) and (B) fold enrichment plots of genome-wide association study summary statistics *p*-values for schizophrenia, stratified based on Neanderthal selective sweep scores (NSS). The strata are determined here by LD-informed annotation scores for DNA regions significantly (top 5%) likely to have undergone recent positive selection in humans. The DNA regions were identified using respectively the draft sequence of the Neanderthal genome (HDs2010) by Green *et al.* 2010 (26) and the complete sequence of the Neanderthal genome (HDs2014) by Prüfer *et al.* 2014 (27). The enrichment plot (B) shows 2-7 fold enrichment for SNPs in regions with significantly negative NSS score, i.e. the human divergent (HD) SNPs stratum, compared with all SNPs (All SNPs).

Srinivasan et al.

Fig. S4. Q-Q and fold enrichment plots of three psychiatric phenotypes stratified according to Neanderthal selective sweep scores. Phenotypes: attention-deficit/hyperactivity disorder (ADHD), bipolar disorder (BD) and major depressive disorder (MDD). (**A**) The quantile-quantile (Q-Q) plots show genome-wide association studies summary statistics *p*-values of SNPs tagging human divergent regions (HD), non-divergent (ND) regions as well as all SNPs (All SNPs). As observed for non-psychiatric phenotypes (**Fig. 2**), there is no indication of enrichment the likes of that seen for schizophrenia in (**Fig. 1**). (**B**) The fold enrichment counterparts of the Q-Q plots in (**A**) emphasize the association enrichment. ADHD in particular does present some deflection but the number of SNPs involved is too exiguous to result in any significant association as measured by the regression analysis (**Table S2**).

Srinivasan et al.

Fig. S5. Q-Q and fold enrichment plots of three neurological phenotypes stratified according to Neanderthal selective sweep scores. Phenotypes: Alzheimer's disease (AD), migraine and multiple sclerosis (MS). (A) The quantile-quantile (Q-Q) plots show genome-wide association studies summary statistics *p*-values of SNPs tagging human divergent regions (HD), non-divergent (ND) regions as well as all SNPs (All SNPs). As observed for other phenotypes (Fig. 2), there is no indication of enrichment the likes of that seen for schizophrenia in (Fig. 1). (B) The fold enrichment counterparts of the Q-Q plots in (A) emphasize the association enrichment or rather the lack thereof.

Srinivasan et al.

Fig. S6. Q-Q and fold enrichment plots of the first edition of the schizophrenia genomewide association study by the Psychiatric Genomic Consortium stratified according to Neanderthal selective sweep scores. Reported are (A) quantile-quantile (Q-Q) and (B) fold enrichment plots of first edition of the Psychiatric Genomic Consortium (PGC) schizophrenia genome-wide association studies. The enrichment is not as strong as seen with the larger second edition of the PGC schizophrenia GWAS (Fig. 1) but is confirmed by a nominally significant association between squared z-scores and Neanderthal selective sweep scores (Table 1).

Fig. S7. Direction of effect for human allele z-score versus Neanderthal selective sweep score. No obvious directional preponderance can be discerned in the correlation between Neanderthal selective sweep score (NSS) and effect of the non-ancestral allele on schizophrenia. A linear regression of z scores versus NSS scores does not yield any significant results.

Fig. S8. Effect size comparison. Squared z-scores logarithm Neanderthal selective sweep score regression coefficients (mean \pm SE) for phenotypes: psychiatric and other neurological diseases (Alzheimer's disease (AD), attention-deficit/hyperactivity disorder (ADHD), bipolar disorder (BD), major depressive disorder (MDD), migraine, multiple sclerosis (MS), first and second edition of the schizophrenia GWAS by the Psychiatric Genomic Consortium (SCZ1 and SCZ2)), body mass index (BMI), height, waist-hip ratio (WHR), systolic blood pressure (SBP), total cholesterol (TC), triglycerides (TG), Crohn's disease (CD), celiac disease (CeD), rheumatoid arthritis (RA), ulcerative colitis (UC). For sample sizes in the respective genome-wide association studies, see Table S1.

Srinivasan et al.

Fig. S9. Q-Q and fold enrichment plots of schizophrenia autosome and X chromosome genome-wide association study stratified according to Neanderthal selective sweep score. Reported are (A) quantile-quantile (Q-Q) and (B) fold enrichment plots of autosome and X chromosome GWAS summary statistics *p*-values for schizophrenia, stratified based on Neanderthal selective sweep score. The enrichment of the human divergent (HD) category, represented by its deflection from the diagonal (A), is still clear and we do not see comparable differences from the analysis devoid of the X chromosome (Fig. 1). The non-divergent (ND) SNPs also show unchanged deflection from the baseline (All SNPs).

Supplemental Methods & Materials

Confounding Factors

Possible confounding factors that might influence the results are addressed in the analyses: the effect size computed in the regression analysis typical of most SNP association studies depends on the SNP's frequency f through its genotypic variance 2f (1-f). A SNP's frequency or its genotypic variance can therefore constitute confounders if other factors, e.g. the covariates, used in the enrichment analysis are correlated with them. It is possible that SNPs that underwent positive selection after divergence from Neanderthal have unusual frequency distributions. All analyses therefore carried out while controlling genotypic are for variance. The chromosomal linkage disequilibrium (LD) structure is another feature that undergoes differential amounts of transformations depending on the type of selection pressure and is therefore controlled for in the analyses as well.

Major Histocompatibility Complex (MHC)

The MHC has been implicated in schizophrenia as well as a number of other phenotypes, particularly immune-mediated diseases. The evolution of MHC itself may have involved segmental duplication and other large scale genetic variations (28). It is therefore reasonable to suspect that SNPs in these regions might be driving some of the enrichment results. By removing the MHC region (chromosome 6 region between genomic positions 25652429 and 33421466 in the hg19 assembly) from the analyses, we aim at identifying their contribution to the enrichment patterns.

