
1 
 

 

 

 

 

 

 

 

 

Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes 

and the top gate dielectric Al2O3. (b) A line scan performed along the white dashed line in (a). 

 

 

Supplementary Figure 2. (a) The DFT-calculated band structure of 2-layer BP compared with 

monolayer BP. (b) The DFT-calculated band structure of 3-layer BP compared with monolayer BP. (c) 

The evolution of the energy of the valence band maximum (VBM) and conduction band minimum (CBM) 

states as the number of layers is increased. Colored lines represent direct DFT results and points are the 

fitted results using TB model. (d) and (e) The wave functions of the VBM and CBM states for 4-layer BP, 

respectively. 
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Supplementary Figure 3. The DFT-calculated energies of the VBM and CBM states for 2 to 6-layer BP 

as a function of applied electric field. The points are from DFT calculations, and the lines are from 

diagonalizing the model Hamiltonian. DFT and tight binding results agree well. Again, we want to 

emphasize that the values of these DFT calculated bandgaps are substantially underestimated.  

Supplementary Figure 4. (a) The hole mobility as a function of temperature. At 120 K, the mobility 

deviates from the fitting slightly because phonon scattering is no longer the mobility limiting factor. (b) A 

typical fitting curve to determine the bandgap of the BP thin film under the bias (VBG = 15 V and VTM  -3 

V) using 𝜇 ∝ 𝑇−0.55. Red dots: measured results. Dash line: linear fitting curve. 
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Supplementary Figure 5. (a) A 10-nm-thick BP film conductance as a function of top gate bias (VTG) at 

different static back gate biases (VBG) from -25 to 25 V. The top gate is scanned from negative to positive 

voltage. (b) The same group of conductance curves as in (a) when the top gate is scanned from positive to 

negative voltage.    

 

 

 

 

 

 

 

 

 

Supplementary Figure 6. A typical fitting curve to determine the bandgap of 4-nm-thick BP under zero 

bias.    
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Supplementary Figure 7. The overall conductance G12 of a 23-nm-thick BP thin film as a function of top 

gate bias for fixed back gate bias from -25 to 25 V.  

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 8. The bandgap tuning results of a ~2.5-nm-thick BP thin film as a function of 

the displacement field. For comparison, experimental results from 4-nm-thick film and theoretical results 

(4 to 7 layers) are also plotted.  
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Supplementary Figure 9. Plots of simulated drain current versus gate voltage for a BP transistor similar 

to those utilized in experiments in this work. The drain-to-source voltage is -0.1 V. The current is 

calculated for interface state density, Dit, values 0, 1×10
12

 and 3×10
12

 cm
-2

 eV
-1

. 

 

 

 

 

 

Layers 2 3 4 5 6 7 8 9 10 Bulk 

𝛿1
𝑐𝑜𝑛𝑑 196 170 176 172 163 165 163 161 159 141 

𝛿2
𝑐𝑜𝑛𝑑  -76 -82 -73 -89 -93 -94 -95 -97 -85 

 

Supplementary Table 1. The parameters for the conduction band model Hamiltonian obtained by fitting 

to DFT calculations. All values are in meV. 
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Supplementary Note 1: Thickness determination of black phosphorus thin film 

We determine the thickness of the black phosphorus (BP) thin film using the standard atomic 

force microscope (AFM). Supplementary Figure 1a shows a typical AFM image of device after 

the formation of the contact electrodes (source, drain contacts and voltage probes 1 and 2) and 

the atomic layer deposition of an Al2O3 gate dielectric. The measured thickness of this BP flake 

is about 6.5 nm, as shown by the line scan in Supplementary Figure 1b. Here the Al2O3 

deposition does not affect the measurement accuracy since it is deposited uniformly on both the 

substrate and the BP film.  

Similar to other elemental semiconductors such as silicon (Si) and germanium (Ge), it is well 

known that BP can oxidize. In order to accurately determine the BP thickness, separate from the 

possible surface oxide layer, we further characterized the sample using cross-section high-

resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray 

spectroscopy (EDX) to determine the intrinsic BP thickness. The results are summarized in Figs. 

