12345678 Systems analysis in Cellvibrio japonicus resolves predicted redundancy of βglucosidases and determines essential physiological functions Cassandra E. Nelson^a, Artur Rogowski^b, Carl Morland^b, Joshua A. Wilhide^c, Harry J. Gilbert^b, and Jeffrey G. Gardner^{a#} 9 10 11 **Keywords** 12 β -glucosidase, cellodextrin, cellulose, *Cellvibrio japonicus*, functional redundancy 13 14 15 16 **Running Title** 17 Functional analysis of *C. japonicus* β -glucosidases 18 19 20 21 Author Affiliations 22 ^a Department of Biological Sciences, University of Maryland - Baltimore County, 23 Baltimore, Maryland, USA 24 25 ^b Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon 26 Tyne, UK 27 28 ^c Molecular Characterization and Analysis Complex, University of Maryland - Baltimore 29 County, Maryland, USA 30 31 32 33 [#]Correspondence 34 Jeffrey G. Gardner 35 Department of Biological Sciences, 1000 Hilltop Circle, University of Maryland -36 Baltimore County, Baltimore, Maryland, USA 21250 37 Phone: 410-455-3613 38 Fax: 410-455-3875

39 Email: jgardner@umbc.edu

40 Table S1. Growth statistics of *C. japonicus* GH3 mutants grown in a defined 41 cellobiose medium^a

41 42

Strain	Growth Rate (gen hr ⁻¹)	Lag Time (hrs)	Max OD ₆₀₀
Wild Type ^b	0.24±0.03	3	1.08±0.039
∆ce/3A ^c	0.27±0.01	3	1.06±0.016
∆cel3B ^d	0.15±0.01	4	0.99±0.002
∆ce/3C ^b	0.21±0.02	3	1.07±0.023
∆cel3D ^b	0.23±0.02	3	1.06±0.011
Wild Type ^e	0.35±0.01	5	1.02±0.015
∆cel3A ∆cel3B ^f	0.09±0.01	10	0.82±0.005
∆cel3A ∆cel3C ^g	0.30±0.01	5	0.99±0.005
∆cel3A ∆cel3D ^g	0.29±0.01	5	0.98±0.019
∆cel3B ∆cel3C ^h	0.22±0.01	7	1.05±0.005
∆cel3B ∆cel3D ^h	0.17±0.02	7	1.05±0.024
Δcel3C Δcel3D ^g	0.28±0.03	5	1.05±0.012
Wild Type ⁱ	0.36±0.01	2	1.05±0.002
Δcel3A Δcel3B Δcel3C ^j	0.24±0.03	13	0.55±0.050
Δcel3A Δcel3B Δcel3D ^k	0.19±0.03	10	0.85±0.036
∆cel3A ∆cel3C ∆cel3D ^I	0.22±0.01	2	1.03±0.020
$\Delta cel3B \Delta cel3C \Delta cel3D^m$	0.16±0.02	5	0.97±0.005
$\Delta 4\beta G^n$	0.22±0.01	13	0.52±0.028

43

^a Experiments were performed in biological triplicate; average and standard deviation
 reported in Table

- 46 ^b Time points used to calculate growth rate were $T_i=4$ and $T_f=12$
- 47 ^c Time points used to calculate growth rate were $T_i = 4$ and $T_f = 8$
- d Time points used to calculate growth rate were T_i=10 and T_f=14
- 49 ^e Time points used to calculate growth rate were $T_i=6$ and $T_f=9$
- f Time points used to calculate growth rate were T_i=12 and T_f=19
- ⁹ Time points used to calculate growth rate were $T_i=6$ and $T_f=9$
- 52 ^h Time points used to calculate growth rate were $T_i=7$ and $T_f=11$
- 53 Time points used to calculate growth rate were $T_i=5$ and $T_f=9$
- ^j Time points used to calculate growth rate were $T_i=18$ and $T_f=22$
- 55 ^k Time points used to calculate growth rate were $T_i=15$ and $T_f=20$
- 56 ¹ Time points used to calculate growth rate were $T_i=5$ and $T_f=9$
- 57 ^m Time points used to calculate growth rate were T_i =8 and T_f =15
- 58 ⁿ Time points used to calculate growth rate were $T_i=18$ and $T_f=23$
- 59

