Sonogashira diversification of unprotected halotryptophans, halotryptophan containing tripeptides; and generation of a new to nature bromo-natural product and its diversification in water

M. J. Corr,^a S. V. Sharma,^a C. Pubill-Ulldemolins,^a R. T. Bown,^a P. Poirot,^b D. R. Smith,^a C. Cartmell,^a A. Abou Fayad, ^c R. J. M. Goss^{a*}

Supporting Information

General Synthetic Experimental	Page number	2
Experimental For the synthesis of:		
Sodium 2'-(Dicyclohexylphosphanyl)-2,6-diisopropyl-(1,1-biphenyl)-4-sulfonate	3	
(sXPhos) 12^2		4
Standard Reaction Procedure of 5-bromoindole 15 under reflux:		5
Microwave Reaction Procedure of 5-bromoindole 15:		5
Standard Microwave Reaction Procedure for Tryptophans:		5
(S)-2-Amino-3-(5-(phenylethynyl)-1H-indol-3-yl)propanoic acid 19		6
(S)-2-Amino-3-5-((3-fluorophenyl)ethynyl)-1 <i>H</i> -indol-3-yl)propanoic acid 36		7
(S)-2-Amino-3-5-((4-cyanophenyl)ethynyl)-1 <i>H</i> -indol-3-yl)propanoic acid 39		7
(S)-2-Amino-3-(5-(thiophen-3-ylethynyl)-1H-indol-3-yl)propanoic acid 42		8
(S)-2-Amino-3-(5-(4-hydroxybut-1-yn-1-yl)-1H-indol-3-yl)propanoic acid 45		9
(S)-2-Amino-3-(5-(4-phenylbut-1-yn-1-yl)-1H-indol-3-yl)propanoic acid 48		9
(S)-2-Amino-3-(5-(octa-1,7-diyn-1-yl)-1H-indol-3-yl)propanoic acid 51		10
(S)-2-Amino-3-(3-cyclohexylprop-1-yn-1-yl)-1 <i>H</i> -indol-3-yl)propanoic acid 54		10
<i>N</i> -Boc-7-bromo- <i>S</i> -tryptophan 66		11
7-Bromo-L-tryptophan methyl ester hydrochloride 67		12
<i>N</i> -Boc-Ala-Phe-OMe 68		12
H-Ala-Phe-OMe.TFA 69		13
<i>N</i> -Boc-Trp-(7-Br)-Ala-Phe-OMe 70		14
H-Trp-(7-Br)-Ala-Phe-OH 59		15
N-Boc-Trp-(7-Br)-Phe-OMe 71		16
<i>N</i> -Boc-Ala-Trp-(7-Br)-Phe-OMe 72		17
H-Ala-Trp-(7-Br)-Phe-OH 58		18
((S)-2-((S)-2-Aminopropanamido)-3-(7-((3-fluorophenyl)ethynyl)-1H-indol-3-yl)propanoyl)-L-	
phenylalanine 60		19
((S)-2-Amino-3-(7-((3-fluorophenyl)ethynyl)-1H-indol-3-yl)propanoyl)		
-L-alanyl-L-phenylalanine 61		20
Enantiopurity analysis		21
General Biological Experimental		21
<i>Kitasatospora cystargenia</i> culturing, and precursor directed biosynthesis of n	ew to nature br	omo
cvstargamide	22	
Upsacled feeding with selected 6-bromotryptophan at 0.25 mM to 8L culture		30
LC-MSMS ananysis of cystargamide and novel cystargamide species		32
Cross-coupling of bromo-cystargamide		85
LC-MSMS ananysis of cross-coupled cystargamide		86

NMR spectra for small tryptophan, peptide derivatives and ¹⁹F NMR analysis of cross-coupled cystargamide

General Chemical Experimental

All reagents were purchased from commercial suppliers and were used without further purification unless otherwise stated. Dry dichloromethane was dried and deoxygenated with an MBraun SPS-800 solvent purification system and the moisture content of the solvent was analysed using a Karl Fischer coulometer (Metler Toledo DL32).

Proton NMR (¹H), carbon NMR (¹³C), phosphorus NMR (³¹P) and fluorine NMR (¹⁹F) were recorded on a Bruker Ascend 500 (500 MHz), Bruker 500 UltraShield (500 MHz), Bruker Ascend 700 (700 MHz), Bruker 400 UltraShield (400 MHz) or a Bruker UltraShield (300 MHz) spectrometer. Fluorine NMR were also recorded as proton decoupled (¹⁹F{¹H}). Phosphorus NMR (³¹P{¹H}) was recorded as proton decoupled. Using an HSQC experiment with multiplicity editing, the ¹³C NMR signals were assigned to CH₃, CH₂, CH and C. The NMR experiments were carried out in deuterochloroform (CDCl₃) deuterated water (D₂O), deuterated DMSO (*d*₆-DMSO) or deuterated methanol (*d*₄-MeOH). The chemical shifts (*ð*) are quoted in parts per million (ppm). Multiplicities are abbreviated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; b, broad for the ¹H NMR, ¹⁹F NMR, ¹⁹F{¹H} NMR and ¹³C NMR spectra. Coupling constants are reported in Hertz (Hz).

Flash chromatography was performed using Davisil silica gel LC60A (40-63 micron). Thin layer chromatography (TLC) was performed using aluminium sheets of silica gel 60 F254 and was visualised under a Mineralight model UVGL-58 lamp (254 nm). The plates were developed with acidic methanolic vanillin solutions, ethanolic phosphomolybdic acid solutions or basic potassium permanganate solutions.

High and low resolution mass spectra were recorded at the University of St Andrews on a Waters Micromass LCT time of flight mass spectrometer coupled to a Waters 2975 HPLC system or on an Orbitrap ELOS pro. Optical rotation values were recorded in methanol on a Perkin Elmer Model 341 Polarimeter using a Na/Hal lamp (589 nm) at 20 °C in a 1 dm polarimeter cell and are given in 10⁻¹ deg cm² g⁻¹. Freeze drying was carried out on a Scanvac CoolSafeTM freeze dryer. Microwave reactions were carried out on a Biotage Initiator+.

5-Bromotryptophan 18, 5-chlorotryptophan 20, 6-bromotryptophan 21, 7-bromotryptophan 22 and 7-iodotryptophan 23 were prepared as described previously.¹

HPLC purification was carried out on an XBridge Prep Phenyl 5 µm column (10x250 mm) on a Gilson HPLC system (Gilson 322 pump, Gilson UV/Vis-151 detector, Gilson 402 syringe pump). UPLC analysis was carried out on a Waters Acquity H-Class UPLC system fitted with an Acquity UPLC BEH C18 column (1.7 μm, 2.1x50 mm).

For purification of the cross coupling products from 5-bromotryptophan **18**, the following program was used: 10% acetonitrile/water for 5 min, 10% acetonitrile/water to 60% acetonitrile/water over 21 minutes, 60% acetonitrile/water to 90% acetonitrile/water over 5 minutes, 90% acetonitrile/water to 10% acetonitrile/water over 5 min, 10% acetonitrile/water for 4 min. Total run time 40 minutes. Flowrate 5 mL/min, detection wavelength 254 nm.

For purification of the cross coupling products from tripeptides **58** and **59**, the following program was used: 10% acetonitrile/water for 5 min, 10% acetonitrile/water to 60% acetonitrile/water over 30 minutes, 60% acetonitrile/water to 90% acetonitrile/water over 5 minutes, 90% acetonitrile/water to 10% acetonitrile/water over 5 min, 10% acetonitrile/water for 4 min. Total run time 50 minutes. Flowrate 5 mL/min, detection wavelength 330 nm.

Purification of selected peptides was carried out on a Biotage Isolera Four using reverse-phase SNAP C18 12 g column cartridges. The purification was carried out using water/methanol on the following gradient: 12 mL/min elution, 2% methanol/water for 1.15 min, $2 \rightarrow 15\%$ methanol/water for 1.15 min, 15% methanol/water for 5.15 min, $15 \rightarrow 95\%$ methanol/water for 15 min, 95% methanol/water for 3.45 min. The collection wavelength was set a 254 nm.

UPLC analysis was carried out on a Waters Acquity H-Class UPLC system.

A 1:1 mixture of water:acetonitrile was freshly prepared before each set of cross coupling reactions. The solvent was degassed by bubbling nitrogen through the solutions for at least 15 minutes, then storing under nitrogen.

The IUPAC names of some compounds were obtained using ChemBioDraw Ultra (version 13.0.2.3012).

2'-(Dicyclohexylphosphanyl)-2,6-diisopropyl-(1,1-biphenyl)-4-sulfonate

(sXPhos) 12²

Sodium

Sulfuric acid (1.0 mL) and fuming sulfuric acid (3.0 mL) were added to a suspension of XPhos (433 mg, 0.9 mmol, 1.0 eq) in dry DCM (3 mL) at 0 °C under nitrogen. The reaction was allowed to warm to r.t. and stirred for 24 h. The reaction mixture was cooled to 0 °C and crushed ice (10 g) was added. The reaction mixture was neutralised to pH 7 using sodium hydroxide solution (6 N, ~25 mL). The reaction mixture was extracted with DCM (3 x 50 mL) and the solvent was removed in vacuo. The residue was dissolved in cold methanol (20 mL), filtered, the filtrate collected and the solvent removed in vacuo to give sodium 2'-(dicyclohexylphosphanyl)-2,6-diisopropyl-(1,1-biphenyl)-4-sulfonate 12 (0.49 g, 100%) as a tan solid; ¹H NMR (500 MHz, d_4 -MeOH) $\delta = 0.98$ (6H, d, J(H,H) = 6.7 Hz, CH₃), 1.08-1.31 (16H, m, CH₃, CH₂), 1.55-1.89 (12H, m, CH, CH₂), 2.45-2.50 (2H, m, CH), 7.11-7.13 (1H, m, ArH), 7.38-7.47 (2H, m, ArH), 7.65-7.69 (3H, m, ArH); ¹³C NMR (125 MHz, d_4 -MeOH) $\delta =$ 23.1 (CH₃), 25.9 (CH₃), 27.5 (CH₂), 28.3 (d, *J*(C,P)= 8.9 Hz, CH₂), 28.5 (d, *J*(C,P)= 11.4 Hz, CH₂), 30.6 (d, J(C,P)= 12.0 Hz, CH₂), 31.9 (CH), 32.3 (d, J(C,P)= 16.1 Hz, CH₂), 35.6 (d, *J*(C,P)= 15.4 Hz, CH), 121.2 (CH), 128.0 (CH), 129.1 (CH), 132.3 (d, *J*(C,P)= 6.1 Hz, CH), 133.8 (CH), 137.2 (d, J(C,P)= 17.6 Hz, C), 142.7 (C), 145.5 (C), 147.5 (C), 147.7 (C), 148.3 (C); ${}^{31}P{}^{1}H$ NMR (162 MHz, d_4 -MeOH) $\delta = -11.91$ (1P, s); MS (ESI) 513 (100) [M-Na]⁻; HRMS: m/z calcd for C₃₀H₄₂O₃P₁S₁ [M-Na]⁻: 513.2598; found: 513.2596.

Standard Reaction Procedure of 5-bromoindole 15 under reflux:

5-Bromoindole **15** (20 mg, 0.1 mmol, 1.0 eq), *bis*(acetonitrile)dichloropalladium (II) (variable, see Table 1 in main text), sXPhos **12** (variable, see Table 1 in main text) and cesium carbonate (81 mg, 0.26 mmol, 2.5 eq) were added to a flask fitted with a reflux condenser under nitrogen. Degassed water/acetonitrile (1:1, 2 mL) was added to the flask, followed by the liquid alkyne substrate (variable, see Table 1 in main text). The reaction mixture was heated at 100 °C for 18 h. The reaction mixture was then cooled to r.t.

For analysis of the reaction conversions, 0.2 mL of reaction mixture was removed from the well-stirred reaction mixture and the solvent was removed *in vacuo*. The residue was dissolved in d_4 -MeOH (0.7 mL) and analysed by ¹H NMR.