Replication

The z-scores of each of the 52 original sub-studies contributing to the schizophrenia metaanalysis (8) were independently adjusted using intergenic inflation control: the inflation factor, λ_{GC} , was estimated as the median squared z-score across intergenic SNPs divided by the expected median of a chi-square distribution with one degree of freedom. The 52 sub-studies were then subdivided into two groups of 26 in 50 different ways, the first group, D_k , k = 1...100, serving as discovery group, the second, R_k , k = 1...100, as replication group. Average discovery and replication z-scores were computed for all SNPs and all 50 subdivisions

$$\overline{Z}_{D_k} = \frac{1}{\sqrt{N_{\text{eff}}^{D_k}}} \sum_{i \in D_k} Z_i \sqrt{N_{\text{eff}}^{(i)}}, \quad \overline{Z}_{R_k} = \frac{1}{\sqrt{N_{\text{eff}}^{R_k}}} \sum_{i \in R_k} Z_i \sqrt{N_{\text{eff}}^{(i)}}, \quad \text{with } D_k, R_k \subset \{1, \dots, 8\}, \text{ and } k = 1, \dots, 50$$

where

$$N_{\rm eff}^{(i)} = \frac{N_{\rm cases}^{(i)} N_{\rm controls}^{(i)}}{N_{\rm cases}^{(i)} + N_{\rm controls}^{(i)}}, \text{ and } N_{\rm eff}^{R_k} = \sum_{i \in R_k} N_{\rm eff}^{(i)}, N_{\rm eff}^{D_k} = \sum_{i \in D_k} N_{\rm eff}^{(i)}$$

The average Z-scores were converted to *p*-values using the standard normal cumulative distribution function Φ . Two-tailed discovery *p*-values were calculated as $p_D = 1 - \Phi(|Z_D|) + \Phi(-|Z_D|) = 2 \Phi(-|Z_D|)$, one-tailed replication *p*-values preserving the signs of the discovery Z-scores were calculated as $p_R = \Phi(\operatorname{sgn}(Z_D) * Z_R)$.

Conditional False Discovery Rate (condFDR)

The observed enrichment can be directly interpreted in terms of the Bayesian FDR (29). Specifically, for a given *p*-value cutoff, the FDR is defined as

$$FDR(p) = \pi_0 F_0(p) / F(p),$$

where π_0 is the proportion of null SNPs, F_0 is the null cumulative distribution function (cdf), and F is the cdf of all SNPs, both null and non-null. Under the null hypothesis, $F_0(p) = p$ is the cdf of the uniform distribution on the unit interval [0,1], so

$$FDR(p) = \pi_0 p/F(p)$$

F is estimated by the empirical cdf $q = N_p/N$, where N_p is the number of SNPs with *p*-values less than or equal to *p*, and *N* is the total number of SNPs. If π_0 is close to one, as is likely true for most GWASs, a reasonable conservative estimate of FDR is p/q. The negative decadic logarithm of this FDR estimate is $\log 10(q) - \log 10(p)$ which coincides with the Q-Q plot's deflection from the null line.

The condFDR is conservatively estimated as FDR (p | x) = p / F(p | x), where x is the value of a given annotation X, and F(p | x) is the cdf of p conditional on the annotation X = x. If SNPs are enriched for associations according to levels of X, then F(p | x) > F(p) for a given p and hence FDR(p | x) < FDR(p).

Upon binning and averaging the conditional FDR values obtained from ten sets of LDblocks representative SNPs, we constructed a two-dimensional look-up table reporting conditional FDR as a function of the SCZ association *p*-value and the NSS score. Through smoothing via interpolation of the look-up table, we then assigned each SNP a conditional FDR value for SCZ (denoted by condFDR).

Censored Analysis

Many of the 108 schizophrenia GWAS hits lie within or around genes that are involved in the biochemistry of neural cells. The genome regions that have undergone a selective sweep according to the NSS score have also been shown to contain genes involved with brain functions.

(26). Affiliation to the brain genes that populate the 108 loci may therefore be confounding the results we observe for the enrichment of NSS regions of the genome. We wanted to see to what extent the results are driven by the 108 schizophrenia GWAS hits. To this end, we repeated the analyses after censoring the GWAS summary stats. Specifically, we excluded from the analyses all SNPs falling less than 1Mbase from any of the reported loci and having an LD ($r^2 > 0.2$) with any of the SNPs therein.

Author Notes

Members of the Schizophrenia Working Group of the Psychiatric Genomics Consortium

Stephan Ripke^{1,2}, Benjamin M. Neale^{1,2,3,4}, Aiden Corvin⁵, James T. R. Walters⁶, Kai-How Farh¹, Peter A. Holmans^{6,7}, Phil Lee^{1,2,4}, Brendan Bulik-Sullivan^{1,2}, David A. Collier^{8,9}, Hailiang Huang^{1,3}, Tune H. Pers^{3,10,11}, Ingrid Agartz^{12,13,14}, Esben Agerbo^{15,16,17}, Margot Albus¹⁸, Madeline Alexander¹⁹, Farooq Amin^{20,21}, Silviu A. Bacanu²², Martin Begemann²³, Richard A Belliveau Jr², Judit Bene^{24,25}, Sarah E. Bergen ^{2,26}, Elizabeth Bevilacqua², Tim B Bigdeli ²², Donald W. Black²⁷, Richard Bruggeman²⁸, Nancy G. Buccola²⁹, Randy L. Buckner^{30,31,32}, William Byerley³³, Wiepke Cahn³⁴, Guiqing Cai^{35,36}, Murray J. Cairns^{39,120,170}, Dominique Campion³⁷, Rita M. Cantor³⁸, Vaughan J. Carr^{39,40}, Noa Carrera⁶, Stanley V. Catts^{39,41}, Kimberly D. Chambert², Raymond C. K. Chan⁴², Ronald Y. L. Chen⁴³, Eric Y. H. Chen^{43,44}, Wei Cheng⁴⁵, Eric F. C. Cheung⁴⁶, Siow Ann Chong⁴⁷, C. Robert Cloninger⁴⁸, David Cohen⁴⁹, Nadine Cohen⁵⁰, Paul Cormican⁵, Nick Craddock^{6,7}, James J. Crowley⁵¹, David Curtis^{52,53}, Michael Davidson⁵⁴, Kenneth L. Davis³⁶, Franziska Degenhardt^{55,56}, Jurgen Del Favero⁵⁷, Lynn E. DeLisi^{128,129}, Ditte Demontis^{17,58,59}, Dimitris Dikeos⁶⁰, Timothy Dinan⁶¹, Srdjan Djurovic^{14,62}, Gary Donohoe^{5,63}, Elodie Drapeau³⁶, Jubao Duan^{64,65}, Frank Dudbridge⁶⁶, Naser Durmishi⁶⁷, Peter Eichhammer⁶⁸, Johan Eriksson^{69,70,71}, Valentina Escott-Price⁶, Laurent Essioux⁷², Ayman H. Fanous^{73,74,75,76}, Martilias S. Farrell⁵¹, Josef Frank⁷⁷, Lude Franke⁷⁸, Robert Freedman⁷⁹, Nelson B. Freimer⁸⁰, Marion Friedl⁸¹, Joseph I. Friedman³⁶, Menachem Fromer^{1,2,4,82}, Giulio Genovese², Lyudmila Georgieva⁶, Elliot S. Gershon²⁰⁹, Ina Giegling^{81,83}, Paola Giusti-Rodríguez⁵¹, Stephanie Godard⁸⁴, Jacqueline I, Goldstein^{1,3}, Vera Golimbet⁸⁵, Srihari Gopal⁸⁶, Jacob Gratten⁸⁷, Lieuwe de Haan⁸⁸, Christian Hammer²³, Marian L. Hamshere⁶, Mark Hansen⁸⁹, Thomas Hansen^{17,90},

