
Structure Shapes Dynamics and Directionality1

in Diverse Brain Networks:2

Mathematical Principles and Empirical3

Confirmation in Three Species4

Supplementary Text5

Joon-Young Moon1, Junhyeok Kim2, Tae-Wook Ko3,6

Minkyung Kim2, Yasser Iturria Media4, Jee-Hyun Choi5,7

Joseph Lee1, George A. Mashour1, and UnCheol Lee1
8

1Center for Consciousness Science and Department of9

Anesthesiology, University of Michigan Medical School, USA10

2Department of Physics, Pohang University of Science and11

Technology, Pohang, Republic of Korea12

3National Institute for Mathematical Sciences, Daejeon,13

Republic of Korea14

4Montreal Neurological Institute, McGill University, Canada15

5Korea Institute of Science and Technology, Seoul, Republic of16

Korea17



Contents18

1 Derivation of phases for the Kuramoto model in complex19

networks 220

Kuramoto model as a general model for a system of coupled oscil-21

lators in networks . . . . . . . . . . . . . . . . . . . . . . . . . 222

Mean-field approximation method applied to the model . . . . . . . 423

Local order parameter method applied to the model . . . . . . . . . 724

Relationship between directed Phase Lag Index and phase . . . . . 1125

2 Experimental analysis 1226

Construction of the mouse structural network . . . . . . . . . . . . 1227

3 Supplementary Figures Information 1428

1



Here we provide details regarding the analysis summarized in the main29

manuscript. In section 1, we derive the results of the mathematical anal-30

ysis performed for the coupled oscillator model on complex networks. We31

begin with the description of the model we use - the Kuramoto model - and32

state that the model is the lowest-order approximation of the more detailed33

neural mass models and thus can be used to gain insights into how more real-34

istic models behave. We then proceed to the main results: the derivations of35

the phase of each oscillator in the networks by mean-field approximation and36

local order parameter methods. We also provide an argument for the idea37

that knowing the relative phase of each oscillator is qualitatively equivalent38

to knowing the directed phase lag index (dPLI) with high probability. In39

section 2, we provide more information about the experimental analysis for40

brain networks of different species. We begin with the process of constructing41

the structural brain network of mouse. Lastly, we give descriptions for the42

Supplementary Figures 1-7.43

44

1 Derivation of phases for the Kuramoto model45

in complex networks46

In this section we describe in detail the mathematical analysis performed for47

the coupled oscillator model in complex networks. We first start with the48

statement of the model, then move on to derive the phases for each oscilla-49

tor with two methods. Lastly, we present an argument for the qualitative50

equivalence between relative phase and dPLI value for each oscillator.51

Kuramoto model as a general model for a system of52

coupled oscillators in networks53

The first aim of this study is to refine the relationship of network topology54

and the dynamics of oscillators in the network in order to calculate precisely55

the phase of each oscillator in terms of network measures such as degree. We56

start by constructing a coupled oscillatory network model with the activity57

at each node of the network represented as a single phase variable:58

2



θ̇j(t) = ωj + S

N∑
k=1

AjkH(θk(t− τ)− θj(t)), j = 1, 2, ..., N, (S1)

where θ̇j(t) is the phase of oscillator j at time t, ωj is the natural frequency59

of the oscillator j, N is the total number of oscillators, S is the overall cou-60

pling strength between oscillators,Ajk is the coupling between oscillator k61

to oscillator j, and τ is the finite transmission delay between different os-62

cillators emulating the delay of signal propagation between two neural mass63

populations. H() is the coupling function. Equation (S1) is a general form of64

coupled oscillators with time delays between them, giving the time evolution65

of the phase of oscillators. At a sufficient coupling strength S, coupled iden-66

tical oscillatory systems can be reduced to such a phase model in general [1].67

Ref. [4] states that for a given coupled oscillatory system with time de-68

lays, if the delay between the coupled oscillators is smaller in the order of69

magnitude compared to the oscillator’s oscillatory period, then there will70

be no explicit time delay: rather, the delay will appear as a simple phase71

difference term β in the coupling function.72

Incorporating the result of ref. [4] and also using sine function as the73

coupling function, H() = sin(), we arrive at the following so-called coupled74

Kuramoto-type oscillator model:75

θ̇j = ωj + S
N∑
k=1

Ajk sin(θk − θj − β), j = 1, 2, ..., N. (S2)