Microwave Reaction Procedure of 5-bromoindole 15:

5-Bromoindole **15** (20 mg, 0.1 mmol, 1.0 eq), *bis*(acetonitrile)dichloropalladium (II) (1.3 mg, 10 μ mmol, 5 mol%), sXPhos **12** (8 mg, 30 μ mmol, 15 mol%) and cesium carbonate (81 mg, 0.26 mmol, 2.5 eq) were added to a microwave tube, which was then fitted with a suba seal. The flask was evacuated and flushed with nitrogen three times. Degassed water/acetonitrile (1:1, 2 mL) and acetonitrile (1.0 mL) were added to the microwave tube, followed by the liquid alkyne substrate (33 μ L, 0.3 mmol, 3.0 eq). The tube was sealed and heated at 100 °C for 2 h using a microwave.

For analysis of the reaction conversion, 0.2 mL of reaction mixture was removed from the wellstirred microwave tube and the solvent was removed *in vacuo*. The residue was dissolved in d_4 -MeOH (0.7 mL) and analysed by ¹H NMR.

Standard Microwave Reaction Procedure for Tryptophans:

The halo-tryptophan obtained from our previously reported procedure¹ (28 mg, 0.1 mmol, 1.0 eq for bromotryptophans, 33 mg 0.1 mmol, 1.0 eq for 7-iodotryptophan), *bis*(acetonitrile)dichloropalladium (II) (1.3 mg, 10 μ mol, 5 mol%), sXPhos **12** (8 mg, 30 μ mol, 15 mol%), (in the reaction with 4-cyanophenylacetylene **25**, 3.0 eq of the solid alkyne was also added at this stage) and cesium carbonate (81 mg, 0.26 mmol, 2.5 eq) were added to a microwave tube, which was then fitted with a suba seal. The flask was evacuated and flushed with nitrogen three times. Degassed water:acetonitrile (1:1, 2.0 mL) were added to the

microwave tube, followed by the liquid alkyne substrate (0.3 mmol, 3.0 eq). The tube was sealed and heated at 100 °C for 2 h using a microwave.

For analysis of the reaction conversions, 0.2 mL of reaction mixture was removed from the well-stirred microwave tube and the solvent was removed *in vacuo*. The residue was dissolved in d_4 -MeOH (0.7 mL) and analysed by ¹H NMR.

For purification of specified reactions, the reaction mixture was cooled to r.t. and diluted with water (6.0 mL). The reaction mixture was centrifuged (13,000 rpm, 16060 g, for 5 min). The ultrafiltrate was collected and purified by HPLC purification, as described above, in 1 mL injections. The appropriate HPLC fractions (generally eluted at 18-20 minutes) were collected and the solvent removed *in vacuo*. The residue was re-suspended in water (50-100 mL) and lyophilised to give the product.

(S)-2-Amino-3-(5-(phenylethynyl)-1H-indol-3-yl)propanoic acid 19

Using the standard procedure for tryptophans, 5-bromotryptophan **18** (28 mg, 0.1 mmol, 1.0 eq) and phenylacetylene **16** (33 μ L, 0.3 mmol, 3.0 eq) gave (*S*)-2-amino-3-(5-(phenylethynyl)-1*H*-indol-3-yl)propanoic acid **19** (29.4 mg, 97%) as a fluffy, white solid; [α]_D -41.1° (c 0.27, MeOH); ¹H NMR (500 MHz, *d*4-MeOH) δ = 3.03 (1H, dd, *J*(H,H)= 14.1, 8.4 Hz, C*H*_AH_B), 3.37 (1H, d, *J*(H,H)= 14.4 Hz, CH_AH_B), 3.68 (1H, bs, CH), 7.22 (1H, s, ArH), 7.26 (1H, dd, *J*(H,H)= 8.4, 1.5 Hz, ArH), 7.29-7.37 (4H, m, ArH), 7.48-7.51 (2H, m, ArH), 7.96 (1H, d, *J*(H,H)= 0.7 Hz, ArH); ¹³C NMR (125 MHz, *d*4-MeOH) δ = 31.0 (CH₂), 57.5 (CH), 87.4 (C), 92.5 (C), 111.9 (C), 112.5 (CH), 114.6 (C), 123.8 (CH), 125.6 (C), 125.96 (CH), 126.02 (CH), 128.7 (CH), 128.9 (C), 129.4 (CH), 132.2 (CH), 138.0 (C), 179.3 (CO); MS (ESI) 305 (100) [M+H]⁺, 288 (80); HRMS: *m/z* calcd for C₁₉H₁₇N₂O₂ [M+H]⁺: 305.1285; found: 305.1273.

The reaction was repeated to give 22.0 mg (73%) and 21.4 mg (70%) of the expected product **19** to give an average yield of 80% over three reactions.

(S)-2-Amino-3-5-((3-fluorophenyl)ethynyl)-1H-indol-3-yl)propanoic acid 36

Using the standard procedure for tryptophans, 5-bromotryptophan **18** (28 mg, 0.1 mmol, 1.0 eq) and 3-fluorophenylacetylene **24** (34 μ L, 0.3 mmol, 3.0 eq) gave (*S*)-2-amino-3-5-((3-fluorophenyl)ethynyl)-1*H*-indol-3-yl)propanoic acid **36** (32.2 mg, 100%) as a white solid; [*a*]_D -37.7° (c 0.26, MeOH); ¹H NMR (500 MHz, *d*₄-MeOH) δ = 3.14 (1H, dd, *J*(H,H)= 15.0, 8.9 Hz, *CH*_AH_B), 3.45-3.49 (1H, m, CH_AH_B), 3.81 (1H, dd, *J*(H,H)= 8.9, 3.8 Hz, CH), 7.07 (1H, ddd, *J*(H,H)= 9.0, 2.7 Hz, *J*(H,F)= 0.6 Hz, ArH), 7.22 (1H, ddd, *J*(H,H)= 2.7, 1.0 Hz, *J*(H,F)= 9.6 Hz, ArH), 7.25 (1H, s, ArH), 7.28-7.33 (2H, m, ArH), 7.35-7.40 (2H, m, ArH), 8.00 (1H, d, *J*(H,H)= 0.6 Hz, ArH); ¹³C NMR (125 MHz, *d*₄-MeOH) δ = 29.0 (CH₂), 56.9 (CH), 86.3 (C), 93.5 (C), 110.6 (C), 112.7 (CH), 114.3 (C), 115.8 (d, *J*(C,F)= 21.4 Hz, CH), 118.6 (d, *J*(C,F)= 22.9 Hz, CH), 123.8 (C), 126.2 (CH), 126.4 (CH), 127.6 (d, *J*(C,F)= 9.5 Hz, C), 128.3 (d, *J*(C,F)= 2.7 Hz, CH), 128.7 (C), 131.3 (d, *J*(C,F)= 8.8 Hz, C), 138.2 (C) 164.0 (d, *J*(C,F)= 244.8 Hz, CF), 175.7 (CO); ¹⁹F {¹H} NMR (470 MHz, *d*₄-MeOH) δ = -115.34 (1F, s); ¹⁹F NMR (376 MHz, *d*₄-MeOH) δ = -115.31 (1F, dddd, *J*(H,F)= 9.6, 8.5, 5.8, 0.6 Hz); MS (ESI) 323 (60) [M+H]⁺, 306 (50), 196 (80), 118 (100); HRMS: *m/z* calcd for C₁₉H₁₆F₁N₂O₂ [M+H]⁺: 323.1190; found: 323.1190.

The reaction was repeated to give 32.2 mg (100%) and 28.9 mg (90%) of the expected product **36** to give an average yield of 97% over three reactions.

(S)-2-Amino-3-5-((4-cyanophenyl)ethynyl)-1H-indol-3-yl)propanoic acid 39

Using the standard procedure for tryptophans, 5-bromotryptophan 18 (28 mg, 0.1 mmol, 1.0 eq) and 4-cyanophenylacetylene **25** (38 mg, 0.3 mmol, 3.0 eq) gave (*S*)-2-amino-3-5-((3-cyanophenyl)ethynyl)-1*H*-indol-3-yl)propanoic acid **39** (26.1 mg, 79%) as a brown solid; $[\alpha]_D$ -37.7° (c 0.30, MeOH); ¹H NMR (500 MHz, *d*₄-MeOH) δ = 3.19 (1H, dd, *J*(H,H)= 15.2, 8.7 Hz, CH_AH_B), 3.50 (1H, dd, *J*(H,H)= 15.2, 4.0 Hz, CH_AH_B), 3.81 (1H, dd, *J*(H,H)= 8.7, 4.0 Hz, CH), 7.28 (1H, s, ArH), 7.32 (1H, dd, *J*(H,H)= 8.4, 1.3 Hz, ArH), 7.40 (1H, d, *J*(H,H)= 8.4 Hz, CH)

ArH), 7.65-7.66 (2H, m, ArH), 7.72-7.74 (2H, m, ArH), 8.03 (1H, s, ArH); ¹³C NMR (125 MHz, *d*₄-MeOH) δ = 28.4 (CH₂), 56.7 (CH), 86.4 (C), 97.3 (C), 110.4 (C), 111.8 (C), 112.8 (CH), 113.8 (C), 119.5 (C), 124.2 (CH), 126.3 (CH), 126.7 (C), 128.6 (C), 130.6 (C), 132.9 (CH), 133.4 (CH), 138.5 (C), 174.6 (CO); MS (ESI) 330 (100) [M+H]⁺, 313 (90), 196 (90), 118 (100); HRMS: *m/z* calcd for C₂₀H₁₆N₃O₂ [M+H]⁺: 330.1237; found: 330.1237.

The reaction was repeated to give 25.9 mg (79%) and 26.0 mg (79%) of the expected product **39** to give an average yield of 79% over three reactions.

(S)-2-Amino-3-(5-(thiophen-3-ylethynyl)-1H-indol-3-yl)propanoic acid 42

Using the standard procedure for tryptophans, 5-bromotryptophan **18** (28 mg, 0.1 mmol, 1.0 eq) and 3-ethynylthiophene **26** (30 μ L, 0.3 mmol, 3.0 eq) gave (*S*)-2-amino-3-(5-(thiophen-3-ylethynyl)-1*H*-indol-3-yl)propanoic acid **42** (28.1 mg, 91%) as a fluffy, white solid; [α]_D -47.8° (c 0.23, MeOH); ¹H NMR (500 MHz, *d*₄-MeOH) δ = 3.03 (1H, dd, *J*(H,H)= 12.4, 7.9 Hz, C*H*_AH_B), 3.37 (1H, d, *J*(H,H)= 14.3 Hz, CH_AH_B), 3.68 (1H, bs, CH), 7.18 (1H, dd, *J*(H,H)= 5.0, 1.1 Hz, ArH), 7.21 (1H, s, ArH), 7.23 (1H, dd, *J*(H,H)= 8.4, 1.3 Hz, ArH), 7.33 (1H, d, *J*(H,H)= 8.4 Hz, ArH), 7.42 (1H, dd, *J*(H,H)= 5.0, 3.0 Hz, ArH), 7.54 (1H, dd, *J*(H,H)= 3.0, 1.1 Hz, ArH), 7.94 (1H, s, ArH); ¹³C NMR (125 MHz, *d*₄-MeOH) δ = 30.9 (CH₂), 57.5 (CH), 82.6 (C), 91.7 (C), 111.8 (C), 112.5 (CH), 114.6 (C), 123.6 (CH), 124.5 (C), 125.9 (CH), 126.0 (CH), 1264 (CH), 128.54 (CH), 128.9 (C), 130.8 (CH), 137.9 (C), 179.5 (CO); MS (ESI) 311 (100) [M+H]⁺, 294 (90); HRMS: *m/z* calcd for C₁₇H₁₅N₂O₂S₁ [M+H]⁺: 311.0849; found: 311.0837.

The reaction was repeated to give 19.8 mg (64%) and 22.1 mg (71%) of the expected product **42** to give an average yield of 75% over three reactions.