Vahram Haroutunian^{36,91,92}, Annette M. Hartmann⁸¹, Frans A. Henskens^{39,93,94}, Stefan Herms^{55,56,95}, Joel N. Hirschhorn^{3,11,96}, Per Hoffmann^{55,56,95}, Andrea Hofman^{55,56}, Mads V. Hollegaard⁹⁷, David M. Hougaard⁹⁷, Masashi Ikeda⁹⁸, Inge Joa⁹⁹, Antonio Julià¹⁰⁰, René S. Kahn³⁴, Luba Kalaydjieva^{101,102}, Sena Karachanak-Yankova¹⁰³, Juha Karjalainen⁷⁸, David Kavanagh⁶, Matthew C. Keller¹⁰⁴, Brian J. Kelly¹²⁰, James L. Kennedy^{105,106,107}, Andrey Khrunin¹⁰⁸, Yunjung Kim⁵¹, Janis Klovins¹⁰⁹, James A. Knowles¹¹⁰, Bettina Konte⁸¹, Vaidutis Kucinskas¹¹¹, Zita Ausrele Kucinskiene¹¹¹, Hana Kuzelova-Ptackova¹¹², Anna K. Kähler²⁶, Claudine Laurent^{19,113}, Jimmy Lee Chee Keong^{47,114}, S. Hong Lee⁸⁷, Sophie E. Legge⁶, Bernard Lerer¹¹⁵, Miaoxin Li^{43,44,116} Tao Li¹¹⁷, Kung-Yee Liang¹¹⁸, Jeffrey Lieberman¹¹⁹, Svetlana Limborska¹⁰⁸, Carmel M. Loughland^{39,120}, Jan Lubinski¹²¹, Jouko Lönnqvist¹²², Milan Macek Jr¹¹², Patrik K. E. Magnusson²⁶, Brion S. Maher¹²³, Wolfgang Maier¹²⁴, Jacques Mallet¹²⁵, Sara Marsal¹⁰⁰, Manuel Mattheisen^{17,58,59,126}, Morten Mattingsdal^{14,127}, Robert W. McCarley^{128,129}, Colm McDonald¹³⁰, Andrew M. McIntosh^{131,132}, Sandra Meier⁷⁷, Carin J. Meijer⁸⁸, Bela Melegh^{24,25}, Ingrid Melle^{14,133}, Raquelle I. Mesholam-Gately^{128,134}, Andres Metspalu¹³⁵, Patricia T. Michie^{39,136}, Lili Milani¹³⁵, Vihra Milanova¹³⁷, Younes Mokrab⁸, Derek W. Morris^{5,63}, Ole Mors^{17,58,138}, Kieran C. Murphy¹³⁹, Robin M. Murray¹⁴⁰, Inez Myin-Germeys¹⁴¹, Bertram Müller-Myhsok^{142,143,144}, Mari Nelis¹³⁵, Igor Nenadic¹⁴⁵, Deborah A. Nertney¹⁴⁶, Gerald Nestadt¹⁴⁷, Kristin K. Nicodemus¹⁴⁸, Liene Nikitina-Zake¹⁰⁹, Laura Nisenbaum¹⁴⁹, Annelie Nordin¹⁵⁰, Eadbhard O'Callaghan¹⁵¹, Colm O'Dushlaine², F. Anthony O'Neill¹⁵², Sang-Yun Oh¹⁵³, Ann Olincy⁷⁹, Line Olsen^{17,90}, Jim Van Os^{141,154}, Psychosis Endophenotypes International Consortium¹⁵⁵, Christos Pantelis^{39,156}, George N. Papadimitriou⁶⁰, Sergi Papiol²³, Elena Parkhomenko³⁶, Michele T. Pato¹¹⁰, Tiina Paunio^{157,158}, Milica Pejovic-Milovancevic¹⁵⁹, Diana O. Perkins¹⁶⁰, Olli Pietiläinen^{158,161}, Jonathan Pimm⁵³, Andrew J. Pocklington⁶, John Powell¹⁴⁰, Alkes Price³,¹⁶², Ann E. Pulver¹⁴⁷, Shaun M. Purcell⁸², Digby Quested¹⁶³, Henrik B. Rasmussen^{17,90}, Abraham Reichenberg³⁶, Mark A. Reimers¹⁶⁴, Alexander L. Richards⁶, Joshua L. Roffman^{30,32}, Panos Roussos^{82,165}, Douglas M. Ruderfer^{6,82}, Veikko Salomaa⁷¹, Alan R. Sanders^{64,65}, Ulrich Schall^{39,120}, Christian R. Schubert¹⁶⁶, Thomas G. Schulze^{77,167}, Sibylle G. Schwab¹⁶⁸, Edward M. Scolnick², Rodney J. Scott^{39,169,170}, Larry J. Seidman^{128,134}, Jianxin Shi¹⁷¹, Engilbert Sigurdsson¹⁷², Teimuraz Silagadze¹⁷³, Jeremy M. Silverman^{36,174}, Kang Sim⁴⁷, Petr Slominsky¹⁰⁸, Jordan W. Smoller^{2,4}, Hon-Cheong So⁴³, Chris C. A. Spencer¹⁷⁵, Eli A. Stahl^{3,82}, Hreinn Stefansson¹⁷⁶, Stacy Steinberg¹⁷⁶, Elisabeth Stogmann¹⁷⁷, Richard E. Straub¹⁷⁸, Eric Strengman^{179,34}, Jana Strohmaier⁷⁷, T. Scott Stroup¹¹⁹, Mythily Subramaniam⁴⁷, Jaana Suvisaari¹²², Dragan M. Svrakic⁴⁸, Jin P. Szatkiewicz⁵¹, Erik Söderman¹², Srinivas Thirumalai¹⁸⁰, Draga Toncheva¹⁰³, Paul A. Tooney^{39,120,170}, Sarah Tosato¹⁸¹, Juha Veijola^{182,183}, John Waddington¹⁸⁴, Dermot Walsh¹⁸⁵, Dai Wang⁸⁶, Qiang Wang¹¹⁷, Bradley T. Webb²², Mark