1c and 1d in the main text. By comparing the AFM and HRTEM results, here we show that the 

thickness determined with AFM includes 2 to 3 nm phosphorus oxide thickness.  

 

Supplementary Note 2: Modeling of the BP bandgap under bias based on tight binding 

(TB) model 

The bandgap reduction in multi-layer BP can be described by considering a tight-binding model 

which contains the energies of monolayer BP and coupling terms which describe the interlayer 

electronic state coupling. This model is motivated by examining the set of bands around the band 

gap for few-layer BP. Supplementary Figures 2a and 2b show the band structure for 2-layer and 

3-layer BP computed based on the density functional theory (DFT), respectively. It is clear that 

adding layers produces additional bands which look like the monolayer bands but are split off 

from each other due to interlayer coupling, like a particle tunneling between multiple wells. We 

want to emphasize that the values of these DFT calculated bandgaps are substantially 

underestimated. Fortunately, we are interested in the variations of bandgaps according to the 

applied gating field. Meanwhile, in final comparison with measurements in the main text, we 

include the many-electron self-energy corrections for correcting absolute bandgap values. 

First, we discuss the model without an external electric field. The model Hamiltonian for n-layer 

BP can be written in matrix form as: 

    𝐻n = (

𝐸0 𝛿1 𝛿2 ⋯
𝛿1 𝐸0 𝛿1 ⋯
𝛿2 𝛿1 𝐸0 ⋯
⋮ ⋮ ⋮ ⋱

)

n×n

           (1) 

where the diagonal term 𝐸0 is the energy of monolayer BP and the off-diagonal terms 𝛿i describe 

the coupling between layers. When the subscript i=1, 𝛿1 is the nearest neighboring interlayer 

coupling; when the subscript i=2, 𝛿2 is the second nearest neighboring interlayer coupling. In 

principle, the Hamiltonian is 𝑘 dependent, however since we are only interested in the valence 
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band maximum (VBM) and conduction band minimum (CBM) states, we set 𝑘 = 0, simplifying 

the model significantly. 

The values of the parameters were obtained by fitting the model to DFT calculations. For n-layer 

BP, the original VBM/CBM is split into n bands, which are fit to the n-1 parameters (the off-

diagonal terms 𝛿i) in the model. This direct fitting approach was performed for up to ten layers, 

and the comparison of the fitted model to DFT is shown in Supplementary Figure 2c. For the 

valence bands, the value of the nearest-neighbor term 𝛿1, is 318 meV. The terms beyond 𝛿1 were 

almost zero, and are treated as zero in the model. For the conduction bands, the coupling terms 

depend on the number of layers, but converge to a bulk limit, which is extrapolated and used for 

n > 10. For 10-layer to 20-layer BP, we assume that their local interlayer coupling is nearly the 

same as the bulk values. Thus we set 𝛿1
cond = 141  meV and 𝛿2

cond = −85  meV. For the 

conduction band the terms beyond 𝛿2 were found to be small enough to ignore. The parameters 

for the conduction band are summarized in Supplementary Table 1. 

To explain the layer dependence and additional coupling terms in the conduction bands we 

compare the VBM and CBM wave functions for 4-layer BP in Supplementary Figures 2d and 2e. 

It is clear that the VBM state is much more localized than the CBM state. The CBM state has 

considerable amplitude in the interlayer region, as well as extending from the surfaces. This 

leads to the second-neighbor coupling. Another feature of second-neighbor coupling is the 

asymmetric splitting of the CBM energies. From Supplementary Figure 2c we see that the 

valence bands are split symmetrically around the monolayer energy, while conduction band 

energy split is highly asymmetric. The single off-diagonal term in the valence band model 

controls the strength of the split, and additional terms in the conduction band model lead to 

asymmetric split. 