The difference compared to the original Kuramoto model is that now the76

coupling among oscillators is selectively represented by Ajk [2, 3]. This77

Kuramoto-type oscillator model is the canonical model for oscillators, in the78

sense that it is the first-order approximation to the more general from of equa-79

tion(S1). In our text we will refer to our Kuramoto-type oscillator model as80

simply Kuramoto model for the brevity.81

We note that, for the purpose of our analysis, the natural frequencies will82

be larger than zero and the nonzero phase delay β will be small compared83

to the given natural frequencies ωj to assume that β ∈ (0, π/2). This will be84

the range of the parameters under our analysis.85

We proceed to analytically predict the phases θj from equation (S2).86
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Mean-field approximation method applied to the model87

By utilizing the mean-field approximation (MFA) technique and self-consistency88

argument described in our previous works [5, 6], we can simplify equation89

(S2). Assuming that the oscillator connections are random, the following90

approximation is applied [5, 7]:91

S

N∑
k=1

AjkH(θk − θj) ≈
Snj

N

N∑
k=1

H(θk − θj). (S3)

Here, nj is the sum of coupling to the oscillator j defined as nj =
∑N

k=1Ajk.92

With equation (S3), equation (S2) is approximately equivalent to the93

following equation:94

θ̇j = ωj +
Snj

N

N∑
k=1

sin(θk − θj − β), j = 1, 2, ..., N. (S4)

The aim of this subsection is to obtain the solution for θj in equation95

(S4). We first introduce global order parameter R:96

ReiΘ =
1

N

N∑
k=1

eiθk . (S5)

R will have values between 0 and 1. 0 indicates uniform incoherence, and 197

indicates in-phase synchrony. In the state of in-phase synchrony, the oscilla-98

tors of the system will oscillate with same frequency and same phase.99

Let Ω denote the frequency of the population oscillation of equation (S5)100

after the system approaches a stationary state. Also let φj = θj − Ωt rep-101

resent the phase of oscillator j relative to the average phase of the system.102

Equation (S4) can be rewritten using the order parameter as follows:103

φ̇j = ωj − Ω + SnjR sin(Φ− φj − β), j = 1, 2, ..., N, (S6)

where Φ = Θ− Ωt.104

This system will exhibit a partially locked state, studied in our previous105

work [5, 6]. For a non-zero coupling strength S, after a sufficient period of106

time at which the system reaches a stable state, there will exist two groups of107

oscillators with different behaviors. The oscillators in the phase-locked group108

will have the same frequency, and thus their phase differences will remain109
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constant at any given time point. The oscillators in the drifting group will110

not be able to phase-lock with the first group of oscillators and will have dif-111

ferent frequencies. Thus, they will drift with different phase differences from112

a given time point to a next time point. The condition for the oscillators to113

be phase-locked is φ̇j = 0. In order to satisfy this condition, the amplitude114

of the coupling terms must be larger than the inherent terms:115

SnjR > |ωj − Ω|. (S7)

From the previous analysis of ref. [6], we know that for our set of param-116

eters ω > 0 and β ∈ (0, π/2), ωj − Ω will be larger than zero. This means117

that the average frequency of the oscillators will be lower than the initially118

given frequencies: the oscillators slow down as they synchronize with each119

other. If we assume that the initial frequencies ωj for each node j are given120

identically (ωj = ω for j = 1, 2, ..., N), we can write the following expression121

as the condition for the oscillator j to phase-lock:122

nj >
ω − Ω

SR
≡ nm. (S8)

The oscillators that phase-lock are the ones with their nj > nm,123

Dl =

{
j : nm < nj

}
. (S9)

The oscillators that drift are the ones with their nj < nm,124

Dd =

{
j : nj < nm

}
. (S10)

125

126

The oscillators satisfying the condition (S9) will asymptotically approach127

a stable solution φj
∗ obtained from the following equation:128

ω − Ω = SnjR sin(φj
∗ − Φ + β). (S11)