Weiser⁵⁴, Dieter B. Wildenauer¹⁸⁶, Nigel M. Williams⁶, Stephanie Williams⁵¹, Stephanie H. Witt⁷⁷, Aaron R. Wolen¹⁶⁴, Emily H. M. Wong⁴³, Brandon K. Wormley²², Jing Qin Wu^{39,170}, Hualin Simon Xi¹⁸⁷, Clement C. Zai^{105,106}, Xuebin Zheng¹⁸⁸, Fritz Zimprich¹⁷⁷, Naomi R. Wray⁸⁷, Kari Stefansson¹⁷⁶, Peter M. Visscher⁸⁷, Wellcome Trust Case-Control Consortium 2¹⁸⁹, Rolf Adolfsson¹⁵⁰, Ole A. Andreassen^{14,133}, Douglas H. R. Blackwood¹³², Elvira Bramon¹⁹⁰, Joseph D. Buxbaum^{35,36,91,191}, Anders D. Børglum^{17,58,59,138}, Sven Cichon^{55,56,95,192}, Ariel Darvasi¹⁹³, Enrico Domenici¹⁹⁴, Hannelore Ehrenreich²³, Tõnu Esko^{3,11,96,135}, Pablo V. Gejman^{64,65}, Michael Gill⁵, Hugh Gurling⁵³, Christina M. Hultman²⁶, Nakao Iwata⁹⁸, Assen V. Jablensky^{39,102,186,195}, Erik G. Jönsson^{12,14}, Kenneth S. Kendler¹⁹⁶, George Kirov⁶, Jo Knight^{105,106,107}, Todd Lencz^{197,198,199}, Douglas F. Levinson¹⁹, Qingqin S. Li⁸⁶, Jianjun Liu^{188,200}, Anil K. Malhotra^{197,198,199}, Steven A. McCarroll^{2,96}, Andrew McQuillin⁵³, Jennifer L. Moran², Preben B. Mortensen^{15,16,17}, Bryan J. Mowry^{87,201}, Markus M. Nöthen^{55,56}, Roel A. Ophoff^{38,80,34}, Michael J. Owen^{6,7}, Aarno Palotie^{2,4,161}, Carlos N. Pato¹¹⁰, Tracey L. Petryshen^{2,128,202}, Danielle Posthuma^{203,204,205}, Marcella Rietschel⁷⁷, Brien P. Riley¹⁹⁶, Dan Rujescu^{81,83}, Pak C. Sham^{43,44,116} Pamela Sklar^{82,91,165}, David St Clair²⁰⁶, Daniel R. Weinberger^{178,207}, Jens R. Wendland¹⁶⁶, Thomas Werge^{17,90,208}, Mark J. Daly^{1,2,3}, Patrick F. Sullivan^{26,51,160} & Michael C. O'Donovan^{6,7}

¹Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.

²Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.

³Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.

⁴Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.

⁵Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin 8, Ireland.

⁶MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.

⁷National Centre for Mental Health, Cardiff University, Cardiff, CF24 4HQ, UK.

⁸Eli Lilly and Company Limited, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH, UK.

⁹Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, SE5 8AF, UK.

¹⁰Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800, Denmark.

¹¹Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, 02115USA.

¹²Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, SE-17176 Stockholm, Sweden.

¹³Department of Psychiatry, Diakonhjemmet Hospital, 0319 Oslo, Norway.

¹⁴NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway.

¹⁵Centre for Integrative Register-based Research, CIRRAU, Aarhus University, DK-8210 Aarhus, Denmark.

¹⁶National Centre for Register-based Research, Aarhus University, DK-8210 Aarhus, Denmark.

¹⁷The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark.

¹⁸State Mental Hospital, 85540 Haar, Germany.

¹⁹Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA.

²⁰Department of Psychiatry and Behavioral Sciences, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia 30033, USA.

²¹Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta Georgia 30322, USA.

²²Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia 23298, USA.

²³Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen 37075, Germany.

²⁴Department of Medical Genetics, University of Pécs, Pécs H-7624, Hungary.

²⁵Szentagothai Research Center, University of Pécs, Pécs H-7624, Hungary.

²⁶Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden.

²⁷Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.

²⁸University Medical Center Groningen, Department of Psychiatry, University of Groningen NL-9700 RB, The Netherlands.

²⁹School of Nursing, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.

³⁰Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, Massachusetts 02129, USA.

³¹Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138 USA.

³²Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, 02114 USA.

³³Department of Psychiatry, University of California at San Francisco, San Francisco, California, 94143 USA.

³⁴University Medical Center Utrecht, Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, 3584 Utrecht, The Netherlands.

³⁵Department of Human Genetics, Icahn School of Medicine at Mount Sinai, New York, New York 10029 USA.

³⁶Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029 USA.