Table S2. Growth statistics of *C. japonicus* GH3 mutants grown in a defined insoluble cellulose medium^a

62

Strain	Growth Rate (gen hr ⁻¹)	Lag Time (hrs)	Max OD ₆₀₀
Wild Type ^b	0.16±0.01	24	0.50±0.070
∆cel3A ^c	0.17±0.02	26	0.51±0.042
$\Delta ce/3B^{d}$	0.08±0.02	38	0.23±0.026
$\Delta ce/3C^{e}$	0.16±0.02	26	0.49±0.040
∆cel3D ^d	0.16±0.02	26	0.48±0.024
Wild Type ^f	0.18±0.001	20	0.52±0.059
Δcel3A Δcel3B ⁹	0.16±0.04	52	0.52±0.039
∆cel3A ∆cel3Cf	0.16±0.02	20	0.50±0.073
Δcel3A Δcel3D ^f	0.18±0.18	20	0.50±0.073
$\Delta cel3B \Delta cel3C^{h}$	0.06±0.004	48	0.22±0.036
$\Delta cel3B \Delta cel3D^{h}$	0.05±0.007	48	0.20±0.007
Δcel3C Δcel3D ^f	0.22±0.03	20	0.48±0.019
Wild Type ^b	0.17±0.01	24	0.49±0.057
$\Delta cel3A \Delta cel3B \Delta cel3C^{i}$	0.05±0.01	52	0.12±0.025
Δcel3A Δcel3B Δcel3D ^j	0.04±0.002	52	0.13±0.010
$\Delta cel3A \Delta cel3C \Delta cel3D^k$	0.15±0.05	28	0.48±0.020
$\Delta cel3B \Delta cel3C \Delta cel3D^{I}$	0.09±0.01	32	0.19±0.027
$\Delta 4\beta G^{m}$	0.06±0.01	52	0.14±0.034

63

^a Experiments were performed in biological triplicate; average and standard deviation
 reported in Table

66 ^b Time points used to calculate growth rate were $T_i=24$ and $T_f=38$

67 ^c Time points used to calculate growth rate were $T_i=26$ and $T_f=34$

 d Time points used to calculate growth rate were T_i=38 and T_f=48

^e Time points used to calculate growth rate were $T_i=26$ and $T_f=36$

70 ^f Time points used to calculate growth rate were $T_i=20$ and $T_f=32$

71 ⁹ Time points used to calculate growth rate were $T_i=52$ and $T_f=64$

72 ^h Time points used to calculate growth rate were T_i =48 and T_f =72

ⁱ Time points used to calculate growth rate were T_i =58 and T_f =88

^jTime points used to calculate growth rate were T_i =64 and T_f =78

75 ^k Time points used to calculate growth rate were $T_i=30$ and $T_f=38$

Time points used to calculate growth rate were $T_i=38$ and $T_f=56$

^m Time points used to calculate growth rate were T_i =50 and T_f =80 78 79 Table S3. Genes up-regulated during exponential growth on cellobiose (compared

80 to glucose) and growth statistics of the corresponding mutants when grown in a

81 defined cellobiose medium^a

82

Gene	Predicted Function ^b	Fold Change ^c	Growth Rate (gen hr ⁻¹) ^d	Maximum OD ₆₀₀ ^e
adg97B	α-glucosidase	1.5	0.23±0.01 ^k	1.05±0.016
aga27A	α-glucosidase ^f	2.5	0.24±0.01 ^k	1.07±0.019
amy13D	α-amylase	1.2	0.24±0.004 ¹	1.07±0.012
axe2A	acetyl xylan esterase	3.3	0.21±0.019 ^k	1.09±0.004
bgl35A	β-galactosidase ⁹	2.0	0.20±0.003 ^k	1.06±0.004
ce/3A	β-glucosidase ^h	1.5	0.27±0.01 ^m	1.04±0.007
cel5C	cellulase	2.3	0.21±0.02 ⁿ	1.08±0.013
cel9B	cellulase	1.3	0.25±0.01 ¹	1.08±0.010
man26C	endo-1, 4-β mannanase ⁱ	1.3	0.23±0.02°	1.07±0.025
xyl31A	α-xylosidase ^j	2.3	0.23±0.003 ^k	1.08±0.010