Our model then contains effectively three parameters: 𝛿1
val, 𝛿1

cond and 𝛿2
cond, which are obtained 

by fitting to DFT calculations for up to 10 layers. This model describes the band gap evolution 

with respect to the layer number. To obtain the band gap in the presence of an out of plane 

electric field, an additional term is added, which shifts the potential of each layer due to the 

electric field. The models of conduction bands and valance bands can be written as: 

𝐻n
c =

(

 

𝐸0
c 𝛿1

cond 𝛿2
cond ⋯

𝛿1
cond 𝐸0

c + 𝛥 𝛿1
cond ⋯

𝛿2
cond 𝛿1

cond 𝐸0
c + 2𝛥 ⋯

⋮ ⋮ ⋮ ⋱)

 

n×n

 and 𝐻n
v =

(

 

𝐸0
v 𝛿1

val 0 ⋯

𝛿1
val 𝐸0

v + 𝛥 𝛿1
val ⋯

0 𝛿1
val 𝐸0

v + 2𝛥 ⋯
⋮ ⋮ ⋮ ⋱)

 

n×n

(2) 

where 𝛥 =
𝐸ext

𝜖
∗ 𝑑 , 𝐸ext  is the external electric field, 𝜖 = 8.3  is the dielectric constant of 

intrinsic BP [1], and 𝑑 = 0.53 nm is the layer-layer distance. Here we emphasize that in our 

model 𝐸ext is the external field in vacuum. In our devices, the dielectric constant of the gate 

stack has to be taken into account. The potential on each layer is then shifted by an amount 𝛥, 

which depends on the layer-layer distance and screened electric field in BP. Note that the 

addition of an electric field to the model requires no additional tunable parameters. 

Supplementary Figure 3 shows the results obtained by tight binding model and DFT for 2-6 

layers under bias; the tight binding model agrees with DFT extremely well. In the Fig. 2c of the 

main text, the calculated bandgap results of 4, 5, 6, 7, 16, 17, 18, and 19 layers of BP under bias 

using the tight binding model are plotted.   
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Although the tight binding model accurately reproduces the results of DFT calculations, it 

assumes the dielectric constant is the same for all layer numbers under all electric field 

conditions. Realistically, as the band gap decreases, the system should become more metallic, 

and the dielectric constant should increase. This effect is not significant for BP with a thickness 

of ~4 nm since the bandgap tuning is less than 100 meV and the original bandgap is estimated to 

be around 450 meV. However, for ~10-nm BP, this effect can be significant since the tuning 

exceeds 250 meV and the original bandgap is ~300 meV. To account for this, the dielectric 

constant in the expression for 𝛥  is taken to be 𝜀(𝐸g) = 𝜀0
𝐸g0

𝐸g
 in our tight-binding model, 

where 𝜀0 is the dielectric constant of pristine BP [2], Eg0 is the bandgap of pristine BP (~290 

meV in 10-nm-thick film), and Eg is the bandgap under bias, which can be obtained self-

consistently. The additional screening reduces the band gap tuning, as can be seen from Fig. 4c 

in the main text.  

 

Supplementary Note 3: Determination of the BP bandgap under bias  

At each back-gate bias, we performed temperature-dependent measurements to determine the 

minimum conductance as a function of temperature. When the top gate bias reaches VTM, the BP 

sample is at its overall intrinsic state and therefore we have: 

                                                                𝜎m = 𝑞𝑛i(𝜇e + 𝜇h)                                                  (3)                       

where m is the minimum conductivity, q is the elementary charge, ni is the intrinsic carrier 

density for both electrons and holes, and e and h are the mobility for electrons and holes, 

respectively. The minimum conductivity is a function of temperature primarily because we have 

[3]: 

                                                   𝑛i ∝ (
𝑚de𝑚dh

𝑚0
2 )3/4𝑇3/2e−𝐸g/2𝑘B𝑇                                       (4) 

where T is the temperature, mde and mdh are density of state (DOS) masses for electron and holes, 

respectively, m0 is the free electron mass, Eg is the material bandgap, and kB is the Boltzmann 

constant. Moreover, both electron and hole mobility depend on the temperature. In BP thin films, 

previous experiments show that the carrier mobility has a temperature dependence of T
-
 [4-6], 

where  varies from 0.5 to 1, depending on the sample fabrication processes, the kind of mobility 

(Hall or field-effect), carrier concentration and local environment. In our ~10 nm thick BP 

transistors, the field effect mobility is measured to have a  between 0.5 to 0.6. A typical 

mobility as a function of temperature curve for holes is shown in Supplementary Figure 4a. 