(S)-2-Amino-3-(5-(4-hydroxybut-1-yn-1-yl)-1H-indol-3-yl)propanoic acid 45

Using the standard procedure for tryptophans, 5-bromotryptophan **18** (28 mg, 0.1 mmol, 1.0 eq) and 3-butyn-1-ol **27** (23 μ L, 0.3 mmol, 3.0 eq) gave (*S*)-2-amino-3-(5-(4-hydroxybut-1-yn-1-yl)-1*H*-indol-3-yl)propanoic acid **45** (21.4 mg, 79%) as a fluffy, white solid; [α]_D -30.0° (c 0.23, MeOH); ¹H NMR (500 MHz, *d*₄-MeOH) δ = 2.61 (2H, t, *J*(H,H)= 6.9 Hz, CH₂), 2.93 (1H, dd, *J*(H,H)= 14.3, 8.2 Hz, CH_AH_B), 3.26 (1H, dd, *J*(H,H)= 14.3, 4.3 Hz, CH_AH_B), 3.53-3.56 (1H, m, CH), 3.73 (2H, t, *J*(H,H)= 7.0 Hz, CH₂), 7.12 (1H, dd, *J*(H,H)= 8.4, 1.4 Hz, ArH), 7.16 (1H, s, ArH), 7.25 (1H, d, *J*(H,H)= 8.4 Hz, ArH), 7.80 (1H, s, ArH); ¹³C NMR (125 MHz, *d*₄-MeOH) δ = 24.4 (CH₂), 32.1 (CH₂), 57.9 (CH), 62.1 (CH₂), 84.2 (C), 84.3 (C), 112.2 (CH), 112.5 (C), 115.1 (C), 123.6 (CH), 125.6 (CH), 126.0 (CH), 128.9 (C), 137.6 (C), 181.3 (CO); MS (ESI) 273 (100) [M+H]⁺, 256 (30), 198 (50), 196 (100), 158 (70); HRMS: *m/z* calcd for C₁₅H₁₇N₂O₃ [M+H]⁺: 273.1234; found: 273.1233.

The reaction was repeated to give 17.3 mg (64%) and 27.0 mg (99%) of the expected product **45** to give an average yield of 81% over three reactions.

(S)-2-Amino-3-(5-(4-phenylbut-1-yn-1-yl)-1H-indol-3-yl)propanoic acid 48

Using the standard procedure for tryptophans, 5-bromotryptophan **18** (28 mg, 0.1 mmol, 1.0 eq) and 4-phenyl-1-butyne **28** (42 μ L, 0.3 mmol, 3.0 eq) gave (*S*)-2-amino-3-(5-(4-phenylbut-1-yn-1-yl)-1*H*-indol-3-yl)propanoic acid **48** (8.9 mg, 27%) as a light brown solid; [α]_D -24.8° (c 0.27, MeOH); ¹H NMR (500 MHz, *d*₄-MeOH) δ = 2.67 (2H, t, *J*(H,H)= 7.5 Hz, CH₂), 2.90 (2H, t, *J*(H,H)= 7.5 Hz, CH₂), 3.00 (1H, dd, *J*(H,H)= 14.3, 8.6 Hz, C*H*_AH_B), 3.33-3.37 (1H, m, CH_A*H*_B), 3.67 (1H, bs, CH), 7.08 (1H, dd, *J*(H,H)= 8.3, 1.3 Hz, ArH), 7.17-7.21 (2H, m, ArH), 7.25-7.31 (5H, m, ArH), 7.75 (1H, s, ArH); ¹³C NMR (125 MHz, *d*₄-MeOH) δ = 23.1 (CH₂), 31.2 (CH₂), 37.1 (CH₂), 57.9 (CH), 84.4 (C), 87.4 (C), 112.0 (C), 112.7 (CH), 116.0 (CH), 123.7 (CH), 126.2 (CH), 126.6 (CH), 127.7 (CH), 129.2 (C), 129.8 (CH), 130.1 (CH), 138.1 (C) 142.9 (C), 179.5 (CO); MS (ESI) 333 (100) [M+H]⁺, 316 (60); HRMS: *m/z* calcd for C₂₁H₂₁N₂O₂ [M+H]⁺: 333.1598; found: 333.1591.

The reaction was repeated to give 8.3 mg (25%) and 8.7 mg (26%) of the expected product **48** to give an average yield of 26% over three reactions.

(S)-2-Amino-3-(5-(octa-1,7-diyn-1-yl)-1H-indol-3-yl)propanoic acid 51

Using the standard procedure for tryptophans, 5-bromotryptophan **18** (28 mg, 0.1 mmol, 1.0 eq) and 1,7-octadiyne **29** (40 μ L, 0.3 mmol, 3.0 eq) gave (*S*)-2-amino-3-(5-(octa-1,7-diyn-1-yl)-1*H*-indol-3-yl)propanoic acid **51** (17.2 mg, 56%) as a tan solid; [α]_D -23.1° (c 0.29, MeOH); ¹H NMR (500 MHz, *d*₄-MeOH) δ = 1.68-1.75 (4H, m, CH₂), 2.22-2.27 (3H, CH, CH₂), 2.42-2.45 (2H, m, CH₂), 2.98 (1H, dd, *J*(H,H)= 14.6, 8.5 Hz, C*H*_AH_B), 3.33-3.35 (1H, m, CH_A*H*_B), 3.65 (1H, bs, CH), 7.11 (1H, dd, *J*(H,H)= 8.4, 1.4 Hz, ArH), 7.17 (1H, s, ArH), 7.26 (1H, d, *J*(H,H)= 8.4 Hz, ArH), 7.28 (1H, s, ArH); ¹³C NMR (125 MHz, *d*₄-MeOH) δ = 18.6 (CH₂), 19.6 (CH₂), 28.9 (CH₂), 29.2 (CH₂), 31.0 (CH₂), 57.5 (CH), 69.7 (CH), 83.5 (C), 84.8 (C), 86.9 (C), 111.6 (C), 112.2 (CH), 115.5 (CH), 123.2 (CH), 125.7 (CH), 126.1 (CH), 128.7 (C) 137.5 (C), 179.4 (CO); MS (ESI) 309 (100) [M+H]⁺, 292 (70); HRMS: *m/z* calcd for C₁₉H₂₁N₂O₂ [M+H]⁺: 309.1598; found: 309.1586.

The reaction was repeated to give 15.0 mg (49%) and 16.0 mg (52%) of the expected product **51** to give an average yield of 52% over three reactions.

(S)-2-Amino-3-(3-cyclohexylprop-1-yn-1-yl)-1H-indol-3-yl)propanoic acid 54

Using the standard procedure for tryptophans, 5-bromotryptophan **18** (28 mg, 0.1 mmol, 1.0 eq) and 3-cyclohexyl-1-propyne **30** (43 μ L, 0.3 mmol, 3.0 eq) at 100 °C for 8 h gave (*S*)-2-amino-3-(3-cyclohexylprop-1-yn-1-yl)propanoic acid **54** (8 mg, ~25%) as a fluffy, white solid that contained the sXPhos **12** ligand as an inseparable impurity; ¹H NMR (500 MHz, *d*₄-MeOH) $\delta = 1.10$ (2H, dtt, *J*(H,H)= 12.5, 12.4, 3.1 Hz, CH₂), 1.17-1.43 (2H, m, CH₂), 1.50-1.58 (1H,

m, CH), 1.68-1.84 (2H, m, CH₂), 1.90-1.95 (2H, m, CH₂), 2.29 (2H, d, J(H,H)= 6.7 Hz, CH₂), 2.93 (1H, dd, J(H,H)= 14.2, 8.4 Hz, C H_AH_B), 3.328-3.30 (1H, m, CH_A H_B), 3.59 (1H, s, CH), 7.09 (1H, dd, J(H,H)= 8.4, 1.4 Hz, ArH), 7.16 (1H, s, ArH), 7.25 (1H, d, J(H,H)= 8.4 Hz, ArH), 7.76 (1H, s, ArH); ¹³C NMR (125 MHz, d_4 -MeOH) δ = 27.0 (CH₂), 27.4 (CH₂), 27.5 (CH₂), 31.7 (CH₂), 33.9 (CH₂), 39.2 (CH), 57.8 (CH), 84.2 (C), 86.1 (C), 112.1 (CH), 115.6 (C), 123.2 (CH), 125.6 (CH), 126.0 (CH), 128.8 (C), 137.4 (C), 147.9 (C), 180.7 (CO); MS (ESI) 325 (100) [M+H]⁺, 308 (60); HRMS: m/z calcd for C₂₀H₂₅N₂O₂ [M+H]⁺: 325.1911; found: 325.1890.

N-Boc-7-bromo-S-tryptophan 66

A suspension of 7-bromo-S-tryptophan 22 (100 mg, 0.35 mmol, 1.0 eq) and di-t-butyl dicarbonate (92 mg, 0.42 mmol, 1.2 eq) in 1,4-dioxane-water (1:1, 2 mL) was cooled to 0 °C. Aqueous KOH (1 M, 0.45 mL, 0.45 mmol, 1.25 eq) was added dropwise. The mixture was stirred for 4 h while warming to room temperature. The reaction was diluted with water (10 mL) and extracted with diethyl ether (2 x 10 mL). The aqueous layer was cooled in an ice-bath and the pH was adjusted to 2 using 1 M HCl. The resultant white suspension was extracted using ethyl acetate (3 x 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was removed in vacuo to give N-Boc-7-bromo-S-tryptophan 66 (120 mg, 89%) as a white, waxy solid that was used without further purification; ¹H NMR (300 MHz, d_4 -MeOH) $\delta = 1.37$ (9H, s, CH₃), 3.11 (1H, dd, J(H,H)= 14.6, 7.8 Hz, CH_AH_B), 3.31 (1H, dd, *J*(H,H)= 14.9, 5.1 Hz, CH_AH_B), 4.43 (1H, dd, *J*(H,H)= 7.8, 5.1 Hz, CH), 6.94 (1H, d, J(H,H)= 7.7 Hz, ArH), 7.17 (1H, s, ArH), 7.26 (1H, d, J(H,H)= 7.5 Hz, ArH), 7.56 (1H, dd, J(H,H) = 7.9, 0.7 Hz, ArH), 10.55 (1H, bs, NH); ¹³C NMR (125 MHz, d₄-MeOH) $\delta = 27.3$ (CH₃), 24.7 (CH₂), 54.4 (CH), 79.2 (C), 104.1 (C), 111.18 (C), 111.23 (C), 117.5 (CH), 119.6 (CH), 123.5 (CH), 124.2 (CH), 124.3 (CH), 129.1 (C), 156.3 (CO), 174.3 (CO); MS (ESI) 407 (100) $[M(^{81}Br)+Na]^+$, 405 (100) $[M(^{79}Br)+Na]^+$; HRMS: m/z calcd for $C_{16}H_{19}Br_1N_2Na_1O_4$ $[M(^{79}Br)+Na]^+$: 405.0420; found: 405.0415.

7-Bromo-S-tryptophan methyl ester hydrochloride 67

Thionyl chloride (290 μ L, 4 mmol, 4.0 eq) was added to a flask containing dry methanol (10 mL) at 0 °C under argon. After stirring for 10 min, 7-bromo-*S*-tryptophan **22** (285 mg, 1 mmol, 1.0 eq) was added. The reaction was stirred overnight while allowing it to warm to r.t. The solvent was removed *in vacuo* to give 7-bromo-*S*-tryptophan methyl ester hydrochloride **67** (330 mg, 100%) as an off white hydrochloride salt that was used without further purification.