83

^a RNAseq sampling experiments were performed in biological triplicate. Growth

experiments were also performed in biological triplicate; average and standard deviationreported in Table

87 ^b predicted by Deboy *et. al.* (DeBoy *et al.*, 2008)

88 ^clog₂ scale in comparison to gene expression when grown in glucose

^d compare to the growth rate of wild type of 0.203 calculated from $T_i=4$ and $T_f=12$

90 ^e compare to the maximum OD₆₀₀ of 1.06 for wild type

91 ^f confirmed by Halsted *et al.* (Halstead *et al.*, 2000)

92 ^g confirmed by Larsbrink *et al.* (Larsbrink *et al., 2014*)

93 ^h confirmed by Rixon *et al.* 1992

94 confirmed by Cartmel *et al.* (Cartmell *et al.*, 2008)

95 ^j confirmed by Larsbrink *et al.* (Larsbrink *et al., 2011*)

96 ^k calculated from T_i =4 and T_f =12

- 97 ^I calculated from T_i =4 and T_f =11
- 98 ^m calculated from $T_i=4$ and $T_f=8$
- 99 ⁿ calculated from T_i =4 and T_f =13
- 100 ° calculated from T_i =4 and T_f =10

101

Nelson, *et al.* Supplemental Materials

102 103 Table S4. Strains, plasmids, and primers used in this study

Strain, plasmid, or primer	Genotype	Source or Reference
Strains		
E. coli DH5α	λ ⁻ Φ80dlacZ∆M15 ∆(lacZYA-argF)U169 recA1 endA1 hsdR17(r _k ⁻ m _k ⁻) supE44 thi-1 gvrA relA1	Laboratory collection
E. coli S17 λ_{pir}	Tpr Smr recA thi pro hsdR hsdM ⁺ RP4-2- TC::Mu::Km Tn7 λ_{pri}	Laboratory collection
E. coli K12		Laboratory collection
<i>E. coli</i> strain BL21(DE3)	F^- ompT gal dcm lon hsdS _B ($r_B^-m_B^-$) λ(DE3 [lacl lacUV5-T7p07 ind1 sam7 nin5]) [malB ⁺] _{K-12} (λ ^S)	Merck
E. coli K12 pBBRMCS-5	Gm ^r	This study
E. coli K12 pBBRMCS-5/cel3A	<i>cel3A</i> ⁺ ;Gm ^r	This study
E. coli K12 pBBRMCS-5/cel3B	<i>cel3B</i> ⁺;Gm ^r	This study
E. coli K12 pBBRMCS-5/cel3C	ce/3C ⁺ ;Gm ^r	This study
E. coli K12 pBBRMCS-5/cel3D	<i>cel3D</i> ⁺ ;Gm ¹	This study
C. japonicus Ueda 107	wild Type	Laboratory
C. japonicus ∆gsp	Ueda 107 <i>∆gsp</i>	(Gardner & Keating, 2010)
C. iaponicus ∧cel3A	Ueda 107 ∧ <i>cel3Aª</i>	This study
C. japonicus ∆cel3B	Ueda 107 $\Delta ce/3B^b$	This study
C. japonicus $\triangle ce/3C$	Ueda 107 $\Delta ce/3C^{c}$	This study
C. japonicus ∆cel3D	Ueda 107 ∆ <i>cel3D^d</i>	This study
C. japonicus $\triangle cel3A \triangle cel3B$	Ueda 107 ∆ <i>cel3A∆cel3B</i>	This study
C. japonicus $\triangle cel3A \triangle cel3C$	Ueda 107 <i>∆cel3A∆cel3C</i>	This study
C. japonicus ∆cel3A∆cel3D	Ueda 107 ∆ <i>cel3A∆cel3D</i>	This study
C. japonicus ∆cel3B∆cel3C	Ueda 107 <i>∆cel3B∆cel3C</i>	This study
C. japonicus ∆cel3B∆cel3D	Ueda 107 <i>∆cel3B∆cel3D</i>	This study
C. japonicus ∆cel3C∆cel3D	Ueda 107 <i>∆cel3C∆cel3D</i>	This study
C. japonicus ∆cel3A∆cel3B∆cel3C	Ueda 107 <i>∆cel3A∆cel3B∆cel</i> 3C	This study
C. japonicus ∆cel3A∆cel3B∆cel3D	Ueda 107 <i>∆cel3A∆cel3B∆cel3D</i>	This study
C. japonicus ∆cel3A∆cel3C∆cel3D	Ueda 107 <i>∆cel3A∆cel3C∆cel3D</i>	This study
C. japonicus ∆cel3B∆cel3C∆cel3D	Ueda 107 <i>∆cel3B∆cel3C∆cel3D</i>	This study
<i>C. japonicus</i> ∆4βG	Ueda 107 ∆ <i>cel3A∆cel3B∆cel3C∆cel3D</i>	This study
C. japonicus ∆adg97B	Ueda 107 ∆ <i>adg</i> 97B ^e	This study
C. japonicus aga27A::pK18aga27AKO	Ueda 107 aga27A::pK18mobsacB	This study
C. japonicus ∆amy13D	Ueda 107 ∆ <i>amy13D</i> ⁹	This study
C. japonicus axe2A::pk18axe2AKO	Ueda 107 axe2A::pk18mobsacB	This study
C. japonicus ∆Dgi35A	Ueda 107 $\Delta DGI35A^{i}$	This study
C japonicus celos. DK ISCEISCKU	Ueua 107 celocpk1omobsacB	This study
C japonicus Aman260	Leda 107 Aman26C ¹	This study
C. japonicus $\Delta w/31\Delta$	$Leda 107 \Delta y / 31 \Delta^{m}$	This study
o. japonicus dryis iA		The study