We can rearrange this equation to the following form:129

φ∗
j = sin−1(

∆

SnjR
) + Φ− β, (S12)

where ∆ = ω − Ω.130

5



Oscillators with the condition (S10) cannot satisfy the condition φ̇j = 0.131

They will drift monotonically without locking. We can describe their behav-132

ior by invariant probability density ρ(φ, n) in the stationary state. In the133

stationary state the invariant probability density shall satisfy the condition134

ρ(φ, n)v = constant , where v is the instantaneous frequency φ̇.135

From this condition, we obtain the following probability density:136

ρ(φ, n) =
C

∆+ SnR sin(Φ− φ− β)
, (S13)

where the normalization constant C can be calculated from
∫ 2π

0
ρ(φ)dφ = 1 :137

C =
1

2π

√
∆2 − (SnR)2. (S14)

Equation (S12) gives the phase value for the phase-locked oscillators.138

Equation (S13) and (S14) give the phase distribution for the drifting oscilla-139

tors. Both of the equations can be solved given R and ∆. R and ∆ can be140

obtained in a similar way as described in ref. [5].141

In the rotating frame of oscillator populations with the frequency Ω, the142

order parameter contribution from the locked subpopulation can be written143

as the following:144

∫
Dl

dn g(n)eiφ
∗(n)

= e−iβeiΦ
∫
Dl

dn g(n)

×
√
(SnR)2 −∆2 +∆

SnR
,

(S15)

where Dl is the domain with SnRN > |∆| and g(n) is the distribution for n.145

The order parameter contribution from the drifting subpopulation can be146

calculated by using population density ρ(φ, n) of Eq. (S13).147
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∫
Dd

∫ 2π

0

dφ dn g(n)ρ(φ, n)eiφ

= ie−iβeiΦ
∫
Dd

dn
g(n)

SnR

[
∆

− sgn (∆)
√
∆2 − (SnR)2

]
,

(S16)

where
∫ 2π

0
dφ ρ(φ, n)eiφ is calculated using contour integration, and sgn(x) is148

the sign function. sgn(∆) appears for it determines which pole is inside the149

contour. Dd is the domain with SnRN < |∆|.150

The sum of the contributions from the locked subpopulation (Eq. (S15))151

and from the drifting subpopulation (Eq. (S16)) together constitutes the152

order parameter ReiΦ in the rotating frame. For R and Φ independent of n,153

we obtain the following relation:154

R2 = ie−iβ

[∫
Dtot

g(n)

Sn
∆ dn

−i

∫
Dl

g(n)

Sn

√
(SnR)2 −∆2 dn

−
∫
Dd

g(n) sgn(∆)

Sn

√
∆2 − (SnR)2 dn

]
,

(S17)
where Dtot is the total range of n. This gives two independent equations for155

R and ∆, which can be solved numerically.156

Local order parameter method applied to the model157

In this section we introduce local order parameter method to calculate the158

phase for equation (S2). A similar method has been used for other sys-159

tems [8], and/or other models [9].160

We begin by introducing local order paramter r:161

rje
iΘj =

1

nj

N∑
k=1

Ajke
iθk . (S18)
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where nj is again the sum of coupling to the oscillator j defined as nj =162 ∑N
k=1 Ajk. Local order parameter rj of the oscillator j is a measure of syn-163

chrony among the oscillators connected to the oscillator j. The value will164

be 1 if they are in perfect synchrony and 0 if they are incoherent. Using the165

local order parameter rj, we can rewrite equation (S2) to the following form:166

θ̇j = ωj + Snjrj sin(Θj − θj − β), j = 1, 2, ..., N. (S19)

Unlike equation (S4) and (S6) using MFA, this equation (S19) is an exact167

restatement of the original equation (S2). The aim of this section is to solve168

this equation (S19) for the phase of each oscillator j, θj.169

We can use the change of variables utilizing Ω (the frequency of the pop-170

ulation oscillation of equation (S5) after the system approaches a stationary171

state). By letting φj = θj − Ωt , and Φj = Θj − Ωt, equation (S19) can be172

rewritten:173

φ̇j = ωj − Ω + Snjrj sin(Φj − φj − β), j = 1, 2, ..., N. (S20)