NMR on the HCl salt (*d*₆-DMSO) revealed broad signals. Hence, an analytical sample was obtained by desalting with dilute NaHCO₃ solution and extraction with ethyl acetate. Drying (MgSO₄) and evaporation of the solvent afforded the free base suitable for NMR in CDCl₃; ¹H NMR (400 MHz, CDCl₃) δ = 3.08 (1H, dd, *J*(H,H)= 14.4, 7.4 Hz, C*H*_AH_B), 3.27 (1H, ddd, *J*(H,H)= 14.4, 5.0, 0.7 Hz, CH_AH_B), 3.73 (3H, s, CH₃), 3.85 (1H, dd, *J*(H,H)= 7.4, 5.0 Hz, CH), 7.03 (1H, d, *J*(H,H)= 7.8 Hz, ArH), 7.15 (1H, d, *J*(H,H)= 2.2 Hz, ArH), 7.37 (1H, dd, *J*(H,H)= 7.7, 0.7 Hz, ArH), 7.58 (1H, d, *J*(H,H)= 7.9 Hz, ArH), 8.37 (1H, bs, NH); ¹³C NMR (100 MHz, CDCl₃) δ = 30.9 (CH₂), 52.2 (CH₃), 55.1 (CH), 105.0 (C), 112.7 (C), 118.2 (CH), 120.9 (CH), 123.6 (CH), 124.7 (CH), 128.9 (C), 135.1 (C), 175.8 (CO); MS (ESI) 299 (100) [M(⁸¹Br)+H]⁺, 297 (100) [M(⁷⁹Br)+H]⁺, 282 (60); HRMS: *m/z* calcd for C₁₂H₁₄Br₁N₂O₂ [M(⁷⁹Br)+H]⁺: 297.0233; found: 297.0228.

N-Boc-Ala-Phe-OMe 68

EDC.HCl (536 mg, 2.8 mmol, 1.2 eq) and HOBt (375mg, 2.8 mmol, 1.2 eq) were added to a microwave tube containing Boc-Ala-OH (440 mg, 2.3 mmol, 1.0 eq) in DMF (4.6 mL). The mixture was stirred for 5 min, then DIPEA (1 mL, 5.8 mmol, 2.5 eq) was added and the reaction mixture was stirred for 10 min. H-Phe-OMe.HCl (500 mg, 2.3 mmol, 1.0 eq) was added in one portion and reaction vial was sealed. The reaction was heated in a microwave reactor at 60 °C for 20 min. After cooling r.t., the reaction mixture was diluted with ethyl acetate (25 mL) and washed with water (3 x 10 mL), dilute sodium bicarbonate solution (10 mL) and brine (10 mL), dried over anhydrous MgSO₄ and the solvent removed *in vauco* to give *N*-Boc-Ala-Phe-OMe

68 (750 mg, 90%) as a white, waxy solid that was used without further purification; ¹H NMR (300 MHz, CDCl₃) δ = 1.28 (3H, d, *J*(H,H)= 7.0 Hz, CH₃), 1.42 (9H, s, CH₃), 3.05 (1H, dd, *J*(H,H)= 13.8, 6.3 Hz, CH_AH_B), 3.13 (1H, dd, *J*(H,H)= 13.8, 5.9 Hz, CH_AH_B), 3.67 (3H, s, CH₃), 4.18 (1H, bs, CH), 4.83 (1H, q, *J*(H,H)= 6.2 Hz, CH), 5.27 (1H, bs, NH), 6.83 (1H, bs, NH), 7.03-7.15 (2H, m, ArH), 7.16-7.37 (3H, m, ArH); ¹³C NMR (75 MHz, CDCl₃) δ = 18.4 (CH₃), 28.8 (CH₃), 37.9 (CH₂), 50.0 (CH), 52.3 (CH₃), 53.3 (CH), 79.9 (C), 127.0 (CH), 128.5 (CH), 129.3 (CH), 135.9 (C), 155.4 (CO), 171.8 (CO), 172.5 (CO).

H-Ala-Phe-OMe.TFA 69

Water (0.2 mL) and TFA (2 mL) were added to a solution of *N*-Boc-Ala-Phe-OMe **68** (300 mg, 0.86 mmol, 1.0 eq) in DCM (3 mL) at 0 °C and stirred for 2 h, while warming to r.t. The solvent was removed *in vacuo*. The resulting pale, yellow oil was titurated with ice cold diethyl ether (3 x 5 mL) to give H-Ala-Phe-OMe.TFA **69** (310 mg, 91%) as an off white solid that was used without further purification; ¹H NMR (400 MHz, *d*₄-MeOH) δ = 1.50 (3H, d, *J*(H,H)= 7.1 Hz, CH₃), 3.02 (1H, dd, *J*(H,H)= 14.0, 9.2 Hz, CH_AH_B), 3.23 (1H, dd, *J*(H,H)= 14.0, 5.4 Hz, CH_AH_B), 3.73 (3H, s, CH₃), 3.88 (1H, q, *J*(H,H)= 7.1 Hz, CH), 4.73 (1H, dd, *J*(H,H)= 9.2, 5.4 Hz, CH), 7.24 (3H, dt, *J*(H,H)= 9.4, 3.2 Hz, ArH), 7.36-7.28 (2H, m, ArH).

N-Boc-Trp-(7-Br)-Ala-Phe-OMe 70

A solution of N-Boc-Trp-(7-Br)-OH 66 (220 mg, 0.57 mmol, 1.0 eq), H-Ala-Phe-OMe.TFA 69 (210 mg, 0.57 mmol, 1.0 eql) in DMF (4 mL) was cooled to 0 °C. Solid EDC.HCl (132 mg, 0.7 mmol, 1.2 eq) and HOBt (95 mg, 0.7 mmol, 1.2 eq) were added. The reaction mixture was stirred for 5 min, then DIPEA (0.28 mL, 1.6 mmol, 2.8 eq) was added dropwise. The reaction mixture was stirred for 20 h, while warming to r.t. The reaction mixture was diluted with ethyl acetate (20 mL) and washed successively with water (3 x 10 mL) and brine (10 mL). The combined organic layers were dried over anhydrous MgSO4 and the solvent was removed in vacuo. Purification by column chromatography using silica gel (ethyl acetate:hexanes, 10-90%) gave N-Boc-Trp-(7-Br)-Ala-Phe-OMe 70 (300 mg, 85%) as a waxy, white solid; ¹H NMR (300 MHz, d_4 -MeOH) $\delta = 1.25$ (3H, d, J(H,H) = 6.9 Hz, CH₃), 1.35 (9H, s, CH₃), 2.91-3.27 (4H, m, CH₂), 3.66 (3H, s, CH₃), 4.26-4.44 (2H, m, CH, CH), 4.61 (1H, d, J(H,H)= 6.0 Hz, CH), 6.92 (1H, t, *J*(H,H)= 7.7 Hz, ArH), 7.13-7.21 (4H, m, ArH), 7.22-7.28 (3H, m, ArH), 7.59 (1H, d, J(H,H) = 7.8 Hz, ArH); ¹³C NMR (75 MHz, d_4 -MeOH) $\delta = 18.4$ (CH₃), 28.4 (CH₃), 28.5 (CH₂), 37.9 (CH₂), 49.0 (CH), 52.5 (CH₃), 53.6 (CH), 55.0 (CH), 80.2 (C), 104.9 (C), 111.8 (C), 118.2 (CH), 128.8 (CH), 124.0 (CH), 124.6 (CH), 127.2 (CH), 128.7 (CH), 128.8 (CH), 129.3 (CH), 134.9 (C), 136.0 (C), 155.6 (CO), 171.6 (CO), 171.8 (CO), 171.9 (CO); MS (ESI) 639 (100) $[M(^{81}Br)+Na]^+$, 637 (100) $[M(^{79}Br)+Na]^+$, 617 (15) $[M(^{81}Br)+H]^+$, 615 (15) $[M(^{79}Br)+H]^+$; HRMS: m/z calcd for C₂₉H₃₆Br₁N₄O₆ $[M(^{79}Br)+H]^+$: 615.1813; found: 615.1799.

H-Trp-(7-Br)-Ala-Phe-OH 59

A solution of lithium hydroxide (14 mg, 0.6 mmol, 1.5 eq) in water (1 mL) was added to a solution of N-Boc-Trp-(7-Br)-Ala-Phe-OMe 70 (250 mg, 0.4 mmol, 10 eq) in 1,4-dioxaneiPrOH-water (1:1:0.5, 4 mL) at 0 °C. The reaction mixture was stirred vigorously until all the starting material has been consumed (as determined by TLC analysis). The reaction mixture was diluted with water (2 mL) and quenched by the addition of Amberlyst-120-H+ (to pH ~5-6). The resin was filtered and the solvent removed in vacuo to give the crude free acid (N-Boc-Ala-Phe-Trp-(7-Br)-OH). This intermediate was dissolved in DCM (3 mL) and transferred to a microwave vial. TFA (65 μ L, 2 mmol, 5.0 eq) was added and reaction vial was sealed with an aluminium crimp cap. Reaction mixture was heated in a microwave reactor at 60 °C for 40 min. After cooling, the solvent was removed in vacuo. The residue was purified using gradient reversed phase chromatography (C-18, 12 g, water-MeOH, 5-95% gradient) to give H-Trp-(7-Br)-Ala-Phe-OH.TFA **59** (190 mg, 78% over 2 steps) as a white solid; ¹H NMR (500 MHz, d₄-MeOH) $\delta = 1.37$ (3H, d, J(H,H) = 7.1 Hz, CH₃-C5), 3.00-3.03 (1H, dd, J(H,H) = 14.0, 8.1 Hz, CH_A*H*_B-C9), 3.12 (1H, dd, *J*(H,H)= 15.2, 9.0 Hz, CH_A*H*_B-C2), 3.21 (1H, dd, *J*(H,H)= 14.0, 5.2 Hz, CH_A*H*_B-C9), 3.36 (1H, dd, *J*(H,H)= 15.2, 5.2 Hz, CH_A*H*_B-C2), 4.11 (1H, dd, *J*(H,H)= 9.0, 5.2 Hz, CH-C1), 4.41 (1H, q, J(H,H)= 7.1 Hz, CH-C4), 4.63 (1H, dd, J(H,H)= 8.1, 5.2 Hz, CH-C7), 6.94 (1H, dd, *J*(H,H)= 7.8, 7.7 Hz, ArH-C18), 7.17 (1H, ddd, *J*(H,H)= 4.6, 4.1, 4.1 Hz, ArH-C15), 7.26-7.27 (5H, m, ArH-C11,C12,13), 7.30 (1H, d, J(H,H)= 7.5 Hz, ArH-C19), 7.66 (1H, d, J(H,H)= 7.9 Hz, ArH-C17); ¹³C NMR (125 MHz, d_4 -MeOH) δ = 18.3 (CH₃, C5), 28.9 (CH₂, C2), 38.3 (CH₂, C9), 50.5 (CH, C4), 54.6 (CH, C1), 55.3 (CH, C7), 105.8 (C, C20), 109.4 (C, C14), 118.6 (C, C17), 121.5 (CH, C18), 125.5 (CH, C19), 126.9 (CH, C13), 127.8 (CH, C15), 129.5 (CH, C10), 129.9 (C, C16), 130.5 (C, C11), 136.8 (C, C21), 138.4 (C, C10), 169.6 (CO, C3), 174.1 (CO, C6), 174.6 (CO, C8); HRMS: m/z calcd for C23H26Br1N4O4 $[M(^{79}Br)+H]^+$: 501.1132; found: 501.1132.