Plasmids		
pRk2013	ColE1 RK2-Mob ⁺ RK2-Tra ⁺ ; Km ^r	(Figurski & Helinski, 1979)
pK18 <i>mobsacB</i>	pMB1 <i>ori mob⁺ sacB</i> ⁺ ; Km ^r	(Schafer <i>et al.</i> , 1994)
pET28b	ColE1 T7promoter: <i>lacO</i> -MCS-T7terminator; Km ^r	Merck
pK18/∆ <i>cel3A</i>	Contains 500bp upstream and downstream of <i>cel3A</i> cloned into pK18 <i>mobsacB</i> ; Km ^r	This study
pK18/∆ <i>cel3B</i>	Contains 500bp upstream and downstream of <i>cel3B</i> cloned into pK18 <i>mobsacB</i> ; Km ^r	This study
pK18/∆ <i>cel</i> 3C	Contains 500bp upstream and downstream of <i>cel3C</i> cloned into pK18 <i>mobsacB</i> ; Km ^r	This study
pK18/∆ <i>cel3D</i>	Contains 500bp upstream and downstream of <i>cel3D</i> cloned into pK18 <i>mobsacB</i> ; Km ^r	This study
pK18/∆ <i>adg</i> 97B	Contains 500bp upstream and downstream of <i>adg97B</i> cloned into pK18 <i>mobsacB</i> ; Km ^r	This study
pK18/aga27AKO	Contains 500bp internal <i>aga27A</i> cloned into pK18 <i>mobsacB</i> ; Km ^r	This study
pK18∆ <i>amy13D</i>	Contains 500bp upstream and downstream of <i>amy13D</i> cloned into pK18 <i>mobsacB</i> ; Km ^r	This study
pk18/ <i>axe2A</i> KO	Contains 500bp internal axe2A cloned into pk18 <i>mobsacB</i> ; Km ^r	This study
pK18/∆ <i>bgl35A</i>	Contains 500bp upstream and downstream of <i>bgl35A</i> cloned into pK18 <i>mobsacB</i> ; Km ^r	This study
pk18/ <i>cel5C</i> KO	Contains 500bp internal <i>cel5C</i> cloned into pk18 <i>mobsacB</i> ; Km ^r	This study
pk18/ <i>cel9B</i> KO	Contains 500bp internal <i>cel9B</i> cloned into pk18 <i>mobsacB</i> ; Km ^r	This study
pK18/∆ <i>man26C</i>	Contains 500bp upstream and downstream of <i>man26C</i> cloned into pK18 <i>mobsacB</i> ; Km ^r	This study
pK18/∆ <i>xy</i> /31A	Contains 500bp upstream and downstream of <i>xyl31A</i> cloned into pK18 <i>mobsacB</i> ; Km ^r	This study
pBBRMCS-5	Gm ^r	(Elzer <i>et al.</i> , 1994)
pce/3A	Contains <i>cel3A</i> cloned into pBBRMCS-5; Gm ^r	This study
pce/3B	Contains <i>cel3B</i> cloned into pBBRMCS-5; Gm ^r	This study
pce/3C	Contains <i>cel3C</i> cloned into pBBRMCS-5; Gm ^r	This study
pcel3D	Contains <i>cel3D</i> cloned into pBBRMCS-5; Gm ^r	This study
pET28b: <i>ce/3A</i> pET28b: <i>ce/3B</i>	Contains <i>cel3A</i> cloned into pET28b; Kan ^r Contains <i>cel3B</i> cloned into pET28b; Kan ^r	This study This study
Primers		
∆ <i>cel3A</i> CONF (5')	GAT TTA CCA GGGTGTTC	This study
$\Delta ce/3A \text{ CONF} (3')$	TTCGCTATTTGAAAGGTA	This study

