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Appendix A Potentiometric calibration equations and parameters 
 
Time courses of TMRM and PMPI fluorescence intensities were converted to millivolts using 

previously derived [22] (see references in main text) calibration equations (Eq. 1-Eq. 2) and 
parameters given in text and in Suppl. Table 2. Notably, an absolute value calculation in the 
argument of the logarithm was included in Eq. 2 to prevent data clipping at discharged ΔψM where 
noise in the recording may render the argument occasionally negative. For each probe (indices 
starting with P are for PMPI and T for TMRM) these equations calculate the potentials for each 
time point that result in an equilibrium fluorescence (F) when the temporal derivative (D) of the 
fluorescence time course is zero, or in disequilibrium (F is changing in time, thus D≠0). F is 
normalized relative to baseline of 1. D was calculated from F by Savitzly-Golay kernel 
differentiation (see kernel parameters in Suppl. Table 2). 

 

 
To calculate millivolts, first all calibration parameters in (Eq. 1-Eq. 2) need to be obtained. We 

have previously designed and used an internal calibration paradigm [16,22,25], where at the end 
of each time course calibrants were added to the sample allowing calculation of the parameters 

 
Eq. 1 

 

  

 

where   and   

Eq. 2 

 

PPXP

PPXPPXPPP

P

P
kff

kfffFDD

Fz

RT

)(2

))((4
ln2

0

2

0

2






 
  































 1

1

1
ln

0
Ts

AVTTXTT

TXTAVT

AVTM

M
ERDffk

fFERk

RFz

RT

 t
RT

Fz
P

T

eE



 

FMF

RF
AV

VV

aV
R






1

1/11



2 
 

for the given recording. In the current work we describe how to obtain the calibration parameters 
in a simplified and scalable experimental design applicable to certain fluorescence microplate 
readers. 

Calibration parameters include of a set of physical and biophysical constants: R is the molar 
gas constant (8.314 J.K–1.mol–1), T is the temperature (310 K), F is the Faraday constant (96485 
C.mol–1), z is the signed apparent charge of the probes determined in [22]; TMRM at the plasma 
membrane (zT=0.80) at the mitochondrial inner membrane (zTM=0.71) and of PMPI at the plasma 
membrane (zP=-0.55). 

Specimen-specific parameters are the mitochondria:cell volume fraction (VF) and the apparent 
activity coefficient ratio (aR’, which expresses ultrastructural parameters, differences in chemical 
activity between the mitochondrial matrix and the cytosol, and optical dilution). The RAV term in 
Eq. 2 consolidates these geometric and affinity terms into a single parameter. While the 
matrix:mitochondria volume fraction (VFM) is an explicit parameter here, the measurement of aR’ 
largely accounts for TMRM accumulation in the matrix volume and not in the entire mitochondrion. 
This is because the fractional occupancy of the mitochondrial volume by the matrix results in 
optical dilution of TMRM fluorescence that is reflected by the measured aR’. The calculated ΔψM 
is therefore insensitive to VFM, and a fixed 0.63 value previously measured in INS-1E cells was 
used here [22]. 

Lastly, a recording-specific set of parameters comprise the potential-independent background 
fluorescence that can be calculated but not directly measured (fPX and fTX; including 
autofluorescence and probe binding), the directly measured probe fluorescence at 0 mV potential 
(fP0 and fT0) and the rate constant of probe uptake at zero potential (kP and kT).  

 
 

Appendix B Linear spectral unmixing 
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Eq. 3 
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Eq. 4 

 
 
Fluorescence crossbleed between TMRM and PMPI was corrected by linear spectral unmixing. 

A 2×2 transformation matrix (M) was calculated from the intensities measured in the two (TMRM 
and PMPI) fluorescence channels in wells with a cell monolayer stained either with TMRM or 
PMPI (indices in Eq. 3). The PMPI wells were treated with CDC to increase fluorescence. 
Corresponding cell-free blank well fluorescence (with matching medium) was subtracted before 
calculation of M. M was then refined for every experiment using numerical optimization in 
Mathematica to adjust the top right coefficient in Eq. 3 to give zero cross-correlation coefficient 
calculated between unmixed TMRM and PMPI fluorescence time courses after CDC addition. In 
this condition PMPI fluorescence always gradually increases while a change in TMRM 
fluorescence is no longer resolvable, based on fluorescence microscopic observations. Finally, 
pairs of spectrally unmixed fluorescence intensities were calculated for each measurement well 
using Eq. 4 after matched blank well background subtraction. The values obtained were used for 
the potentiometric calibration below. 
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Appendix C Calculation of ΔψP0, ΔψM0 and kT 
 