N-Boc-Trp-(7-Br)-Phe-OMe 71

A solution of *N*-Boc-Trp-(7-Br)-OH **66** (135 mg, 0.37 mmol, 1.0 eq), H-Phe-OMe.HCl (85 mg, 0.4 mmol, 1.1 eq) in DMF (2 mL) was cooled to 0 °C. Solid EDC.HCl (83 mg, 0.43 mmol, 1.2 eq) and HOBt (58 mg, 0.43 mmol, 1.2 eq) were added. The reaction mixture was stirred for 5 min, then DIPEA (0.19 mL, 1.1 mmol, 3.0 eq) was added dropwise. The reaction mixture was stirred for 16 h, while warming to r.t. The reaction mixture was diluted with ethyl acetate (20 mL) and washed successively with water (3 x 10 mL) and brine (10 mL). The combined organic layers were dried over anhydrous MgSO₄ and the solvent was removed *in vacuo*. Purification by column chromatography using silica gel (MeOH:DCM, 0-10%) gave *N*-Boc-Trp-(7-Br)-

Phe-OMe **71** (194 mg, 97%) as a waxy, white solid; ¹H NMR (300 MHz, *d*₄-MeOH) δ = 1.36 (9H, s, CH₃), 2.86-3.06 (3H, m, CH, *CH*_AH_B), 3.15 (1H, dd, *J*(H,H)= 14.6, 5.9 Hz, CH_AH_B), 3.60 (3H, s, CH₃), 4.35 (1H, t, *J*(H,H)= 6.7 Hz, CH), 4.62 (1H, t, *J*(H,H)= 6.7 Hz, CH), 6.93 (1H, t, *J*(H,H)= 7.7 Hz, ArH), 7.06-7.17 (3H, m, ArH), 7.18-7.28 (4H, m, ArH), 7.57 (1H, d, *J*(H,H)= 7.8 Hz, ArH); ¹³C NMR (75 MHz, *d*₄-MeOH) δ = 27.3 (CH₃), 27.9 (CH₂), 37.1 (CH₂), 51.3 (CH₃), 53.7 (CH), 55.2 (CH), 79.3 (C), 104.1 (C), 111.0 (C), 117.5 (CH), 119.6 (CH), 123.5 (C), 124.4 (CH), 126.5 (CH), 128.1 (CH), 128.9 (CH), 129.1 (CH), 134.9 (C), 136.4 (C), 156.0 (CO), 171.6 (CO), 172.8 (CO); MS (ESI) 568 (100) [M(⁸¹Br)+Na]⁺, 566 (100) [M(⁷⁹Br)+Na]⁺, 546 (14), 544 (14); HRMS: *m/z* calcd for C₂₉H₃₆Br₁N₄O₆ [M(⁷⁹Br)+H]⁺: 544.1442; found: 544.1431.

N-Boc-Ala-Trp-(7-Br)-Phe-OMe 72

Water (0.1 mL) and TFA (1 mL) were added to a solution of *N*-Boc-Try-(7-Br)-Phe-OMe **71** (190 mg, 0.34 mmol, 1.0 eq) in DCM (2 mL) at 0 °C. The reaction mixture was stirred for 2 h, while warming to r.t. The solvent was removed *in vacuo*. The resultant pale yellow oil was triturated with cold diethyl ether (3 x 5 mL) to afford H-Trp-(7-Br)-Phe-OMe.TFA as a white foam.

A solution of H-Trp-(7-Br)-Phe-OMe.TFA (190 mg, 0.34 mmol, 1.0 eq) and *N*-Boc-Ala-OH (70 mg, 0.37 mmol, 1.1 eq) in DCM:DMF (1:1, 4 mL) was cooled to 0 °C. EDC.HCl (78 mg, 0.4 mmol, 1.2 eq) and HOBt (54 mg, 0.4 mmol, 1.2 eq) were added to the reaction mixture. DIPEA (0.2 mL, 1.2 mmol, 3.5 eq) was added dropwise and the reaction mixture was warmed to r.t. and stirred for 16 h. The reaction mixture was diluted with ethyl acetate (20 mL) and washed successively with water (3 x 10 mL) and brine (10 mL). The combined organic layers were dried over anhydrous MgSO₄ and the solvent was removed *in vacuo* to give *N*-Boc-Ala-Trp-(7-Br)-Phe-OMe **72** (190 mg, 85% over 2 steps) as a waxy, white solid that was used without further purification; ¹H NMR (500 MHz, *d*₆-DMSO) δ = 1.07 (3H, d, *J*(H,H)= 7.1 Hz, CH₃), 1.35 (9H, s, CH₃), 2.88-2.97 (2H, m, *CH*_AH_B, *CH*_AH_B), 3.00 (1H, dd, *J*(H,H)= 13.7, 6.1 Hz, CH_AH_B), 3.07 (1H, dd, *J*(H,H)= 14.7, 5.6 Hz, CH_AH_B), 3.56 (3H, s, CH₃), 3.86-4.00 (1H,

m, CH), 4.46 (1H, t, J(H,H)= 7.2 Hz, CH), 4.52-4.62 (1H, m, CH), 6.89 (1H, d, J(H,H)= 7.6 Hz, ArH), 6.93 (1H, t, J(H,H)= 7.7 Hz, ArH), 7.13-7.22 (4H, m, ArH), 7.23-7.31 (3H, m, ArH), 7.58 (1H, d, J(H,H)= 7.8 Hz, ArH); ¹³C NMR (125 MHz, *d*₆-DMSO) δ = 18.3 (CH₃), 28.1 (CH₂), 28.5 (CH₃), 37.0 (CH₂), 50.0 (CH), 52.2 (CH₃), 53.0 (CH), 54.0 (CH), 78.7 (C), 104.3 (C), 111.3 (C), 118.4 (CH), 120.1 (CH), 123.8 (CH), 125.3 (CH), 127.0 (CH), 128.7 (C), 129.3 (CH), 129.5 (CH), 134.4 (C), 137.2 (C), 155.4 (CO), 171.5 (CO), 172.0 (CO), 172.8 (CO); MS (ESI) 639 (100) [M(⁸¹Br)+Na]⁺, 637 (100) [M(⁷⁹Br)+Na]⁺, 617 (15) [M(⁸¹Br)+H]⁺, 615 (15) [M(⁷⁹Br)+H]⁺; HRMS: *m/z* calcd for C₂₉H₃₆Br₁N₄O₆ [M(⁷⁹Br)+H]⁺: 615.1813; found: 615.1800.

H-Ala-Trp-(7-Br)-Phe-OH 58

Following the procedure reported for **59**, *N*-Boc-Ala-Trp-(7-Br)-Phe-OMe **72** (170 mg, 0.27 mmol, 1.0 eq) gave H-Ala-Trp-(7-Br)-Phe-OH **58** (120 mg, 72% over 2 steps) as a white solid; ¹H NMR (500 MHz, *d*₄-MeOH) δ = 1.37 (3H, d, *J*(H,H)= 7.1 Hz, CH₃-C5), 3.00-3.03 (1H, dd, *J*(H,H)= 14.0, 8.1 Hz, CH_A*H*_B-C9), 3.12 (1H, dd, *J*(H,H)= 15.2, 9.0 Hz, CH_A*H*_B-C2), 3.21 (1H, dd, *J*(H,H)= 14.0, 5.2 Hz, CH_A*H*_B-C9), 3.36 (1H, dd, *J*(H,H)= 15.2, 5.2 Hz, CH_A*H*_B-C2), 4.11 (1H, dd, *J*(H,H)= 9.0, 5.2 Hz, CH-C1), 4.41 (1H, q, *J*(H,H)= 7.1 Hz, CH-C4), 4.63 (1H, dd, *J*(H,H)= 8.1, 5.2 Hz, CH-C7), 6.94 (1H, dd, *J*(H,H)= 7.8, 7.7 Hz, ArH-C18), 7.17 (1H, ddd, *J*(H,H)= 4.6, 4.1, 4.1 Hz, ArH-C15), 7.26-7.27 (5H, m, ArH-C11,C12,13), 7.30 (1H, d, *J*(H,H)= 7.5 Hz, ArH-C19), 7.66 (1H, d, *J*(H,H)= 7.9 Hz, ArH-C17); ¹³C NMR (125 MHz, *d*₄-MeOH) δ = 18.3 (CH₃, C5), 28.9 (CH₂, C2), 38.3 (CH₂, C9), 50.5 (CH, C4), 54.6 (CH, C1), 55.3 (CH, C7), 105.8 (C, C20), 109.4 (C, C14), 118.6 (C, C17), 121.5 (CH, C18), 125.5 (CH, C19), 126.9 (CH, C13), 127.8 (CH, C15), 129.5 (CH, C10), 129.9 (C, C16), 130.5 (C, C11), 136.8 (C, C21), 138.4 (C, C10), 169.6 (CO, C3), 174.1 (CO, C6), 174.6 (CO, C8); HRMS: *m/z* calcd for C₂₃H₂₆Br₁N₄O4 [M(⁷⁹Br)+H]⁺: 501.1132; found: 501.1128.

((*S*)-2-((*S*)-2-Aminopropanamido)-3-(7-((3-fluorophenyl)ethynyl)-1*H*-indol-3yl)propanoyl)-L-phenylalanine 60

((S)-2-((S)-2-Aminopropanamido)-3-(7-bromo-1H-indol-3-yl)propanoyl)-L-phenylalanine 58 (4.0 mg, 8 μ mol, 1.0 eq), sXPhos 12 (0.6 mg, 1.2 μ mol, 15 mol%) and CsCO₃ (6.0 mg, 20 μ mol, 2.5 eq) were added to a microwave tube and flushed with nitrogen. The microwave tube was sealed. A stock solution of *bis*(acetonitrile)dichloropalladium (II) (0.8 mg, 4 µmol, 0.5 eq) in degassed H₂O:CH₃CN (1:1, 1.0 mL) was prepared. The catalyst stock solution (0.1 mL, 0.4 μ mol, 5 mol%) was injected into the microwave tube, followed by degassed H₂O:CH₃CN (1:1, 0.1 mL). 3-Fluorophenylacetylene 24 (10 µL, 80 µmol, 10.0 eq) was then injected into the microwave tube. The reaction mixture was well stirred, then heated at 100 °C for 2 h in a microwave. The reaction mixture was cooled to r.t. and diluted to 3 mL with H₂O:CH₃CN (9:1). The reaction mixture was centrifuged (13,000 rpm, 16060 g, 5 min) and the ultrafiltrate was collected and purified by HPLC purification as described above and lyophilised to give ((S)-2-((S)-2-aminopropanamido)-3-(7-((3-fluorophenyl)ethynyl)-1H-indol-3-yl)propanoyl)-L-phenylalanine 60 (2.0 mg, 47%) as a white solid; ¹H NMR (500 MHz, d_4 -MeOH) $\delta = 1.24$ (3H, d, *J*(H,H)= 6.9 Hz, CH₃-C2), 3.04 (1H, dd, *J*(H,H)= 13.5, 6.1 Hz, CH_AH_B-C8), 3.08 (1H, dd, J(H,H)= 14.6, 9.0 Hz, CH_AH_B-C13), 3.20 (1H, dd, J(H,H)= 13.5, 4.9 Hz, CH_AH_B-C8), 3.30-3.38 (1H, dd, J(H,H)=14.6, 4.9 Hz, CH_AH_B-C13), 3.48 (1H, q, J(H,H)=6.9 Hz, CH-C1), 4.45 (1H, dd, J(H,H)= 6.1, 4.9 Hz, CH-C6), 4.66 (1H, dd, J(H,H)= 9.0, 4.9 Hz, CH-C4), 7.06 (1H, dd, J(H,H)=7.7, 7.6 Hz, ArH-C18), 7.10-7.21 (8H, m, ArH-C10, C11, C12, C15, C25), 7.30 (1H, dd, J(H,H)= 7.4, 0.7 Hz, ArH-C19), 7.38-7.44 (2H, m, ArH-C27,C28), 7.43-7.46 (1H, m, ArH-C29), 7.71 (1H, dd, J(H,H)= 8.0, 0.9 Hz, ArH-C17)- NOTE- the proton signal at 3.30-3.38 was obscured by the residual d_4 -MeOH solvent peak, the position of the signal was determined by the 2D NMR experiments, with the coupling constants determined from the coupling constants of the protons on C4 and C13; ¹³C NMR (125 MHz, d_4 -MeOH) $\delta = 19.9$ (CH₃, C2), 28.8 (CH₂, C13), 39.0 (CH₂, C8), 51.0 (CH, C1), 55.7 (CH, C4), 57.2 (CH, C6), 88.0 (C, C22), 92.4 (C, d, J(C,F)= 3.2 Hz, C23), 106.9 (C, C20), 112.1 (C, C14, C16), 116.3 (CH, d, J(C,F)= 21.8 Hz, C25), 119.0 (CH, d, J(C,F)= 23.1 Hz, C27), 121.0 (CH, C17), 125.5

(CH, C15), 126.3 (CH, C19), 127.0 (C, C24), 127.3 (CH, C12), 128.6 (CH, d, J(C,F)= 2.8 Hz, C29), 129.1 (CH, C10), 129.3 (C, C16), 130.8 (CH, C11), 131.4 (CH, d, J(C,F)= 8.8 Hz, C28), 138.2 (C, C21), 139.2 (C, C9), 164.0 (CF, d, J(C,F)= 244.4 Hz, C26), 172.6 (CO, C5), 176.7 (CO, C3), 177.3 (CO, C7); ¹⁹F{¹H} NMR (376 MHz, d_4 -MeOH) $\delta = -115.2$ (1F, s); ¹⁹F NMR (470 MHz, d_4 -MeOH) $\delta = -115.2$ (1F, ddd, J(H,F)= 9.5, 9.1, 5.6 Hz); MS (ESI) 541 (100) [M+H]⁺; HRMS: m/z calcd for C₃₁H₃₀F₁N₄O₄ [M+H]⁺: 541.2246; found: 541.2221.