Nelson, *et al.* Supplemental Materials

<i>cel3A</i> INT (5')	GGTGGTGGATCCCTGCCGATACTGT	This study
ce/3A INT (3')	GGTGGTTCTAGAGCCAATAAAGTGCT	This study
$\Lambda ce/3B CONF (5')$	TGATCATAGTGGCCAT	This study
$\Lambda ce/3B CONE (3')$	TACTCATAGCAGCCG	This study
ce/3B INT (5')	GGTGGTGGATCCATGGATGAGAGCGA	This study
col2P INT (3)		This study
		This study
$\Delta ce/3C \text{ CONF}(3')$	ATTCACAATTCCTGGTGT	This study
ce/3C IN I (5')	GGIGGIGAAIICCIGAAACAICCGGC	This study
<i>ce/3C</i> INT (3')	GGTGGTTCTAGAGTTTAGCCGTGGCA	This study
∆ <i>ce/3D</i> CONF (5')	TGGGTAATACATTGCTTG	This study
∆ <i>cel3D</i> CONF (3')	TGCCAGGTATGTGGA	This study
ce/3D INT (5')	GGTGGTGAATTCGCTGACTGAGGTAT	This study
	GGTGGTTCTAGACAACAACAGCAACA	This study
ce/3A EXP (5')	GCGCGCCATATGTGTGATTCCCGCGCTC	This study
	CC	ine etady
ce/34 EXP (3')	GCGCGCGAGCTCGGGGCAGGCGACGTC	This study
CEIOA EXI (3)	TTT	This study
col3R EXP(5')		This study
CEISD EXF(S)	CC CC CCCATATOCIGIOGCCAAAAGICA	This study
		This study
Ceisb EXP (3)	GUGUGUGAGUTUAUUAAUAUAUUAAAT	i nis study
	GI	.
∆ <i>adg97B</i> CONF (5')	AIGAIGGIGCGAIICG	This study
∆ <i>adg97B</i> CONF (3')	TAATCCTTGACCGCAT	This study
adg97B UP (5')	ACAGCTATGACATGATTACGTCCGAAGT	This study
	TTTATTAAGCAGC	
adg97B UP (3')	ATTGGCAATTACATCATATTCCCCTGACA	This study
	TATCTCGGT	-
adq97B DOWN (5')	GAATATGATGTAATTGCCAATACCCAAGC	This study
	CGTTG	,
ada97B DOWN (3')	TGCATGCCTGCAGGTCGACTCTGTAATC	This study
<i>augo: o (o)</i>	CTTGACCGCATAG	
ada97B INT (5')	TAT GCG TCT ATG ACA CTG	This study
adg07B INT (3)		This study
aag 274 KO (5')		This study
aya27A KO (3)	COTOCITOTACATOTICOCOCOCOTO	This study
aya27A RO(3)		
aga27A CONF (5)	GGIGGIGAATICGIACCCAACATCACC	This study
aga2/A CONF (3')	GIGGIICIAGAIAAAAAACGCCGC	This study
∆ <i>amy13D</i> CONF (5')	TCAAATGGCCGCTGA	This study
∆ <i>amy13D</i> CONF (3')	TGACAGTCAGGAATGC	This study
<i>amy13D</i> UP (5')	GCTATGACATGATTACGAATTCTTCAAAT	This study