ΔψM0 and kT were determined using the TMRM fluorescence decay method described in [22], 

with modifications to allow for an unsteady baseline (non-zero first temporal derivative of TMRM 
fluorescence at baseline; DT0). ΔψP0 was determined from the same data, by numerical 
optimization of the ΔψM calibration below seeking a value of ΔψP0 at which ΔψM calibration has 
the minimal deviation from zero potential during application of CDC, where ΔψP is gradually 
approaching to zero. In four microplate columns (16 wells as technical replicates and 16 
corresponding blank wells), after recording baseline, ΔψM was discharged by MDC, then ΔψP 
was also discharged by CDC and equilibrium TMRM fluorescence corresponding to 0 mV 
potentials (fT0) was measured. During numerical optimization of ΔψP0, first ΔψP was calculated 
for each time point as given in Appendix E using a two-point calibration between the test value 
for ΔψP0 and 0 mV. Then ΔψM0 was calculated by Eq. 5 where slope and intercept refer to 

parameters of the linear regression on the data points obtained by plotting  

as a function of  for each time point following MDC addition (see Fig. 

2D), where  and FT and DT are TMRM fluorescence and its first temporal derivative, 

respectively. The median of the parameters determined in the 16 wells with cells was used for 
further calculations.

 

 
 
 

Appendix D Quality control 
 
To obtain ΔψM0, the longest and most linear section of the DTE vs FTE graph (defined in 

Appendix C and shown in Fig. 2D) was used for linear regression automatically, defined by 
running differentiation and the median of the derivatives for the (DTE, FTE) data points. Wells with 
r2 of the linear regression less than 0.5 were discarded. ΔψM0 was not calculated in wells where 
the absolute value of mean ΔψM, or its SD was larger than 25 mV following MDC addition. ΔψM 
data points outside the range -250 to 50 mV were discarded both for baseline potential 
determinations and the “short” calibration paradigm below. 

Determinations of respiration rate were quality controlled by a requirement for glucose 
activation of baseline respiration. 

 
 

Appendix E Baseline to zero (“short”) potentiometric calibration 
 

To calibrate an arbitrary recording (e.g. rotenone or FCCP titrations) a “short” (baseline to zero) 
calibration paradigm was used, relying on two calibration points; the baseline (which may be in 
disequilibrium for TMRM) and complete (ΔψP and ΔψM) depolarization. To this end we used the 
values of ΔψP0, ΔψM0 and kT measured above, which are assumed to be sample/condition 
specific, but independent of the amount of specimen in a well, and the fT0 and fP0 values measured 
for each well after complete depolarization of both potentials. Eq. 6-Eq. 7 were derived by solving 
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the main calibration equations (Eq. 1 and Eq. 2) for fPX and fTX, respectively, at Δψ= Δψ0 and F=1. 
Finally, with all calibration parameters known, Eq. 1 and Eq. 2 were used to calculate potentials. 

 

𝑓𝑃𝑋 = 1 −
𝑓𝑃0 − 1

ⅇ
𝑧𝑃𝐹
RT

ΔψP0 − 1
 Eq. 6 

  

𝑓TX = 1 −
(−1 + ⅇ

𝐹ΔψM0𝑧TM
𝑅𝑇 + 𝑅AV)(−(−1 + 𝑓T0)𝑘𝑇 + (ⅇ

𝐹ΔψP0𝑧𝑇
𝑅𝑇 )𝑠𝑇𝐷T0𝑅AV)

𝑘𝑇(−1 + ⅇ
𝐹ΔψM0𝑧TM

𝑅𝑇 − (−1 + ⅇ
𝐹(ΔψP0𝑧𝑇+ΔψM0𝑧TM)

𝑅𝑇 )𝑅AV)

 Eq. 7 

 
 

Appendix F Modular Control and Regulation Analysis 
 
Elasticities and control coefficients were calculated as in [17]. Response coefficients were 

calculated as in [18,30]. However, for the sake of clarity, we provide these equations as we used 
them in Mathematica (Eq. 11 - Eq. 14). 