((S)-2-Amino-3-(7-((3-fluorophenyl)ethynyl)-1H-indol-3-yl)propanoyl)-L-alanyl-Lphenylalanine 61

Using the same procedure as 60, ((S)-2-Amino-3-(7-bromo-1H-indol-3-yl)propanoyl)-Lalanyl-L-phenylalanine 59 (4 mg, 8 μ mol, 1.0 eq) gave ((S)-2-amino-3-(7-((3fluorophenyl)ethynyl)-1*H*-indol-3-yl)propanoyl)-L-alanyl-L-phenylalanine **61** (4.3 mg, 100%) as a white solid; ¹H NMR (500 MHz, d_4 -MeOH) $\delta = 1.15$ (3H, d, J(H,H) = 7.1 Hz, CH₃-C5), 3.00 (1H, dd, J(H,H)= 13.6, 6.8 Hz, CH_AH_B-C9), 3.02 (1H, dd, J(H,H)= 14.7, 7.3 Hz, CH_AH_B-C2), 3.17-3.22 (2H, m, CH_A*H*_B-C2,C9), 3.68 (1H, dd, *J*(H,H)= 7.3, 5.2 Hz, CH-C1), 4.29 (1H, q, J(H,H)= 7.1 Hz, CH-C4), 4.45 (1H, dd, J(H,H)= 6.8, 4.9 Hz, CH-C7), 7.04 (1H, dd, J(H,H)= 7.7, 7.5 Hz, ArH-C18), 7.09-7.13 (2H, m, ArH-C15,C25), 7.17-7.20 (5H, m, ArH-C11,C12,C13), 7.31 (1H, d, J(H,H)= 7.2 Hz, ArH-C19), 7.38-7.41 (2H, m, ArH-C27,28), 7.43-7.46 (1H, m, ArH-C29), 7.69 (1H, d, J(H,H) = 7.9 Hz, ArH-C17); ¹³C NMR (125 MHz, d₄-MeOH) $\delta = 18.0$ (CH₃, C5), 31.4 (CH₂, C2), 39.1 (CH₂, C9), 50.6 (CH, C4), 56.5 (CH, C1), 57.2 (CH, C7), 88.0 (C, C22), 92.4 (C, d, J(C,F)= 3.0 Hz, C23), 107.0 (C, C20), 111.8 (C, C14, C16), 116.3 (CH, d, *J*(C,F)= 21.5 Hz, C25), 119.0 (CH, d, *J*(C,F)= 23.1 Hz, C27), 119.9 (CH, C18), 121.1 (CH, C17), 125.9 (CH, C13), 126.3 (CH, C19), 127.0 (C, d, *J*(C,F)=9.3 Hz, C24), 127.3 (CH, C15), 128.6 (CH, d, J(C,F)= 2.9 Hz, C29), 129.1 (CH, C11), 130.8 (CH, C12), 131.3 (CH, d, J(C,F)= 8.8 Hz, C28), 138.3 (C, C21), 139.3 (C, C10), 163.9 (CF, d, J(C,F)= 244.8 Hz, C26), 173.7 (CO, C6), 176.8 (CO, C3), 177.6 (CO, C8); ¹⁹F{¹H} NMR (470 MHz, d_4 -MeOH) $\delta = -115.2 (1F, s);$ ¹⁹F NMR (470 MHz, d_4 -MeOH) $\delta = -115.2 (1F, ddd, J(H,F))$ = 9.4, 9.1, 5.8 Hz); MS (ESI) 541 (100) [M+H]⁺; HRMS: *m*/*z* calcd for C₃₁H₃₀F₁N₄O₄ [M+H]⁺: 541.2246; found: 541.2224.

Enantiopurity analysis

The enantiopurity of the cross coupled products was analysed using Marfey's Reagent (1-fluoro-2,4-dinitrophenyl-5-L-alanine amide, FDAA).

The tryptophan was dissolved in HCl solution (1 M, 10 mg/mL). An Eppendorf tube containing the tryptophan (50 μ L), FDAA (1% *w*/*v* in actone, 100 μ L) and NaHCO₃ solution (1M, 70 μ L) was mixed thoroughly and incubated at 37 °C for 1 h. The reaction mixture was diluted (10 μ L in 490 μ L water) and centrifuged (13,000 rpm, 16060 g, 5 min) before UPLC analysis.

The UPLC analysis was carried out in acetonitrile/0.1% TFA in water at a gradient of 20% acetonitrile to 90% acetonitrile over 4.7 minutes. A 3:1 mixture of L-tryptophan to D-tryptophan was used as a standard. Two blank runs using acetone were conducted between each tryptophan sample. In all of the tryptophans analysed, only a single peak for the L-enantiomer was observed.

General Biological Experimental

Biological reagents and components for media, buffers and stock solutions were purchased from commercial suppliers, used without further purification and stored according to the supplier's instructions. Microorganisms were stored at -80 °C for long and short-term storage. Microorganisms were cultured under sterile conditions using a Faster BH-EN class II vertical laminar airflow cabinet and fermentation media was sterilised at 121 °C for 20 minutes at 1.3 bar in a Boxer Benchtop Denley autoclave prior to use. Alternatively, aqueous solutions of heat labile components were sterilised by passage through a 0.2 µm membrane. Culturing apparatus was sterilised by autoclaving as described above or alternatively, disposable pre-sterilised apparatus was used.

General apparatus: Pipetting of solutions and samples was done using LABNET Biopette autovclavable pipettes. Microbial cultures were incubated in a New Brunswick Scientific Innova 4300 incubator shaker, a New Brunswick Scientific I26 incubator shaker series, or Genlab incubator (static). pH measurements were taken using a Fisherbrand Hydrus 300 pH meter. Centrifugation was carried out using a Thermo Scientific IEC CL30R centrifuge.

Kitasatospora cystargenia culturing, and precursor directed biosynthesis of new to nature bromo-cystargamide

Kitasatospora cystargenia NRRL-B16505 was obtained from the USDA agriculture research service culture collection. The strain was fermented in GY medium (10 g/L glucose, 10 g/L yeast extract) for 48 h at 28 °C (as previously reported by Kerr and coworkers)³ and 200 rpm, in an incubator with a 2.54 cm throw. The mycelium from this culture was stored in 20% glycerol at -80 °C.

Small scale feeding experiments

In order to explore whether the halotryptophans could be incorporated too, we carried out small scale feeding experiments with 7, 6 and 5-chlorotryptophan and 7, 6 and 5 -bromotryptophan at 0.25 and 1mM to both 4mL cultures in 24 deep well plates and 50mL cultures in 250mL Erlenmeyer flasks. The cultures were extracted and analysed by LCMSMS. Results demonstrated that all of the halotryptophans incorporated into cystargamide, generating new to nature halogenated analogues.

6Br-tryptophan 21 - Feeding at 0.25 mM scale

Detected Cystargamide Species	[M+H] ⁺	Absorbanc e peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
		5923338	
Cystargamide (WT)	954.4244		10.0
Linear cystargamide ^[a]	972.4349	3036620	5.1
Cystargamide no hydroxylated ^[b]	938.4294	607443	1.0
(6BrW) Brominated cystargamide no	1016.340	122182	
hydroxylated ^[b]	0		0.2
	1032.334	834562	
(6Brw) Brominated cystargamide	9		1.4

[a] The ester bond appeared to have been hydrolysed [b] That lacked the 5-hydroxy on the tryptophan [c] Average area from the reaction performed in triplicate [d] Calculated as: (Absorbance peak area species/Absorbance peak area cystargamide wild type (WT))*10

Ratios of the detected cystargamide species:

Cyclic cystargamide species : Linear cystargamide species = 3:1

Brominated cystargamide species : Brominated linear cystargamide species = 1:0

Cyclic cystargamide species : cyclic cystargamide species no hydroxylated= 9:1

Brominated cyclic cystargamide species : Brominated cystargamide no hydroxylated= 7:1

Analysis of the extract by LC-MS also revealed quantities of analogues of cystargamide containing alanine [ALA] instead of glycine. In this case, only linear forms in which the ester bond appeared to have been hydrolysed were detected.

Detected Cystargamide[ALA] species	[M +H] ⁺	Absorbance peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
Linear cystargamide[ALA] ^[a]	986.4500	9574644	16.2
(6BrW) Brominated linear cystargamide[ALA] no hydroxylated ^{[a],[b]}	1048.3662	272892	0.5
(6BrW) Brominated linear cystargamide[ALA] ^[a]	1064.3611	1312663	2.2

6Br-tryptophan 21 -Feeding at 1 mM scale

Detected Cystargamide species	[M+H] ⁺	Absorbanc e peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
		9135391	
Cystargamide (WT)	954.4244		10.0
Linear cystargamide ^[a]	972.4349	4175252	4.6
Cystargamide no hydroxylated ^[b]	938.4294	54982	0.1
(6BrW) Brominated cystargamide no	1016.340	1035165	
hydroxylated ^[b]	0		1.1
	1032.334	1928082	
(6BrW) Brominated cystargamide	9		2.1

[a] The ester bond appeared to have been hydrolysed [b] That lacked the 5-hydroxy on the tryptophan [c] Average area from the reaction performed in triplicate [d] Calculated as: (Absorbance peak area species/Absorbance peak area cystargamide wild type (WT))*10

Ratios of the detected cystargamide species:

Cyclic cystargamide species : Linear cystargamide species = **3:1** Brominated cystargamide species : Brominated linear cystargamide species = **1:0** Cyclic cystargamide species : cyclic cystargamide species no hydroxylated= **10.4:1** Brominated cyclic cystargamide species : Brominated cystargamide no hydroxylated= **2:1**

Analysis of the extract by LC-MS also revealed quantities of analogues of cystargamide containing alanine [ALA] instead of glycine. In this case, only linear forms in which the ester bond appeared to have been hydrolysed were detected.

Detected Cystargamide[ALA] species	[M+H] ⁺	Absorbance peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
Linear cystargamide[ALA] ^[a]	986.4500	15397915	16.9
Linear cystargamide[ALA] no hydroxylated ^{[a],[b]}	970.4557	60678	0.1
(6Br) Brominated linear cystargamide[ALA] no hydroxylated ^{[a],[b]}	1048.3662	1907165	2.1
(6Br) Brominated linear cystargamide[ALA] ^[a]	1064.3611	2939735	3.2

5Br-tryptophan- Feeding at 1 mM scale

Detected Cystargamide species	[M +H] ⁺	Absorbance peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
		17929225	
Cystargamide (WT)	954.4244		10.0
Linear cystargamide ^[a]	972.4349	600331	3.8
Cystargamide no hydroxylated ^[b]	938.4294	70645	0.3
(5BrW) Brominated cystargamide no	1016.340	312674	
hydroxylated ^[b]	0		0.1

[a] The ester bond appeared to have been hydrolysed [b] That lacked the 5-hydroxy on the tryptophan [c] Average area from the reaction performed in triplicate [d] Calculated as: (Absorbance peak area species/Absorbance peak area cystargamide wild type (WT))*10

Ratios of the detected cystargamide species:

Cyclic cystargamide species : Linear cystargamide species = 3:1

Brominated cystargamide species : Brominated linear cystargamide species = 1:0

Cyclic cystargamide species : cyclic cystargamide species no hydroxylated= 21:1

Brominated cyclic cystargamide species : Brominated cystargamide no hydroxylated= 0:1

Analysis of the extract by LC-MS also revealed quantities of analogues of cystargamide containing alanine [ALA] instead of glycine. In this case, only linear forms in which the ester bond appeared to have been hydrolysed were detected.