Again, the condition for the oscillators to be phase-locked is φ̇j = 0. The174

amplitude of the coupling terms for the oscillators must be larger than the175

inherent terms:176

Snjrj > |ωj − Ω|. (S21)

For our set of parameters ω > 0 and β ∈ (0, π/2), ωj − Ω will be larger177

than zero [6]. If we assume that the initial frequencies ωj for each node j178

are given identically (ωj = ω for j = 1, 2, ..., N), we can write the following179

expression as the condition for the oscillator j to phase-lock:180

njrj >
ω − Ω

S
≡ nl. (S22)

The oscillators that phase-lock are the ones with their nj > nl,181

Dl =

{
j : nl < njrj

}
. (S23)

The oscillators that drift are the ones with their nj < nl,182

Dd =

{
j : njrj < nl

}
. (S24)
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183

184

Unlike the condition for the case of the MFA, now the condition involves185

the local order parameter rj. It is no longer the case that the degree (or186

the weighted degree in the case of the weighted network) of the oscillator187

j, nj solely determines the dynamics of the oscillator j. Now the connected188

oscillators play a role via rj. Therefore, even though an oscillator has a degree189

less than nm (the threshold for the MFA), it is now possible to phase-lock if190

the oscillator has a large value of rj.191

From equation (S20), we can derive the exact expression for the phase of192

oscillator j. The oscillators satisfying the condition (S23) will asymptotically193

approach a stable solution φj
∗ obtained from the following equation:194

ω − Ω = Snjrj sin(φj
∗ − Φj + β). (S25)

Rearranging this equation, we arrive at the following form:195

φ∗
j = sin−1

(
∆

Snjrj

)
+ Φj − β, (S26)

where ∆ = ω − Ω.196

The oscillators with the condition (S24) cannot satisfy the condition φ̇j =197

0 and drift monotonically without locking. Their behavior is described by198

the invariant probability density ρ and the condition ρv = constant which199

should be satisfied in the stationary state. v is the instantaneous frequency200

φ̇.201

The probability density is obtained from the following condition:202

ρ(φ) =
C

∆+ Snjrj sin(Φj − φ− β)
, (S27)

and the normalization constant C can be calculated from
∫ 2π

0
ρ(φ)dφ = 1 :203

C =
1

2π

√
∆2 − (Snjrj)

2. (S28)

Equation (S26) gives the exact phase value for the phase-locked oscilla-204

tors. Equation (S27) and (S28) give the phase distribution for the drifting205

oscillators. These equations can now be solved in a similar way to that206

described in ref. [10, 11].207
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In the rotating frame of the oscillator populations with the frequency Ω,208

the local order parameter contribution from a locked subpopulation is written209

as the following:210

1

nj

∑
k∈Dl

Ajke
iφ∗

k

=
e−iβ

nj

∑
k∈Dl

Ajke
iΦk ×

√
(Snkrk)2 −∆2 + i∆

Snkrk
.

(S29)

The local order parameter contribution from the drifting subpopulation can211

be calculated by using population density ρ(φ) of Eq. (S27).212

1

nj

∑
k∈Dd

Ajk

∫ 2π

0

dφ ρ(φ)eiφ

=
ie−iβ

nj

∑
k∈Dd

Ajk
eiΦk

Snkrk
×
[
∆−

√
∆2 − (Snkrk)2

]
(S30)

where
∫ 2π

0
dφ ρ(φ)eiφ is calculated using contour integration.213

The sum of the contributions from the locked subpopulation (Eq. (S29))214

and from the drifting subpopulation (Eq. (S30)) constitutes the local order215

parameter rje
iΦj in the rotating frame. For rj, Φj and ∆, we obtain the216

following relation:217

rje
iΦj =

ie−iβ

nj

[
N∑
k=1

Ajk
eiΦk∆

Snkrk
− i

∑
k∈Dl

Ajk

eiΦk
√
(Snkrk)2 −∆2

Snkrk

−
∑
k∈Dd

Ajk

eiΦk
√

∆2 − (Snkrk)2

Snkrk

]
.