³⁷Centre Hospitalier du Rouvray and INSERM U1079 Faculty of Medicine, 76301 Rouen, France.

³⁸Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.

³⁹Schizophrenia Research Institute, Sydney NSW 2010, Australia.

⁴⁰School of Psychiatry, University of New South Wales, Sydney NSW 2031, Australia.

⁴¹Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, St Lucia QLD 4072, Australia.

⁴²Institute of Psychology, Chinese Academy of Science, Beijing 100101, China.

⁴³Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

⁴⁴State Key Laboratory for Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

⁴⁵Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27514, USA.

⁴⁶Castle Peak Hospital, Hong Kong, China.

⁴⁷Institute of Mental Health, Singapore 539747, Singapore.

⁴⁸Department of Psychiatry, Washington University, St. Louis, Missouri 63110, USA.

⁴⁹Department of Child and Adolescent Psychiatry, Assistance Publique Hopitaux de Paris, Pierre and Marie Curie Faculty of Medicine and Institute for Intelligent Systems and Robotics, Paris, 75013, France.

⁵⁰ Blue Note Biosciences, Princeton, New Jersey 08540, USA

⁵¹Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA.

⁵²Department of Psychological Medicine, Queen Mary University of London, London E1 1BB, UK.

⁵³Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London WC1E 6JJ, UK.

⁵⁴Sheba Medical Center, Tel Hashomer 52621, Israel.

⁵⁵Department of Genomics, Life and Brain Center, D-53127 Bonn, Germany.

⁵⁶Institute of Human Genetics, University of Bonn, D-53127 Bonn, Germany.

⁵⁷Applied Molecular Genomics Unit, VIB Department of Molecular Genetics, University of Antwerp, B-2610 Antwerp, Belgium.

⁵⁸Centre for Integrative Sequencing, iSEQ, Aarhus University, DK-8000 Aarhus C, Denmark.

⁵⁹Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.

⁶⁰First Department of Psychiatry, University of Athens Medical School, Athens 11528, Greece.

⁶¹Department of Psychiatry, University College Cork, Co. Cork, Ireland.

⁶²Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway.

⁶³Cognitive Genetics and Therapy Group, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Co. Galway, Ireland.

⁶⁴Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois 60637, USA.

⁶⁵Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, Illinois 60201, USA.

⁶⁶Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.

⁶⁷Department of Child and Adolescent Psychiatry, University Clinic of Psychiatry, Skopje 1000, Republic of Macedonia.

⁶⁸Department of Psychiatry, University of Regensburg, 93053 Regensburg, Germany.

⁶⁹Department of General Practice, Helsinki University Central Hospital, University of Helsinki P.O. Box 20, Tukholmankatu 8 B, FI-00014, Helsinki, Finland

⁷⁰Folkhälsan Research Center, Helsinki, Finland, Biomedicum Helsinki 1, Haartmaninkatu 8, FI-00290, Helsinki, Finland.

⁷¹National Institute for Health and Welfare, P.O. BOX 30, FI-00271 Helsinki, Finland.

⁷²Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffman-La Roche, CH-4070 Basel, Switzerland.

⁷³Department of Psychiatry, Georgetown University School of Medicine, Washington DC 20057, USA.

⁷⁴Department of Psychiatry, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.

⁷⁵Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA.

⁷⁶Mental Health Service Line, Washington VA Medical Center, Washington DC 20422, USA.

⁷⁷Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, D-68159 Mannheim, Germany.

⁷⁸Department of Genetics, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands.

⁷⁹Department of Psychiatry, University of Colorado Denver, Aurora, Colorado 80045, USA.

⁸⁰Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095, USA.

⁸¹Department of Psychiatry, University of Halle, 06112 Halle, Germany.

⁸²Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.

⁸³Department of Psychiatry, University of Munich, 80336, Munich, Germany.

⁸⁴Departments of Psychiatry and Human and Molecular Genetics, INSERM, Institut de Myologie, Hôpital de la Pitiè-Salpêtrière, Paris, 75013, France.

⁸⁵Mental Health Research Centre, Russian Academy of Medical Sciences, 115522 Moscow, Russia.

⁸⁶Neuroscience Therapeutic Area, Janssen Research and Development, Raritan, New Jersey 08869, USA.

⁸⁷Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia.

⁸⁸Academic Medical Centre University of Amsterdam, Department of Psychiatry, 1105 AZ Amsterdam, The Netherlands.

⁸⁹Illumina, La Jolla, California, California 92122, USA.

⁹⁰Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, DK-4000, Denmark.

⁹¹Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.

⁹²J. J. Peters VA Medical Center, Bronx, New York, New York 10468, USA.

⁹³Priority Research Centre for Health Behaviour, University of Newcastle, Newcastle NSW 2308, Australia.

⁹⁴School of Electrical Engineering and Computer Science, University of Newcastle, Newcastle NSW 2308, Australia.

⁹⁵Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, CH-4058, Switzerland.

⁹⁶Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

⁹⁷Section of Neonatal Screening and Hormones, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, DK-2300, Denmark.

⁹⁸Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan.

⁹⁹Regional Centre for Clinical Research in Psychosis, Department of Psychiatry, Stavanger University Hospital, 4011 Stavanger, Norway.

¹⁰⁰Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, 08035, Spain.

¹⁰¹Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia.

¹⁰²The Perkins Institute for Medical Research, The University of Western Australia, Perth, WA 6009, Australia.

¹⁰³Department of Medical Genetics, Medical University, Sofia1431, Bulgaria.

¹⁰⁴Department of Psychology, University of Colorado Boulder, Boulder, Colorado 80309, USA.

¹⁰⁵Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada.

¹⁰⁶Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.

¹⁰⁷Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.

¹⁰⁸Institute of Molecular Genetics, Russian Academy of Sciences, Moscow123182, Russia.

¹⁰⁹Latvian Biomedical Research and Study Centre, Riga, LV-1067, Latvia.

¹¹⁰Department of Psychiatry and Zilkha Neurogenetics Institute, Keck School of Medicine at University of Southern California, Los Angeles, California 90089, USA.

¹¹¹Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania.

¹¹² Department of Biology and Medical Genetics, 2nd Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic.