Detected Cystargamide[ALA] species	[M +H] ⁺	Absorbance peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
Linear cystargamide[ALA] ^[a]	986.4500	9536071	10.8
(5BrW) Brominated linear cystargamide[ALA] no hydroxylated ^{[a],[b],[e]}	1048.3662	266591	0.3

[a] The ester bond appeared to have been hydrolysed [b] That lacked the 5-hydroxy on the tryptophan [c] Average area from the reaction performed in triplicate [d] Calculated as: (Absorbance peak area species/Absorbance peak area cystargamide wild type (WT))*10 [e] MS2 data was not recorded due to interfering masses

7Br-tryptophan-Feeding at 1 mM scale

Detected Cystargamide species	[M +H] ⁺	Absorbance peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
_		3227118	
Cystargamide (WT)	954.4244		10.0
Linear cystargamide ^[a]	972.4349	11589642	35.9
Cystargamide no hydroxylated ^[b]	938.4294	225555	0.7
(7BrW) Brominated cystargamide	1032.3349	348435	1.1

[a] The ester bond appeared to have been hydrolysed [b] That lacked the 5-hydroxy on the tryptophan [c] Average area from the reaction performed in triplicate [d] Calculated as: (Absorbance peak area species/Absorbance peak area cystargamide wild type (WT))*10

Ratios of the detected cystargamide species:

Cyclic cystargamide species : Linear cystargamide species = 0.3:1

Brominated cystargamide species : Brominated linear cystargamide species = 1:0

Cyclic cystargamide species : cyclic cystargamide species no hydroxylated= 16:1

Brominated cyclic cystargamide species : Brominated cystargamide no hydroxylated= 1:0

Analysis of the extract by LC-MS also revealed quantities of analogues of cystargamide containing alanine [ALA] instead of glycine. In this case, only linear forms in which the ester bond appeared to have been hydrolysed were detected.

Detected Cystargamide[ALA] species	[M +H] ⁺	Absorbance peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
Linear cystargamide[ALA] ^[a]	986.4500	26865004	23.2
Linear cystargamide[ALA] no hydroxylated ^{[a],[b]}	970.4557	1320235	1.1
(7BrW) Brominated linear cystargamide[ALA] no hydroxylated ^{[a],[b],[e]}	1048.3662	576202	0.5
(7BrW) Brominated linear cystargamide[ALA] ^{[a],[d]}	1064.3611	2078672	1.8

[a] The ester bond appeared to have been hydrolysed [b] That lacked the 5-hydroxy on the tryptophan [c] Average area from the reaction performed in triplicate [d] Calculated as: (Absorbance peak area species/Absorbance peak area cystargamide wild type (WT))*10 [e] MS2 data was not recorded due to interfering masses

5Cl-tryptophan-Feeding at 1 mM scale

Detected Cystargamide species	[M+H] +	Absorbanc e peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
_	954.424	1590311	· · ·
Cystargamide (WT)	4		10.0
	972.434	714633	
Linear cystargamide ^[a]	9		4.5
	938.429	155629	
Cystargamide no hydroxylated ^[b]	4		1.0
(5ClW) Chlorinated linear cystargamide no		191149	
hydroxylated ^{[a],[b]}	990.401		1.2

[a] The ester bond appeared to have been hydrolysed [b] That lacked the 5-hydroxy on the tryptophan [c] Average area from the reaction performed in triplicate [d] Calculated as: (Absorbance peak area species/Absorbance peak area cystargamide wild type (WT))*10

Ratios of the detected cystargamide species:

Cyclic cystargamide species : Linear cystargamide species = **1.93:1** Chlorinated cystargamide species : Chlorinated linear cystargamide species = **0:1**

Cyclic cystargamide species : cyclic cystargamide species no hydroxylated= 10:1

Chlorinated cyclic cystargamide species : Chlorinated cystargamide no hydroxylated= 0:1

Analysis of the extract by LC-MS also revealed quantities of analogues of cystargamide containing alanine [ALA] instead of glycine. In this case, only linear forms in which the ester bond appeared to have been hydrolysed were detected.

Detected Cystargamide[ALA] species	[M +H] ⁺	Absorbance peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
Linear cystargamide[ALA] ^[a]	986.4500	2719153	17.1
Linear cystargamide[ALA] no hydroxylated ^{[a],[b]}	970.4557	13496	0.1
(5ClW) Chlorinated linear cystargamide[ALA] no hydroxylated ^{[a],[b]}	1004 4167	806781	5 1

6Cl-tryptophan-Feeding at 1 mM scale

Detected Cystargamide species	[M+H] +	Absorbance peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
		699261	
Cystargamide (WT)	954.4244		10.0
Linear cystargamide ^[a]	972.4349	1326172	19.0
Cystargamide no hydroxylated ^[b]	938.4294	23596	0.3
(6ClW) Chlorinated cystargamide no hydroxylated ^[b]	972.3905	1277854	18.3
(6ClW) Chlorinated linear cystargamide no		1440729	
hydroxylated ^{[a],[b]}	990.401		20.6
(6ClW) Chlorinated cystargamide	988.3854	4530292	64.8
	1006.396	7364948	
(6ClW) Chlorinated linear cystargamide ^[a]	0		100.5

[a] The ester bond appeared to have been hydrolysed [b] That lacked the 5-hydroxy on the tryptophan [c] Average area from the reaction performed in triplicate [d] Calculated as: (Absorbance peak area species/Absorbance peak area cystargamide wild type (WT))*10

Ratios of the detected cystargamide species:

Cyclic cystargamide species : Linear cystargamide species = 0.6:1

Chlorinated cystargamide species : Chlorinated linear cystargamide species = 0.1:1

Cyclic cystargamide species : cyclic cystargamide species no hydroxylated= 4:1

Chlorinated cyclic cystargamide species : Chlorinated cystargamide no hydroxylated= 4:1

Analysis of the extract by LC-MS also revealed quantities of analogues of cystargamide containing alanine [ALA] instead of glycine. In this case, only linear forms in which the ester bond appeared to have been hydrolysed were detected.

Detected Cystargamide[ALA] species	[M +H] ⁺	Absorbance peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
Linear cystargamide[ALA] ^[a]	986.4500	4926993	70.5
Linear cystargamide[ALA] no hydroxylated ^{[a],[b]}	970.4557	102532	1.5
(6ClW) Chlorinated linear cystargamide[ALA] no			
hydroxylated ^{[a],[b]}	1004.4167	7641792	109.3
(6ClW) Chlorinated linear cystargamide[ALA] ^[a]	1020.4116	24151097	345.4

7Cl-tryptophan-Feeding at 1 mM scale

Detected Cystargamide species	[M+H] +	Absorbanc e peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
		2106653	
Cystargamide (WT)	954.4244		10.0
Linear cystargamide ^[a]	972.4349	1291560	6.1
Cystargamide no hydroxylated ^[b]	938.4294	300104	1.4
(7ClW) Chlorinated cystargamide no hydroxylated ^[b]	972.3905	668116	3.2
(7ClW) Chlorinated linear cystargamide no		94561	
hydroxylated ^{[a],[b]}	990.401		0.4
(7ClW) Chlorinated cystargamide ^[e]	988.3854	5313075	25.2
	1006.396	2059653	
(7ClW) Chlorinated linear cystargamide ^[a]	0		9.8

[a] The ester bond appeared to have been hydrolysed [b] That lacked the 5-hydroxy on the tryptophan [c] Average area from the reaction performed in triplicate [d] Calculated as: (Absorbance peak area species/Absorbance peak area cystargamide wild type (WT))*10 [e] MS2 data was not recorded due to interfering masses

Ratios of the detected cystargamide species:

Cyclic cystargamide species : Linear cystargamide species = 2:1

Chlorinated cystargamide species : Chlorinated linear cystargamide species = 3:1

Cyclic cystargamide species : cyclic cystargamide species no hydroxylated= 8:1

Chlorinated cyclic cystargamide species : Chlorinated cystargamide no hydroxylated= 8:1

Analysis of the extract by LC-MS also revealed quantities of analogues of cystargamide containing alanine [ALA] instead of glycine. In this case, only linear forms in which the ester bond appeared to have been hydrolysed were detected.

Detected Cystargamide[ALA] species	[M +H] ⁺	Absorbance peak area ^[c]	Ratio compared to Cystargamide (WT) ^[d]
Linear cystargamide[ALA] ^[a]	986.4500	5187247	24.6
Linear cystargamide[ALA] no hydroxylated ^{[a],[b]}	970.4557	654399	3.1
(7ClW) Chlorinated linear cystargamide[ALA] no hydroxylated ^{[a],[b]}	1004.4167	956515	4.5
(7ClW) Chlorinated linear cystargamide[ALA] ^[a]	1020.4116	7761149	36.8

Results demonstrated that all of the halotryptophans incorporated into cystargamide, generating new to nature halogenated analogues. As the concentration of tryptophan had no major impacted the amount of halo–cystargamide produced (see tables below), we selected to scale up of the feeding of 6-bromotryptophan at 0.25 mM.

Scaled up feeding experiment with 6-bromotryptophan

A starter culture was prepared by inoculation of 50 mL GY medium in a 250 mL baffled conical flask with 2 mL glycerol mycelium stock, and fermented for 48 h at 28 °C and 200 rpm in an incubator with a 2.54 cm throw.

Fermentation cultures (8 L) were prepared by inoculating the production medium (0.4 g/L glucose, 0.8 g/L galactose, 0.8 g/L maltose, 1.6 g/L dextrin, 0.8 g/L soya peptone and 0.3 g/L ammonium sulfate, supplemented with 73 mg/L 6-bromotryptophan [0.26 mM] prepared as previously described¹ with starter culture (10% inoculum), and fermented for 72 h at 28 °C and 200 rpm.

The fermentation cultures were centrifuged (6000 rpm, 8980g, 30 min) and the supernatant was extracted with XAD7-HP resin overnight at 4 °C (20 mL resin / L supernatant). The resin was washed liberally with water, after which bound metabolites were eluted in 400 mL volumes each of 100% aqueous methanol. The presence of cystargamide and bromocystargamide was confirmed by UPLC and the extract was fractionated by gel permeation chromatography, using a 200 mL column of Sephadex LH-20 resin in methanol under gravity flow (25-30 cm/h). Cystargamide and bromocystargamide, both in their linear and cyclised forms, eluted between 120 - 180 mL. These fractions were further fractionated by RP-HPLC, using a Waters XBridge Prep Phenyl 10 x 250 mm 5 μ m column with an isocratic gradient of 70% aqueous methanol and 0.1% formic acid and a flow rate of 6 mL/min, monitoring UV absorbance at 280 nm. Cystargamide was found to elute at 10.5 minutes, followed by bromocystargamide at 11 minutes. Solvent was removed from fractions using a Genevac centrifugal vacuum concentrator.

Throughout the purification, fractions were analysed by UPLC (95% acetonitrile and 0.1% trifluoroacetic acid with a flow rate of 0.6 ml/min, monitoring between 220 and 400 nm) or by LC-HRMS (XBridge C18 2.1 x 150 mm column, 5-95% 0.1% formic acid/water; acetonitrile, monitoring at 254 and 280 nm, HRMS: m/z calcd for C₄₉H₅₉BrN₇O₁₃ [M+H]⁺: 1034.3349; found: 1032.3321.

The cystargamide and bromocystargamide were produced in linear and cyclic forms.

Extraction and purification resulted in a pure fraction containing 1.0 mg 6-bromocystargamide **9**. By comparison of the absorbance peak areas it could be estimated that the parent unhalogenated cystargamide **62**, a bromo-cystargamide analogue that lacked the 5-hydroxy on the tryptophan **63** and bromocystargamide **9**, were present in an approximate 10:0.2:1.4 ratio.