	GGCCGCTGACCAA	
<i>amy13D</i> UP (3')	AGCCTTGACATCAAATCCCCCATTGTTGA	This study
	CCGTTTTG	
amy13D DOWN (5')	GATTTGATCTGAAGGCTTTGGTATTGATG	This study
	ACTGAAC	-
amy13D DOWN (3')	GCCTGCAGGTCGACTCTAGACCCCTTTG	This studv
• \- /	ACAGTCACGAATGC	- -
<i>amv13D</i> INT (5')	GGTGGTGGATCCGATCTTGCGACCGATC	This study
amv13D INT (3')	GGTGGTTCTAGACGGAAAGGATCAACAC	This study
		This study

Nelson, *et al.* Supplemental Materials

axe2A KO (5')	GGTGGTAAGCTTTGGTCGGGATTGTTC	This study
axe2A KO (3')	GGTGGTTCTAGATGAAACCGCCTTTAA	This study
axe2A CONF (5')	GGTGGTAAGCTTATTGCGGATATGCAG	This study
axe2A CONF (3')	GGTGGTTCTAGACAAAAGGCCTGCAA	This study
∆ <i>bgl35A</i> CONF (5')	CGTAGCAAGTACCTGAT	This study
$\Delta bg/35A$ CONF (3')	GTACCACGGTTTTCCTC	This study
bg/35A INT (5')	GGTGGTTCTAGATTGCCACACCGATA	This study
<i>bg</i> /35A INT (3')	GGTGGTGGATCCCAATGACGTTCAAAT	This study
ce/5C KO (5')	GGTGGTGAATTCAGCGTGGCGTGAA	This study
<i>cel5C</i> KO (3')	GGTGGTTCTAGAGATATGCGCCCCTT	This study
<i>cel5</i> C CONF (5')	GGTGGTGAATTCCAGCGGCTGTTATC	This study
<i>cel5C</i> CONF (3')	GGTGGTTCTAGAGTTCCAGGCAATGC	This study
<i>cel9B</i> KO (5')	GGTGGTGAATTCGCAGGTTGTGGCA	This study
<i>cel9B</i> KO (3')	GGTGGTTCTAGAGTTGTAGTCACCCG	This study
<i>cel9B</i> CONF (5')	GGTGGTGAATTCCGGGTCCGATAAG	This study
<i>cel9B</i> CONF (3')	GGTGGTTCTAGACATACCCTGCCGTA	This study
∆ <i>man26C</i> CONF (5')	GTGGCAAATACGCCCA	This study
∆ <i>man</i> 26C CONF (3')	CAGCGACTTGTCCAG	This study
man26C INT (5')	GGTGGTTCTAGAACCAGTCGCCGTTAT	This study
man26C INT (3')	GGTGGTGGATCCCTCCCTGATTGATAC	This study
∆ <i>xyl31A</i> CONF (5')	TGTAGCTGAGCCATTG	This study
∆ <i>xy/31A</i> CONF (3')	TACCAGCCCTACCTG	This study
xy/31A INT (5')	GGTGGTGAATTCTGAGCTTCCGTGATG	This study
<i>xyl31A</i> INT (3')	GGTGGTTCTAGAATTTCGGTGGTAGCT	This study
P#4 (GENERAL KO PRIMER) (3')	CAGGCGCTCGTAGAC	(Gardner
		Keating,
		2010)
P#5 (GENERAL KO PRIMER) (5')	GTGTGGAATTGTGAGCG	(Gardner