¹¹³ Department of Child and Adolescent Psychiatry, Pierre and Marie Curie Faculty of Medicine, Paris 75013, France.

¹¹⁴Duke-NUS Graduate Medical School, Singapore 169857, Singapore.

¹¹⁵Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.

¹¹⁶Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, China.

¹¹⁷Mental Health Centre and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

¹¹⁸Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.

¹¹⁹Department of Psychiatry, Columbia University, New York, New York 10032, USA.

¹²⁰Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle NSW 2300, Australia.

¹²¹Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, 70-453 Szczecin, Poland.

¹²²Department of Mental Health and Substance Abuse Services; National Institute for Health and Welfare, P.O. BOX 30, FI-00271 Helsinki, Finland

¹²³Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA.

¹²⁴Department of Psychiatry, University of Bonn, D-53127 Bonn, Germany.

¹²⁵Centre National de la Recherche Scientifique, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Hôpital de la Pitié Salpêtrière, 75013, Paris, France.

¹²⁶Department of Genomics Mathematics, University of Bonn, D-53127 Bonn, Germany.

¹²⁷Research Unit, Sørlandet Hospital, 4604 Kristiansand, Norway.

¹²⁸Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115, USA.

¹²⁹VA Boston Health Care System, Brockton, Massachusetts 02301, USA.

¹³⁰Department of Psychiatry, National University of Ireland Galway, Co. Galway, Ireland.

¹³¹Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH16 4SB, UK.

¹³²Division of Psychiatry, University of Edinburgh, Edinburgh EH16 4SB, UK.

¹³³Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway.

¹³⁴Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, Massachusetts 02114, USA.

¹³⁵Estonian Genome Center, University of Tartu, Tartu 50090, Estonia.

¹³⁶School of Psychology, University of Newcastle, Newcastle NSW 2308, Australia.

¹³⁷First Psychiatric Clinic, Medical University, Sofia 1431, Bulgaria.

¹³⁸Department P, Aarhus University Hospital, DK-8240 Risskov, Denmark.

¹³⁹Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland.

¹⁴⁰King's College London, London SE5 8AF, UK.

¹⁴¹Maastricht University Medical Centre, South Limburg Mental Health Research and Teaching Network, EURON, 6229 HX Maastricht, The Netherlands.

¹⁴²Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK.

¹⁴³Max Planck Institute of Psychiatry, 80336 Munich, Germany.

¹⁴⁴Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany.

¹⁴⁵Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany.

¹⁴⁶Department of Psychiatry, Queensland Brain Institute and Queensland Centre for Mental Health Research, University of Queensland, Brisbane, Queensland, St Lucia QLD 4072, Australia.

¹⁴⁷Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

¹⁴⁸Department of Psychiatry, Trinity College Dublin, Dublin 2, Ireland.

¹⁴⁹Eli Lilly and Company, Lilly Corporate Center, Indianapolis, 46285 Indiana, USA.

¹⁵⁰Department of Clinical Sciences, Psychiatry, Umeå University, SE-901 87 Umeå, Sweden.

¹⁵¹DETECT Early Intervention Service for Psychosis, Blackrock, Co. Dublin, Ireland.

¹⁵²Centre for Public Health, Institute of Clinical Sciences, Queen's University Belfast, Belfast BT12 6AB, UK.

¹⁵³Lawrence Berkeley National Laboratory, University of California at Berkeley, Berkeley, California 94720, USA.

¹⁵⁴Institute of Psychiatry, King's College London, London SE5 8AF, UK.

¹⁵⁵A list of authors and affiliations appear in the Supplementary Information.

¹⁵⁶Melbourne Neuropsychiatry Centre, University of Melbourne & Melbourne Health, Melbourne, Vic 3053, Australia.

¹⁵⁷Department of Psychiatry, University of Helsinki, P.O. Box 590, FI-00029 HUS, Helsinki, Finland.

¹⁵⁸Public Health Genomics Unit, National Institute for Health and Welfare, P.O. BOX 30, FI-00271 Helsinki, Finland

¹⁵⁹Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia.

¹⁶⁰Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27599-7160, USA.

¹⁶¹Institute for Molecular Medicine Finland, FIMM, University of Helsinki, P.O. Box 20 FI-00014, Helsinki, Finland

¹⁶²Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA.

¹⁶³Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.

¹⁶⁴Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA.

¹⁶⁵Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.

¹⁶⁶PharmaTherapeutics Clinical Research, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA.

¹⁶⁷Department of Psychiatry and Psychotherapy, University of Gottingen, 37073 Göttingen, Germany.

¹⁶⁸Psychiatry and Psychotherapy Clinic, University of Erlangen, 91054 Erlangen, Germany.

¹⁶⁹Hunter New England Health Service, Newcastle NSW 2308, Australia.

¹⁷⁰School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan NSW 2308, Australia.

¹⁷¹Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA.

¹⁷²University of Iceland, Landspitali, National University Hospital, 101 Reykjavik, Iceland.

¹⁷³Department of Psychiatry and Drug Addiction, Tbilisi State Medical University (TSMU), N33, 0177 Tbilisi, Georgia.

¹⁷⁴Research and Development, Bronx Veterans Affairs Medical Center, New York, New York 10468, USA.

¹⁷⁵Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN, UK.

¹⁷⁶deCODE Genetics, 101 Reykjavik, Iceland.

¹⁷⁷Department of Clinical Neurology, Medical University of Vienna, 1090 Wien, Austria.

¹⁷⁸Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA.

¹⁷⁹Department of Medical Genetics, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.

¹⁸⁰Berkshire Healthcare NHS Foundation Trust, Bracknell RG12 1BQ, UK.

¹⁸¹Section of Psychiatry, University of Verona, 37134 Verona, Italy.

¹⁸²Department of Psychiatry, University of Oulu, P.O. BOX 5000, 90014, Finland

¹⁸³University Hospital of Oulu, P.O.BOX 20, 90029 OYS, Finland.

¹⁸⁴Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.

¹⁸⁵Health Research Board, Dublin 2, Ireland.

¹⁸⁶School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth WA6009, Australia.

¹⁸⁷Computational Sciences CoE, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA.

¹⁸⁸Human Genetics, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore.