LC-MSMS data for cystargamide and its derivatives

Natural Cyclic Cystargamide (62)

MS2 spectrum and fragment assignment

Exact Mass: 528.2704

Chemical Formula: C₂₃H₃₁N₂O₄⁺ Exact Mass: 399.2278

Linear cystargamide

MS2 spectrum and fragment assignment

Natural cystargamide un-hydroxylated

Exact Mass: 938.4294

Exact Mass: 893.4080

Exact Mass: 714.3497

Bromo-cystargamide un-hydroxylated (63)

MS2 spectrum and fragment assignment

38

Chemical Formula: $C_{48}H_{56}BrN_6O_{11}^+$ Exact Mass: 971.3185

Chemical Formula: C₃₉H₄₇BrN₅O₈⁺ Exact Mass: 792.2603

Chemical Formula: $C_{35}H_{38}BrN_6O_9^+$ Exact Mass: 765.1878

Chemical Formula: C₂₈H₃₈N₃O₇⁺ Exact Mass: 528.2704

Chemical Formula: C₂₃H₃₁N₂O₄⁺ Exact Mass: 399.2278

Brominated linear cystargamide un-hydroxylated

Brominated cystargamide (9)

Exact Mass: 399.2278

Linear cystargamide[ALA]

Chemical Formula: C₅₀H₆₄N₇O₁₄* Exact Mass: 986.4506

PP_20150731_46 #1673 RT: 7.04 AV: 1 NL: 2.84E5 F: ITMS + c ESI d Full ms2 986.45@cid35.00 [260.00-1000.00]

Linear cystargamide[ALA] un hydroxylated

Exact Mass: 970.4557

соон

Chemical Formula: C₂₈H₃₈N₃O₇⁺ Exact Mass: 528.2704

Brominated linear cystargamide[ALA] un hydroxylated

Chemical Formula: $C_{50}H_{63}BrN_7O_{13}^+$ Exact Mass: 1048.3662

MS2 spectrum and fragment assignment

Brominated linear cystargamide[ALA]

Chemical Formula: C₅₀H₆₃BrN₇O₁₄⁺ Exact Mass: 1064.3611

MS2 spectrum and fragment assignment

(5BrW) Brominated linear cystargamide[ALA] un hydroxylated

Exact Mass: 1032.3349

(7BrW) Brominated linear cystargamide[ALA] un hydroxylated

Chemical Formula: $C_{50}H_{63}BrN_7O_{13}^+$ Exact Mass: 1048.3662

(6BrW) Brominated linear cystargamide[ALA]

MS2 spectrum and fragment assignment

(5ClW) Chlorinated linear cystargamide no hydroxylated

Exact Mass: 990.4010

MS2 spectrum and fragment assignment

Chemical Formula: $C_{47}H_{56}CIN_6O_{11}^+$ Exact Mass: 915.3690

Chemical Formula: $C_{39}H_{49}CIN_5O_9^+$ Exact Mass: 766.3213

Chemical Formula: $C_{28}H_{40}N_3O_8^+$ Exact Mass: 546.2810

(5ClW) Chlorinated linear cystargamide[ALA] unhydroxylated

Chemical Formula: $C_{50}H_{63}CIN_7O_{13}^+$ Exact Mass: 1004.4167

MS2 spectrum and fragment assignment

(6CIW) Chlorinated cystargamide un hydroxylated

Exact Mass: 972.3905

(6ClW) Chlorinated linear cystargamide un hydroxylated

MS2 spectrum and fragment assignment

Chemical Formula: $C_{47}H_{56}CIN_6O_{11}^+$ Exact Mass: 915.3690

Chemical Formula: $C_{39}H_{49}CIN_5O_9^+$ Exact Mass: 766.3213

Chemical Formula: C₂₈H₄₀N₃O₈⁺ Exact Mass: 546.2810

(6CIW) Chlorinated cystargamide

Chemical Formula: C₄₉H₅₉ClN₇O₁₃⁺ Exact Mass: 988.3854

Chemical Formula: $C_{23}H_{31}N_2O_4^+$ Exact Mass: 399.2278

(6ClW) Chlorinated linear cystargamide

Exact Mass: 1006.3960

08/01/15 15:24:33

(6ClW) Chlorinated linear cystargamide[ALA] un hydroxylated

(6CIW)-Chlorinated linear cystargamide[ALA]

Exact Mass: 1020.4116

01/08/2015 15:07:22

(7ClW) Chlorinated cystargamide unhydroxylated

PP_20150731_41 #1920 RT: 7.91 AV: 1 NL: 3.07E3 F: ITMS + c ESI d Full ms2 972.39@cid35.00 [255.00-985.00]

(7ClW) Chlorinated linear cystargamide un hydroxylated

Chemical Formula: $C_{49}H_{61}CIN_7O_{13}^+$ Exact Mass: 990.4010

MS2 spectrum and fragment assignment

PP_20150731_42 #1832_RT: 7.50_AV: 1_NL: 2.29E4 F: TIM5 + c ESi d Full ms2 990.33@cid35.00 [260.00-1005.00]

(7ClW) Chlorinated cystargamide

(7CIW) Chlorinated linear cystargamide

Chemical Formula: $C_{47}H_{56}CIN_6O_{12}^+$ Exact Mass: 931.3639

Chemical Formula: $C_{39}H_{49}CIN_5O_{10}^+$ Exact Mass: 782.3162

Chemical Formula: $C_{28}H_{40}N_3O_8^+$ Exact Mass: 546.2810

Chemical Formula: C₂₈H₃₈N₃O₇⁺ Exact Mass: 528.2704

Chemical Formula: $C_{23}H_{33}N_2O_4^+$ Exact Mass: 401.2435

(7ClW) Chlorinated linear cystargamide[ALA] unhydroxylated

wi52 speetrum and magnitud assignme

Chemical Formula: $C_{47}H_{56}CIN_6O_{11}^+$ Exact Mass: 915.3690

Chemical Formula: $C_{39}H_{49}CIN_5O_9^+$ Exact Mass: 766.3213

0 0 Ĥ ö O но соон

Chemical Formula: $C_{28}H_{40}N_3O_8^+$ Exact Mass: 546.2810

(7CIW) Chlorinated linear cystargamide[ALA]

81

Cross coupling reaction on Br-Cystargamide

sXPhos 12 (0.6 mg, 1.2 μ mol) and CsCO₃ (6.0 mg, 20 μ mol) were added to a microwave tube and flushed with nitrogen. A stock solution of *bis*(acetonitrile)dichloropalladium (II) (0.8 mg, 4 μ mol) in degassed H₂O:CH₃CN (1:1, 100 μ L) was prepared. The catalyst stock solution (10 μ L, 0.4 μ mol) was added to the microwave tube, followed by a solution of the Br-Cystargamide 9 (1 mg) in H₂O:CH₃CN (1:1, 0.2 mL). 3-Fluorophenylacetylene 24 (10 μ L) was then added. The microwave tube was flushed with nitrogen, then sealed. The reaction mixture was heated at 100 °C for 2 h. The reaction mixture was colled to r.t. A portion of the reaction mixture (0.1 mL) was removed and diluted with H₂O:CH₃CN (1:1, 0.2 mL). Polystyrene supported triphenylphosphine (5 mg) was added the sample was well shaken. The sample was filtered through a plug of cotton wool, then centrifuged (13,000 rpm, 16060 g, 5 min). The reaction mixture (30 μ L) diluted with H₂O:CH₃CN (9:1, 970 μ L) and analysed by LC-MS.

LC-MS analysis showed signals consistent with the product **64** at 1072 $[M+H]^+$, as well as the hydrolysed linear form of the peptide **65** at 1090 $[M+H]^+$.

¹⁹F NMR (470 MHz, D₂O) δ = -114.05 (1F, ddd, *J*(H,F)= 9.9, 9.3, 5.7 Hz), -114.43 (1F, ddd, *J*(H,F)= 9.7, 9.6, 6.3 Hz); Assignment of ¹⁹F NMR signals to the cyclized and linear products respectively is tentative, and based on the observed ratios by LC-MS.

Compound **65** MS (ESI) 1090 (50) $[M+H]^+$, 1046 (40), 641 (40), 515 (100), 376 (50); HRMS: *m*/*z* calcd for C₅₇H₆₅F₁N₇O₁₄ $[M+H]^+$: 1090.4568; found: 1090.4562;

Compound **64** MS (ESI) 1072 (30) [M+H]⁺, 1028 (20), 635 (40), 567 (20), 421 (60), 376 (100); HRMS: *m*/*z* calcd for C₅₇H₆₃F₁N₇O₁₃ [M+H]⁺: 1072.4462; found: 1072.4464.

Cross Coupled Cyclised Cystargamide (64)

Exact Mass: 1027.4248

Exact Mass: 528.2704

Cross Coupled Linear Cystargamide (65)

Exact Mass: 546.2810

Exact Mass: 528.2704

UPLC chromatograms of purified cystargamide (top/black) and the best purified fraction of brominated cystargamide (bottom/blue) used for cross coupling experiment.

	Name	Retention Time	Area	% Area
1	Cystargamide (top chromatogram)	2.128	4619	14.53
2	Brominated cystargamide derivatives (bottom chromatogram)	2.187	27181	85.47

- D. R. M. Smith, T. Willemse, D. S. Gkotsi, W. Schepens, B. U. W. Maes, S. Ballet and R. J. M. Goss, *Org. Lett.* 2014, 16, 2622-2625.
- 2. K. W. Anderson and S. L. Buchwald, Angew. Chem. Int. Ed. 2005, 44, 6173-6177.
- 3. K. A. Gill, F. Berrué, J. C. Arens and R. G. Kerr, J. Nat. Prod., 2014, 77, 1372-1376.

	- 115.1	Current Data Farameters NAME 03152016-2-rjmg-mc410-M EXPNO 10 PROCNO 1
N H O CO_2H H CO_2H F		F2 - Acquisition Parameters Date20160315 Time 16.50 INSTRVM AVII400 PROBHD 5 mm PABBO BB/ PULPROG zgfhiqqn.3.and TD 65536 SOLVENT MeOD NS 64 DS 4 SWH 30000.000 Hz FIDRES 0.457764 Hz AQ 1.0922667 sec RG 128 DW 16.667 usec DE 8.37 usec TE 295.3 K D1 1.00000000 sec D11 0.0300000 sec D12 0.00002000 sec D12 0.00002000 sec D10 1
60 ¹⁹ F{ ¹ H} NMR (CD ₃ OD)		SF01 376.4569514 MHz NUC1 19F P1 15.00 usec PLW1 17.00000000 W
		CHANNEL f2 f2 SF02 400.1316005 MHz NUC2 1H CPDPRG[2 waltz65 PCPD2 90.00 usec PLW2 16.0000000 W PLW12 0.48688999 W
		F2 - Processing parameters SI 65536 SF 376.4983662 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 1.00

-114.9	-115.0	-115.1	-115.2	-115.3	-115.4	ppm

	Current Data Parameters NAME 03212016-17-rjmg-mc410-E EXPNO 11 PROCNO 1
$F + HN + HN + O + CO_2H$ $H^{19}F^{1}H^{1}NMR (CD_3OD)$	F2 - Acquisition Parameters Date_ 20160321 Time 16.31 INSTRUM spect PROBHD 5 mm PABEO BB/ PULPROG zgfhiggn.3.and TD 65536 SOLVENT MeoD NS 32 DS 4 SWH 37500.000 Hz FIDRES 0.572205 Hz AQ 0.0738133 sec RG 77.86 DW 13.333 usec DE 6.75 usec DE 6.75 usec TE 295.0 K D1 1.00000000 sec D11 0.0300000 sec D12 0.0002000 sec TD0 1 SFO1 470.3524446 MHz NUC1 19F P1 14.60 usec PLW1 48.00000000 W
	PLW2 16.0000000 W PLW12 0.27563000 W F2 Processing parameters SI 65536 SF 470.4041892 MHz WDW EM SSB 0 LB 0.30 Hz GB 0

Enantiopurity analyses by UPLC using Marfey's Reagent

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 Minutes

	Name	Retention Time	Area	% Area	Height	Int Type	Amount	Units	Peak Type	Peak Codes	Match_Criteria	Purity
2		2.430	867178	25.09	486339	bb			Unknown			

Purity