 

N = [1 −1 −1] Eq. 8 
  

dJ0= [

𝐽𝑂 0 0
0 𝐽𝑃 0
0 0 𝐽𝐿

] Eq. 9 
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where 𝐶∗ 𝑖
𝛥𝜓𝑀

 is an 𝑖-dimensional row vector or its elements at 𝑖 =(O,P,L) in this 

order, 

Eq. 11 
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where 𝐶∗
𝑖

𝐽𝑗
 is a 𝑗-row 𝑖-column matrix, or its elements at 𝑖 =(O,P,L) and 𝑗 =(O,P,L) in 

this order.  

Eq. 12 
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𝑅𝑖 𝛥𝜓𝑀
𝛥𝜓𝑀
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where 𝑅𝑖 𝛥𝜓𝑀
𝛥𝜓𝑀

 is a column vector or its elements at 𝑖 =(O,P,L) in this order. 

Eq. 13 
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where 𝐼𝑅𝑖
𝛥𝑔𝑙𝑢𝑐𝑜𝑠𝑒
𝛥𝜓𝑀

 is an 𝑖-dimensional column vector or its elements at 𝑖 =(O,P,L) in 

this order, and 

ΔJ =
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 and ΔX = [x
,−x

x
]. 

 
 

Eq. 14 

  
 
Notations follow as given in [30], with modifications. For a system with 𝑖=3 modules (𝑖=O,P,L) 

linked by m=1 metabolite (ΔψM), N is the m-row, 𝑖-column matrix of reaction stoichiometries, dJ0 
is a diagonal matrix of 𝑖 steady state fluxes and ε is the 𝑖-row, m-column matrix of elasticities. 𝐼𝑖 
stands for an 𝑖 × 𝑖 identity matrix and diag() for conversion of a vector to diagonal matrix. Ji and x 
are steady state fluxes and ΔψM, while Ji

,  and x, are their steady state values after perturbation. 

Weighed linear fits were obtained by using the LinearModelFit standard function of 
Mathematica with Weights -> 1/SE2 and VarianceEstimatorFunction -> (1 &) options. To account 
for measurement errors along both axes, the fit was iteratively performed using SE2= slope2*SEx

2+ 
SEy

2. 
Error propagation was performed by calculating derivatives of Eq. 11-Eq. 14 for each 

measured variable or elasticity and then calculating the square root of the square sum of the 
product of the respective derivatives and standard errors. 
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Suppl. Table 1 Calibration cocktail compositions. Compositions follow [22], with the mitochondrial 
depolarization cocktail here including the components originally separately defined as “anti swelling 
cocktail”. 

 
Mitochondrial depolarization cocktail (MDC)  
three components: 1:1000 in EtOH, 1:1000 in DMSO and 1:1000 in H2O 

Compound EtOH stock (mM) Final (µM) 

valinomycin  10 1 

oligomycin 10 2 

antimycin 20 2 

FCCP 10 1 

Compound DMSO stock (mM) Final (µM) 

IAA-94 1000 100 

DIOA 100 10 

bumetanide 200 80 

Compound Aqueous stock (mM) Final (µM) 

tetrodotoxin 1 1 

Complete depolarization cocktail (CDC) 1:500 in EtOH 

Compound EtOH stock (mM) Final (µM) 

valinomycin 10 1 

gramicidin 20 10 

nigericin 100 10 

monensin 100 10 

FCCP 10 1 

oligomycin 10 2 

iodoacetate 2000 500 

cyclosporin A 10 2 

antimycin A 20 2 

 
 
 
Suppl. Table 2 Potentiometric calibration parameters. Nomenclature follows definitions given in [22] 

and in the “Membrane Potential Calibration Wizard” in Image Analyst MKII. 

 
Parameter Value 

aR’ 0.36±0.05 

VF 6.3±0.49% 

VFM 63% 

kP 0.38 

Determination of ΔψM0 and ΔψM0  

Acquisition interval 19 s 

Differentiation kernel for PMPI Width=15, polynomial order=3 

Differentiation kernel for TMRM Width=15, polynomial order=2 

Baseline to Zero “Short” Calibration  

Acquisition interval 36 s 

Differentiation kernel for PMPI Width=11, polynomial order=3 

Differentiation kernel for TMRM Width=11, polynomial order=2 

Microscopy  

Acquisition interval ~ 60 s 

Differentiation kernel for PMPI Width=7, polynomial order=3 

Differentiation kernel for TMRM Width=7, polynomial order=2 

PN 0 

 
 