(S31)

This equation can be solved numerically, giving values to the unknowns rj,218

Φj and ∆ [10, 11].219
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Relationship between directed Phase Lag Index and phase220

We used directed phase lag index (dPLI) as the measure of directionality221

between oscillators [12]. This measure reflects which of the two signals is222

leading and which is lagging in phase. dPLI is defined as:223

dPLIjk = 〈sign{∆θjk(t)}〉t, (S32)

Here, sign{} function is defined to give either 1 if the argument of the func-224

tion is positive, -1 if the argument is negative, and 0 if the argument is225

0. ∆θij(t) is the instantaneous phase difference between two nodes i and j:226

∆θij(t) = θi(t) − θj(t). Thus sign{} function will yield 1 if ∆θij(t) > 0, -1227

∆θij(t) < 0, and 0 if ∆θij(t) = 0. The mean 〈〉t is taken over all t=1, 2, 3, …,228

n. Therefore, if on average, node i leads node j, 0 < dPLIij1; if node j leads229

node i, −1dPLIij < 0; and if there is no phase-lead/phase-lag relationship230

between nodes, dPLIij = 0.231

Given two oscillators, if they are phase-locked with each other, their phase232

difference can be written as the following:233

|∆θjk| = |θj − θk| = constant, (S33)

for any given time point t = 1, 2, ..., T . Therefore, given two phase-locked234

oscillators,235

if θj phase-leads θk, then dPLIjk = 1,

if θj phase-lags θk, then dPLIjk = −1.
(S34)

For each node θj, dPLIj is defined as the average of dPLIjk for all other236

nodes k:237

dPLIj =
1

N

N∑
k=1

dPLIjk =
1

N

N∑
k=1

〈sign{∆θjk(t)}〉t. (S35)

For each node j, the transformed phase φj = θj − Ωt represents the phase238

relative to the average oscillation:239

φj = θj − Ωt = θj −
1

N

N∑
k=1

θk =
1

N

N∑
k=1

∆θjk. (S36)
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For phase-locked oscillators, the phase differences between oscillators do not240

change over time. Therefore, the time-averaged value of dPLIjk will be equal241

to the value of dPLIjk at any given time point:242

dPLIj =
1

N

N∑
k=1

sign{∆θjk}. (S37)

For phase-locked oscillators, the difference between dPLIj and φj is reduced243

to the sign{} function. We can think of dPLIj as a counting function of how244

often φj phase-leads or phase-lags other oscillators, whereas φj is a weighted245

counting function taking into account how much they are leading or lagging.246

Therefore, for most probability distributions of the phase differences ∆θjk,247

these two measures will yield qualitatively similar values for each oscillator j.248

Only a very skewed probability distribution functions will yield qualitatively249

different values.250

251

2 Experimental analysis252

In this section, we provide more information on the experimental analysis of253

brain networks of different species. First we describe in depth the process of254

constructing the structural brain network of mouse.255

Construction of the mouse structural network256

Image acquisition257

In vivo DTI of adult mouse brains (n = 8) was performed using a modified 3D258

diffusion- weighted gradient and spin echo (DW-GRASE) sequence [13] with259

the following parameters: TE/TR = 33/500 ms, 2 signal averages, 20 imag-260

ing echoes (4 spin echoes distributed along the phase encoding direction and261

16 gradient echoes distributed along the slice selection direction) after each262

excitation with twin navigator echoes in the end for motion and phase correc-263

tions, 12 diffusion directions, b = 1000 s/mm2, field of view (FOV) = 16 mm264

× 16 mm × 17.6 mm, a matrix size of 128 × 128 × 140, and a native imaging265

resolution = 0.125 mm × 0.125 mm × 0.125 mm. This dataset is available at266

the Johns Hopkins Medical Institute, Laboratory of Brain Anatomical MRI,267

and was downloaded from http://cmrm.med.jhmi.edu [15]. All experimental268
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procedures were approved by the Animal Use and Care Committee at the269