Using  = 0.55, we have 
𝜎m

𝑇0.95
∝ 𝑒−𝐸g/2𝑘B𝑇 , based on Supplementary Equation 3 and 

Supplementary Equation 4 above. Therefore, the bandgap can be determined from the slope of 

the ln (
𝜎m

𝑇0.95
) v.s. (

1

𝑇
) curve. A typical fitting curve at VBG of 15 V (VTG ~ -3 V) is plotted in 

Supplementary Figure 4b. At the high electric field, the bandgap can be very small. In this case, 

we replace the Supplementary Equation 4 above by the original Fermi-Dirac integral and 

performed the fitting again. The difference in the bandgap values at all biases is within 5%. In 

addition, we also determined the bandgap assuming  =1. In this case, we extracted the bandgap 

from the slope of the ln (
𝜎m

𝑇0.5
) v.s. (

1

𝑇
) curve. The difference in the extracted bandgap values is 
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always within 14 meV using  of 0.5 and 1 at all the biasing fields in this work. Here we want to 

emphasize that the mobility of intrinsic carriers (electrons and holes) in Supplementary Equation 

(3) can be different from the field effect mobility measured from the transistor transfer 

characteristics, since the intrinsic carrier density is much lower. However, here we show that the 

intrinsic carrier density ni itself plays a decisive role in the determination of the bandgap, due to 

its exponential dependence on the temperature. The intrinsic mobility and the temperature is 

expected to have power-law dependence, which has insignificant effect on the extracted 

bandgap. 

 

In all the measurements results reported in the main text, the top gate scanning was performed 

from negative to positive voltage. There is hysteresis effect in our devices and reversing the 

scanning direction usually leads the systematic shift of the group of the curves by around 2 V, as 

shown in Supplementary Figure 5. However, by subtraction of a constant voltage from VTM, the 

analysis and the conclusion will not be affected, since both the minimum conductance and the 

displacement do not change appreciably when the scanning direction changes.  

 

Here we also plot the fitting curve to determine the bandgap of 4-nm-thick BP using 

temperature-dependent measurements in Supplementary Figure 6. As discussed in in 

Supplementary Note 1, this BP thickness measured using AFM is ~6.5 nm. Indeed the extracted 

bandgap (~470 meV) is close to the theoretical prediction of ~450 meV as discussed in the main 

text. 

 

Supplementary Note 4: A 23-nm-thick BP film under bias  

We also performed similar conductance measurements on thicker BP thin films. Supplementary 

Figure 7 denotes the conductance of a 23-nm-thick BP film under bias using the 4-probe scheme. 

Here the results are distinctively different from those in Figs. 2a and 3a in the main text. First, 

when the back gate bias is negative (-25 to -10 V), no obvious conductance minimum is 

observed. Second, when the back gate bias is positive (5 to 25 V), the VTM, the top gate bias at 

which the conductance minimum occurs, is almost independent of the back gate bias. Both 

phenomena indicate that in thick BP thin-film, the electrostatic doping introduced by top and 

bottom gate biases cannot be compensated even if they are of the opposite polarity, because the 

free carriers screen the displacement field introduced by the gates. In this case, the BP channel 

can be approximately regarded as two rather independent channels controlled by the back and 

top gates, respectively. When the back gate bias is negative, holes accumulate in the bottom BP 

channel. Due to the high hole mobility, the bottom channel has a large conductance. The top gate 

mainly modulates the conductance of the top BP channel. Due to the relatively low electron 

mobility, the top BP channel conductance is low when VTG is positive, leading to the rather small 

change in overall conductance G12 when VTG varies from 0 to 6 V. The overall G12 conductance 

minimum can be observed when the bottom gate bias changes from 0 to 25 V. This is because at 

zero back gate bias the bottom BP channel conductance is minimized and at positive back gate 

bias the bottom BP channel conductance is relatively small due to the low electron mobility. 