¹⁸⁹A list of authors and affiliations appear in the Supplementary Information.

¹⁹⁰University College London, London WC1E 6BT, UK.

¹⁹¹Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.

¹⁹²Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, 52428 Juelich, Germany.

¹⁹³Department of Genetics, The Hebrew University of Jerusalem, 91905 Jerusalem, Israel.

¹⁹⁴Neuroscience Discovery and Translational Area, Pharma Research and Early Development, F. Hoffman-La Roche, CH-4070 Basel, Switzerland.

¹⁹⁵Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Medical Research Foundation Building, Perth WA 6000, Australia.

¹⁹⁶Virginia Institute for Psychiatric and Behavioral Genetics, Departments of Psychiatry and Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA.

¹⁹⁷The Feinstein Institute for Medical Research, Manhasset, New York, 11030 USA.

¹⁹⁸The Hofstra NS-LIJ School of Medicine, Hempstead, New York, 11549 USA.

¹⁹⁹The Zucker Hillside Hospital, Glen Oaks, New York,11004 USA.

²⁰⁰Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore.

²⁰¹Queensland Centre for Mental Health Research, University of Queensland, Brisbane 4076, Queensland, Australia.

²⁰²Center for Human Genetic Research and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.

²⁰³Department of Child and Adolescent Psychiatry, Erasmus University Medical Centre, Rotterdam 3000, The Netherlands.

²⁰⁴Department of Complex Trait Genetics, Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, Amsterdam 1081, The Netherlands.

²⁰⁵Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam 1081, The Netherlands.

²⁰⁶University of Aberdeen, Institute of Medical Sciences, Aberdeen, AB25 2ZD, UK.

²⁰⁷Departments of Psychiatry, Neurology, Neuroscience and Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.

²⁰⁸Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark.

²⁰⁹Departments of Psychiatry and Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.

The International Headache Genetics Consortium

Consortium members listed by their main affiliated cohort:

AGES: Leonore Launer¹ ALSPAC: George Davey Smith², George McMahon² Australia ATM: Dale Nyholt³ Barcelona headache group: Alfons Macaya⁴, Patricia Pozo-Rosich⁵, Bru Cormand⁶, Jessica Fernandez⁵, Marta Vila-Puevo⁴, Celia Sintas⁶ Danish Headache Center, Glostrup Hospital: Jes Olesen², Anne Francke Christensen², Ann-Louise Esserlind² ERF: Najaf Amin⁷ Estonian Biobank: Tonu Esko⁸ Finnish MA: Aarno Palotie⁹, Mikko Kallela¹⁰, Maija Wessman¹¹, Ville Artto¹⁰, Verneri Anttila¹², Eija Hämäläinen¹³, Priit Palta¹³, Padhraig Gormley⁹, Ester Cuenca⁹ FinnTwin: Jaakko Kaprio¹³ German MO/MA: Martin Dichgans¹⁴, Hartmut Göbel¹⁵, Christian Kubisch¹⁶, Tobias Freilinger¹⁷, Rainer Malik¹⁴, Bertram Muller-Myhsok¹⁸ HUNT: John-Anker Zwart¹⁹, Bendik Winsvold¹⁹, Line Jacobsen¹⁹, Linda Pedersen¹⁹ Kaiser Permanente: Alice Pressman²⁰ LUMINA MO/MA: Arn van den Maagdenberg²¹, Gisela Terwindt²², Boukje de Vries²¹, Rune R. Frants²¹, Michel Ferrari²² NTR/NESDA: Dorret I. Boomsma²³, Lannie Ligthart²³, Brenda Penninx²⁴ NFBC1966: Mario-Riitta Jarvelin²⁵. Markku Koiranen²⁶ Rotterdam III: Cornelia van Duijn⁷, M Arfan Ikram⁷ Swedish Twin Registry: Andrea Carmine Belin²⁷, Nancy Pedersen²⁸ TWINS UK: Lynn Cherkas²⁹, Lydia Quave²⁹ WGHS: Daniel Chasman³⁰, Tobias Kurth³¹, Markus Schuerks³² Young Finns: Terho Lehtimaki³³, Olli Raitakari³⁴ 23&Me, Mountainview, California: Nick Eriksson³⁵

¹ Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, Maryland, USA.

² Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.

^{3.} Queensland Institute of Medical Research, Brisbane, Queensland, Australia.

⁴ Pediatric Neurology Research Group, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.

⁵ Headache and Neurological Pain Research Group, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona.

⁶ Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.

^{7.} Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands.

^{8.} Estonian Genome Center, University of Tartu, Tartu, Estonia.

⁹ Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.

^{10.} Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland.

^{11.} Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.

^{12.} Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.

^{13.} Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.

^{14.} Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany.

^{15.} Kiel Pain and Headache Center, Kiel, Germany.

^{16.} Institute of Human Genetics, University of Ulm, Ulm, Germany.

^{17.} Department of Neurology and Epileptology and Hertie-Institute for Clinical Brain Research, University of Tübingen.

^{18.} Max Planck Institute of Psychiatry, Munich, Germany.

^{19.} FORMI, Oslo University Hospital, Oslo, Norway.

^{20.} Division of Research, Kaiser Permanente, Oakland, CA, USA.

^{21.} Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.

^{22.} Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.

^{23.} Department of Biological Psychology, VU University, Amsterdam, The Netherlands.

^{24.} Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands.

- ^{25.} Biocenter Oulu, University of Oulu, Oulu, Finland.
- ^{26.} Institute of Health Sciences, University of Oulu, Oulu, Finland.
- ^{27.} Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- ^{28.} Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- ^{29.} Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
- ^{30.} Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

^{31.} Institut National de la Santé et de la Recherche Médicale (INSERM) Research Center for Epidemiology and Biostatistics (U897) Team–Neuroepidemiology, Bordeaux, France.

^{32.} Department of Neurology, University Hospital Essen, Essen, Germany.

^{33.} Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland.

- ^{34.} Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland.
- ^{35.} 23andMe, Mountain View, California, USA.