Johns Hopkins University School of Medicine.270

271

Image Processing272

The 3D images acquired using the DW-GRASE sequence were reconstructed273

from raw data in MATLAB (www.mathworks.com) with navigator-based mo-274

tion and phase correction [14]. Using the log-linear fitting method imple-275

mented in DTIStudio (http://www.mristudio.org) [16], diffusion tensor was276

calculated at each pixel along with the apparent diffusion coefficient (ADC),277

fractional anisotropy (FA), primary eigenvector, axial diffusivity (‖, the pri-278

mary eigenvalue), and radial diffusivity (, the average of the secondary and279

tertiary eigenvalues). The adult mouse brain images were rigidly aligned to280

ex vivo mouse brain images in our MRI based mouse brain atlas [17] using the281

landmark based rigid transformation implemented in the DiffeoMap software282

(www.mristudio.org). In addition, we took the image volumes represent-283

ing the canonical Waxholm Space (WHS) mouse brain [18], which include284

T1-, T2*-, and T2-Weighted MR volumes, Nissl-stained optical histology,285

and a label volume describing 37 structures (all volumes are represented at286

21.5m isotropic resolution and are available at http://software.incf.org/soft-287

ware/waxholm-space). From the defined 37 structures we selected 24 gray288

matter regions. We separated left and right hemispheres, and because in this289

parcellation scheme the cerebral cortex is originally denoted as only one re-290

gion, we reparcellated both hemispheric cerebral cortex into 50 small regions291

(i.e., 50 for each hemispheric cortex) of approximately the same volume [19].292

Finally, the parcellation procedure resulted in a modified WHS parcellation293

scheme of 74 cortical and subcortical gray matter regions for each hemisphere.294

295

Axonal connectivity estimation and Network Construction296

Axonal trajectories between each pair of gray matter regions (defined by the297

modified WHS parcellation scheme) were estimated using a fully automated298

fiber tractography [20]. Tracking parameters used were: 200 mm as maxi-299

mum trace length and 900 as curvature threshold over voxel. Next, a whole300

brain undirected weighted network was created as follows: 1) a node was de-301

fined to represent each considered anatomic region, 2) an undirected arc aij302

between any nodes i and j was established with a corresponding arc weight303

w(aij), defined as the effective number of connected voxels (weighing by the304

obtained probability of connection) relative to the number of voxels over the305

surface of regions i and j, where each fiber path was quantified according to306
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the arithmetic mean of the inverse of its mean diffusivity values. Finally, the307

connectivity backbone was estimated for the created brain network [19, 21].308

First, a maximum spanning tree, which connects all nodes of the network309

such that the sum of its weights is maximal, was extracted; then, additional310

edges were added in order of their weight until the average node degree was311

4. All posterior network analysis and visual representations were based on312

the resultant networks (connectivity backbones).313

3 Supplementary Figures Information314

Supplementary Figure 1315

In our work, the analytically calculated phases and dPLIs were directly com-316

pared with those of EEG data from humans, macaques, and mice. For the317

visualization, we first mapped the averaged node degree, phase and dPLI val-318

ues at each node to their positions in the brains, both for analytical predic-319

tions and experimental analysis. Then the mapped values were extrapolated320

to make the topographic figures in Figure 4 of the main manuscript for all321

subjects. The pre-extrapolated channel level data are shown in Supplemen-322

tary Figure 1, for both analytical prediction (left column) and experimental323

analysis (right column).324

325

Supplementary Figure 2326

For macaque monkeys (three M. fuscata, and one M. mulatta), the data were327

freely acquired from Project Tycho (http://neurotycho.org/) from RIKEN [22].328

For each monkey, 128-channel electrocorticography (ECoG) of a single (left)329

hemisphere was recorded in the eyes-closed resting state. Since the four330

monkeys all have slightly different channel locations, we divided the left331

hemisphere of the cortex into 48 regions by using the parcellation scheme332

developed by Lewis and van Essen, and calculated the average value of chan-333

nels for each region [23]. The 48 regional values were then compared across334

monkeys. The parcellation scheme is shown is Supplementary Figure 2. The335

dotted lines in gray represent the borders between each region. As an exam-336

ple, the dPLI values at each channel for all monkeys are shown in the figure,337

before the averaging process.338

339

Supplementary Figure 3340

We compared the values from the analytic prediction from mean-field approx-341
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imation (MFA) method, local order parameter (LOP) method, and experi-342