(Gardner & Keating, 2010)

&

- 104 ^a BioCyc accession number CJA_0204
- 105 ^b BioCyc accession number CJA_1497
- 106 ^c BioCyc accession number CJA_0223
- ^d BioCyc accession number CJA_1140
- 108 ^e-BioCyc accession number CJA_0736
- 109 ^f BioCyc accession number CJA_0246
- ⁹ BioCyc accession number CJA_0737
- ^h BioCyc accession number CJA_3103
- 112 BioCyc accession number CJA_2707
- ^j BioCyc accession number CJA_3369
 ^k BioCyc accession number CJA_1633
- 115 ¹BioCyc accession number CJA_1033
- 116 ^m BioCyc accession number CJA 2706
- 117

Nelson, *et al.* Supplemental Materials

118

119 Fig. S1. All β-glucosidase mutants can grow as wild type on glucose. Single (A), 120 double (B), triple, and quadruple (C) deletions were grown with (0.25%) glucose as the 121 sole carbon source. Experiments were performed in biological triplicate and error bars 122 These growth experiments were represent standard deviation. performed 123 simultaneously, but are separated into multiple panels for clarity. As a consequence, the 124 control strains (wild type and Δgsp) are repeated in each panel.

125

129 Fig. S2. C. japonicus CAZyme genes identified as up-regulated during exponential 130 growth on cellobiose when compared to growth on glucose displayed no growth 131 defects on cellobiose when deleted individually. Samples for RNAseq were taken 132 during growth on 0.5% glucose (A) and 0.25% cellobiose (B) during exponential growth 133 (Exp) and stationary phase (Sta) as indicated by the arrows. Genes up-regulated during 134 exponential growth on cellobiose compared to exponential growth on glucose were 135 identified using a volcano plot (C). The fold change (\log_2 scale) is plotted on the x-axis 136 and the p-value (-log₁₀ scale) is plotted on the y-axis. The red dashed lines indicate the 137 significance cut-off values. Each gray circle represents a gene, and the blue-filed circles 138 represent an up-regulated CAZyme gene. Single mutants were made of each of the up-139 regulated CAZyme genes and growth analysis was performed on 0.5% cellobiose (D). 140 These growth experiments were performed in biological triplicate and error bars 141 represent standard deviation, but in most cases are too small to be observed. 142

144 145 Fig. S3. Control RNAseq experiments identify CAZyme genes regulated by growth 146 **phase.** RNAseq expression data from growth during stationary phase (Sta) on (0.5%) 147 glucose was compared to stationary phase on (0.25%) cellobiose (A). Expression data 148 from exponential growth on (0.5%) glucose was compared to stationary phase on (0.5%)149 glucose. Both amy13J and gly57A genes were significantly up-regulated, and represented as blue closed circles (B). Expression data from exponential phase during 150 151 growth on (0.25%) cellobiose was compared to stationary phase on (0.25%) cellobiose. 152 The up-regulated CAZyme gene, as indicated by a blue circle, was cel3B (C). The fold 153 change (log₂ scale) is plotted on the x-axis and the p-value (-log₁₀ scale) is plotted on the 154 y-axis. The red dashed lines indicate the significance cut-off values. Each gray circle 155 represents a single C. japonicus gene. 156