Again, due to the free carrier screening effect, the negative top gate bias does not effectively 
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compensate the electron doping in bottom BP channel, which leads to rather stable VTM when the 

back gate bias changes from 5 to 25 V. 

 

Supplementary Note 5: A ~2.5-nm-thick BP film under bias  

In order to further explore the bandgap tuning effect, a device with a channel thickness of ~2.5 

nm (4 to 5 layers) was fabricated and the bandgap tuning results are presented in Supplementary 

Figure 8. Here the top 2 to 3-nm-thick BP oxide thickness has been subtracted from the AFM 

thickness measurement result. Indeed, under the biasing displacement field of 1.1 V nm
-1

, the 

bandgap tuning is only 40 meV, much smaller than that observed in the 4-nm-thick BP transistor 

(75 meV). Moreover, the field dependence of bandgap tuning agrees very well with the 

theoretical calculations. As discussed in the main text and in the Supplementary Note 2, the 

reduced bandgap tuning is due to the significant reduction in the overall potential difference 

across the BP film. This observation further confirms the unique thickness dependent bandgap 

tuning properties of BP. 

 

Supplementary Note 6: The impact of interfacial state density (Dit)  

In this section we describe the expected effect of interface traps on the minimum conductivity. 

We have performed additional simulations based upon the theoretical approach described in Ref. 

[7], which has been shown to provide excellent agreement with experimental data on black 

phosphorus transistors in the subthreshold region. In these simulations, the surface potential, s, 

in the center of the channel between source and drain is assumed to change in proportion to the 

top gate-to-source voltage, VTG, with a constant of proportionality of m, where m = 1+Cit/Cox. 

Here we assume the depletion capacitance is zero to simplify the analysis, since the minimum 

current does not depend upon how fast the gate bias moves the bands. In other words, we simply 

assume dVTG/ds = m. Here, Cit is the interface state capacitance and Cox is the oxide 

capacitance. Cit can be further related to the interface state density, Dit, by Cit = q
2
Dit.  

The simulation results shown in Supplementary Figure 9 indicate that while the subthreshold 

slope changes with increasing Dit, the minimum current does not change, even when Dit is very 

large (3×10
12

 cm
-2

 eV
-1

). This result is due to the fact that, to first order, the interface traps only 

affect the value of m, leading to a “stretch out” of the I-V curve, but otherwise leaving it 

unchanged. 

It should be noted that the interface traps can indirectly influence the channel conductivity 

through Shockley-Read-Hall (SRH) generation. However, even in this case, the SRH generation 

current would be proportional to the intrinsic carrier density ni, and therefore has the same 

activation energy as the Ohmic conductivity. For these reasons, it is sensible to conclude that Dit 

effects do not impact the field-modulated band gap values determined in the main manuscript. 

 

 



11 
 

Supplementary References 

[1] Nagahama, T., Kobayashi, M., Akahama, Y., Endo, S. & Narita, S.-i. Optical determination 

of dielectric constant in black phosphorus. J. Phys. Soc. Jpn. 54, 2096-2099 (1985). 

[2] Rudenko, A. N., Yuan, S. & Katsnelson, M. I. Toward a realistic description of multilayer 

black phosphorus: From GW approximation to large-scale tight-binding simulations. Phys. Rev. 

B 92, 085419 (2015). 

[3] Sze, S. M. & Ng, K. K. Physics of semiconductor devices. Chapter 1. John Wiley & Sons. 

New Jersey (2007). 

[4] Li, L. et al. Quantum Hall Effect in black phosphorus two-dimensional electron gas. Nat. 

Nanotechnol. 11, 593-597 (2016). 

[5] Chen, X. et al. High-quality sandwiched black phosphorus heterostructure and its quantum 

oscillations. Nature Commun. 6, 7315 (2015). 

[6] Tayari, V. et al. Two-dimensional magnetotransport in a black phosphorus naked quantum 

well. Nature Commun. 6, 7702 (2015). 

[7] Haratipour, N., Namgung, S., Oh, S.-H. & Koester, S. J. Fundamental limits on the 

subthreshold slope in Schottky source/drain black phosphorus field-effect transistors. ACS Nano 

10, 3791-3800 (2016). 

 

 