Supplemental References

- Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. (2013): Meta-Analysis of 74,046 Individuals Identifies 11 New Susceptibility Loci for Alzheimer's Disease. Nat Genet. 45:1452-1458.
- 2. Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch KP, *et al.* (2010): Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder. *J Am Acad Child Adolesc Psychiatry*. 49:884-897.
- 3. Psychiatric GCBDWG (2011): Large-Scale Genome-Wide Association Analysis of Bipolar Disorder Identifies a New Susceptibility Locus near Odz4. *Nat Genet*. 43:977-983.
- 4. Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, Breen G, *et al.* (2013): A Mega-Analysis of Genome-Wide Association Studies for Major Depressive Disorder. *Mol Psychiatry*. 18:497-511.
- 5. Anttila V, Winsvold BS, Gormley P, Kurth T, Bettella F, McMahon G, *et al.* (2013): Genome-Wide Meta-Analysis Identifies New Susceptibility Loci for Migraine. *Nat Genet.* 45:912-917.
- 6. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, *et al.* (2011): Genetic Risk and a Primary Role for Cell-Mediated Immune Mechanisms in Multiple Sclerosis. *Nature*. 476:214-219.
- 7. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S, *et al.* (2013): Genome-Wide Association Analysis Identifies 13 New Risk Loci for Schizophrenia. *Nat Genet.* 45:1150-1159.
- 8. Schizophrenia Working Group of the Psychiatric Genomics C (2014): Biological Insights from 108 Schizophrenia-Associated Genetic Loci. *Nature*. 511:421-427.
- 9. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, *et al.* (2010): Association Analyses of 249,796 Individuals Reveal 18 New Loci Associated with Body Mass Index. *Nat Genet.* 42:937-948.
- 10. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, *et al.* (2010): Hundreds of Variants Clustered in Genomic Loci and Biological Pathways Affect Human Height. *Nature.* 467:832-838.
- 11. Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V, *et al.* (2010): Meta-Analysis Identifies 13 New Loci Associated with Waist-Hip Ratio and Reveals Sexual Dimorphism in the Genetic Basis of Fat Distribution. *Nat Genet.* 42:949-960.

- 12. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, *et al.* (2011): Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk. *Nature*. 478:103-109.
- Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. (2010): Biological, Clinical and Population Relevance of 95 Loci for Blood Lipids. *Nature*. 466:707-713.
- 14. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, *et al.* (2010): Genome-Wide Meta-Analysis Increases to 71 the Number of Confirmed Crohn's Disease Susceptibility Loci. *Nat Genet.* 42:1118-1125.
- 15. Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, *et al.* (2010): Multiple Common Variants for Celiac Disease Influencing Immune Gene Expression. *Nat Genet.* 42:295-302.
- 16. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP, *et al.* (2010): Genome-Wide Association Study Meta-Analysis Identifies Seven New Rheumatoid Arthritis Risk Loci. *Nat Genet.* 42:508-514.
- 17. Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M, Taylor KD, *et al.* (2011): Meta-Analysis Identifies 29 Additional Ulcerative Colitis Risk Loci, Increasing the Number of Confirmed Associations to 47. *Nat Genet.* 43:246-252.
- 18. Grabner CP, Price SD, Lysakowski A, Cahill AL, Fox AP (2006): Regulation of Large Dense-Core Vesicle Volume and Neurotransmitter Content Mediated by Adaptor Protein 3. *Proc Natl Acad Sci U S A*. 103:10035-10040.
- 19. Weinberg MS, Barichievy S, Schaffer L, Han J, Morris KV (2007): An Rna Targeted to the Hiv-1 Ltr Promoter Modulates Indiscriminate Off-Target Gene Activation. *Nucleic Acids Res.* 35:7303-7312.
- 20. Guarguaglini G, Duncan PI, Stierhof YD, Holmström T, Duensing S, Nigg EA (2005): The Forkhead-Associated Domain Protein Cep170 Interacts with Polo-Like Kinase 1 and Serves as a Marker for Mature Centrioles. *Mol Biol Cell*. 16:1095-1107.
- 21. Girirajan S, Dennis Megan Y, Baker C, Malig M, Coe Bradley P, Campbell Catarina D, *et al.* (2013): Refinement and Discovery of New Hotspots of Copy-Number Variation Associated with Autism Spectrum Disorder. *Am J Hum Genet.* 92:221-237.
- Nowakowska BA, Obersztyn E, Szymanska K, Bekiesinska-Figatowska M, Xia Z, Ricks CB, et al. (2010): Severe Mental Retardation, Seizures, and Hypotonia Due to Deletions of Mef2c. Am J Med Genet B Neuropsychiatr Genet. 153b:1042-1051.

- 23. Duong L, Klitten LL, Moller RS, Ingason A, Jakobsen KD, Skjodt C, *et al.* (2012): Mutations in Nrxn1 in a Family Multiply Affected with Brain Disorders: Nrxn1 Mutations and Brain Disorders. *Am J Med Genet B Neuropsychiatr Genet.* 159b:354-358.
- 24. Amaral PP, Neyt C, Wilkins SJ, Askarian-Amiri ME, Sunkin SM, Perkins AC, *et al.* (2009): Complex Architecture and Regulated Expression of the Sox2ot Locus During Vertebrate Development. *RNA*. 15:2013-2027.
- 25. Sartoris S, Brendolan A, Degola A, Testi MG, Chignola R, Scarpa A, *et al.* (2000): Analysis of Ciita Encoding Air-1 Gene Promoters in Insulin-Dependent Diabetes Mellitus and Rheumatoid Arthritis Patients from the Northeast of Italy: Absence of Sequence Variability. *Hum Immunol.* 61:599-604.
- 26. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, *et al.* (2010): A Draft Sequence of the Neandertal Genome. *Science*. 328:710-722.
- 27. Prufer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, *et al.* (2014): The Complete Genome Sequence of a Neanderthal from the Altai Mountains. *Nature*. 505:43-49.
- 28. Kulski JK, Gaudieri S, Bellgard M, Balmer L, Giles K, Inoko H, *et al.* (1997): The Evolution of Mhc Diversity by Segmental Duplication and Transposition of Retroelements. *J Mol Evol.* 45:599-609.
- 29. Storey JD (2003): The Positive False Discovery Rate: A Bayesian Interpretation and the Q-Value. *Ann Stat.* 31:2013-2035.