159 Fig. S4. Example of kinetic graphs for Cel3A and Cel3B. The enzymes were 160 produced in recombinant form from *E. coli* and purified by electrophoretic homogeneity by IMAC. The assays were carried out using the Megazyme International Glucose 161 162 Detection Kit. Assays were carried in 20 mM sodium phosphate pH 7.5 at 37 °C. The 163 concentrations of enzyme used in the assays were as follows: Cel3A was at 50 nM and 164 10 nM against cellobiose and cellotriose, respectively; Cel3B was at 5 nM and 50 nM 165 against cellobiose and cellotriose, respectively. The y-axes report the mM concentration 166 of glucose produced per min. The assays used three technical replicates. Error bars 167 represent the standard error of the mean, though in some cases are too small to be seen 168 on the graph. Additional details on the kinetic experiments can be found in Table 2. 169

170 **REFERENCES**

- 171
- 172 Cartmell, A., E. Topakas, V.M. Ducros, M.D. Suits, G.J. Davies & H.J. Gilbert, (2008)
 173 The *Cellvibrio japonicus* mannanase CjMan26C displays a unique exo-mode of 174 action that is conferred by subtle changes to the distal region of the active site. 175 *Journal of Biological Chemistry* 283: 34403-34413.
- DeBoy, R.T., E.F. Mongodin, D.E. Fouts, L.E. Tailford, H. Khouri, J.B. Emerson, Y.
 Mohamoud, K. Watkins, B. Henrissat, H.J. Gilbert & K.E. Nelson, (2008) Insights into plant cell wall degradation from the genome sequence of the soil bacterium *Cellvibrio japonicus. Journal of Bacteriology* **190**: 5455-5463.
- 180 Elzer, P.H., M.E. Kovach, R.W. Phillips, G.T. Robertson, K.M. Peterson & R.M. Roop,
 181 (1994) *In vivo* and *in vitro* stability of the broad-host-range cloning vector
 182 pBR1MCS in six *Brucella* Species. *Plasmid* 33: 51-57.
- Figurski, D.H. & D.R. Helinski, (1979) Replication of an origin-containing derivative of
 plasmid RK2 dependent on a plasmid function provided in *trans. Proceeding of the National Academy of Sciences* **76**: 1684-1652.
- 186 Gardner, J.G. & D.H. Keating, (2010) Requirement of the type II secretion system for
 187 utilization of cellulosic substrates by *Cellvibrio japonicus*. *Applied and* 188 *Environmental Microbiology* **76**: 5079-5087.
- Halstead, J.R., M.P. Fransen, R.Y. Eberhart, A.J. Park, H.J. Gilbert & G.P. Hazlewood,
 (2000) alpha-Galactosidase A from *Pseudomonas fluorescens* subsp. *cellulosa*:
 cloning, high level expression and its role in galactomannan hydrolysis. *FEMS Microbiology Letters* 192: 197-203.
- Larsbrink, J., A. Izumi, F.M. Ibatullin, A. Nakhai, H.J. Gilbert, G.J. Davies & H. Brumer,
 (2011) Structural and enzymatic characterization of a glycoside hydrolase family
 31 alpha-xylosidase from *Cellvibrio japonicus* involved in xyloglucan
 saccharification. *Biochemical Journal* 436: 567-580.
- Larsbrink, J., A.J. Thompson, M. Lundqvist, J.G. Gardner, G.J. Davies & H. Brumer,
 (2014) A complex gene locus enables xyloglucan utilization in the model
 saprophyte *Cellvibrio japonicus*. *Molecular Microbiology* **94**: 418-433.
- Schafer, A., A. Tauch, W. Jager, J. Kalinowski, G. Theirbach & A. Puhler, (1994) Small
 mobilization multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of
 Corynebacterium glutamicum. Gene 145: 69-73.
- 204