mental analysis (EXP). We computed Spearman correlations for the degree,343

phase and dPLI values between each analysis. The results are shown in344

Supplementary Figure 3. Each element in the matrices represents the corre-345

lation values between each analysis. Note that the highest correlation value346

between different analysis was LOP and EXP for the dPLI of human left347

hemisphere (0.89). The lowest value was between LOP and EXP for the348

phase of macaque (0.28).349

350

Supplementary Figure 4-7351

The topography figures for the data of individual subjects from human left352

hemisphere and entire hemisphere (Supplementary Figure 4 and 5), macaque353

(Supplementary Figure 6) and mouse (Figure 7) are shown, before the av-354

eraging was performed (Figure 4 in the main manuscript shows the results355

after averaging across subjects). We note that a few individual subjects show356

opposite patterns such as the phase and dPLI of human subjects 2 and 4,357

and the degree of mouse subject 2. These deviations are expected, since the358

predictions are all done based on structural networks averaged over a large359

number of subjects for each species, and the experimental data are from360

different subjects altogether. Therefore our prediction would become more361

accurate when compared to empirical data averaged over a large number of362

subjects. Simultaneous recordings of both anatomical network and EEG for363

the same individual could also improve the predictability.364

365

Supplementary Figure 8366

We also performed our simulation with distance-dependent delays between367

each node of the brain network. The topography figures are shown for368

phases and dPLIs in Supplementary Figure 8 (a) and (b). We also com-369

pared the values from the analytic prediction from local order parameter370

(LOP) method, distance-dependent delays simulations (SIM), and experi-371

mental analysis (EXP). We computed Spearman correlations for the phase372

and dPLI values between each analysis. The results are shown in Supple-373

mentary Figure 8 (c) and (d). Each element in the matrices represents the374

correlation values between each analysis. Note that the correlation values375

between SIM and EXP are usually higher than the values between LOP and376

EXP.377

378
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Supplementary Figure 2: Parcellation of the macaque brain. The parcellation scheme for the macaque 
brain by Lewis and Essen from ref. 18 is shown as gray dotted lines (---). The dPLI values for each 
channel for all 4 macaque subjects are shown here with the colors ranging from blue (small dPLI value) 
to red (large dPLI value). The channel locations are different from subject to subject. 
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Supplementary Figure 3: Spearman correlation values between analytical prediction and
experimental data. Each matrix elements shows the corresponding Spearman correlation 
between each dataset. The higher the value is for each element, the darker the color for the 
background of the element. The following abbreviations are used throughout: Str (structural), 
Ftn (functional), EXP (experimental), MFA (mean-field approximation), and LOP (local order 
parameter). 
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Supplementary Figure 4: Topographic plots of degree, phase, and dPLIfor brain networks of individual human subjects – side view. 
Topographic figures from empirical analysis of individual human subjects are shown, from left side view.
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Supplementary Figure 5: Topographic plots of degree, phase, and dPLIfor brain networks of individual human subjects – top view.
Topographic figures from empirical analysis of individual human subjects are shown, from top view.
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Supplementary Figure 6: Topographic plots of degree, phase, and dPLI for brain networks of individual macaque. Topographic figures from 
empirical analysis of individual macaque subjects are shown, from left side view.
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Supplementary Figure 7: Topographic plots of degree, phase, and dPLI for brain networks of individual mouse. Topographic figures from 
empirical analysis of individual mouse subjects are shown, from top view.
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Supplementary Figure 8: Topographic plots of phase and dPLI for the heterogeneous time delay simulations as well as Spearman correlation 
values between the simulations and experimental data. (a) and (b) are the topographic plots for node phase and dPLI for the distance-dependent 
time delay simulations of human, macaque, and mouse. (c) and (d) are the Spearman correlation values between the analytic predictions using the 
local order parameter method (LOP), the distance-dependent time delay simulations (SIM) and the experimental data (EXP). Each matrix element 
shows the corresponding Spearman correlation between each dataset. The higher the value is for each element, the darker the color for the 
background of the element. 


