Molecular cloning and characterization of GPA1, a G protein α subunit gene from Arabidopsis thaliana

(polymerase chain reaction/GTP-binding protein/a subunit/restriction fragment length polymorphism mapping)

HONG MA, MARTIN F. YANOFSKY, AND ELLIOT M. MEYEROWITZ*

Division of Biology, 156-29, California Institute of Technology, Pasadena, CA 91125

Communicated by Melvin I. Simon, March 8, 1990

ABSTRACT We have isolated a gene coding for a G protein α subunit from the flowering plant Arabidopsis thaliana. This gene, named GPA1, was isolated by using a DNA probe generated by polymerase chain reaction based on protein sequences from mammalian and yeast G protein α subunits. The sequences of genomic and cDNA clones indicate that GPA1 has 14 exons, and the deduced amino acid sequence shows that the GPA1 gene product (GP α 1) has 383 amino acid residues (44,582 Da). The GP α 1 protein exhibits similarity to all known G protein α subunits—36% of its amino acids are identical and 73% are similar (identical and conservative changes) to mammalian inhibitory guanine nucleotide-binding regulatory factor α subunits and transducins. Furthermore, the GP α 1 protein has all of the consensus regions for a GTP-binding protein. The GPA1-encoded mRNA of 1.55 kilobases is most abundant in vegetative plant tissues, as determined by RNA blot analysis. Restriction fragment length polymorphism mapping experiments show that GPA1 is ≈ 1.2 centimorgans from the visible marker er on chromosome 2.

Plant cells respond to a large number of external and internal stimuli, such as light, gravity, microbes, and hormones. Although much information has been obtained through physiological and biochemical studies of these responses (e.g., refs. 1–4), little is known about the molecular mechanisms of plant signal-transduction pathways. One approach to understanding signal-transduction pathways in plants is to study mutants that are defective in signal responses, and a large number of these types of mutants have been isolated in *Arabidopsis* (4–7). Analyses using these mutants have been informative about the physiology and genetics, but not yet about the mechanisms, of some signal-transduction pathways in *Arabidopsis*.

An alternative approach to the understanding of plant signaling processes is to study homologues of proteins known to play important roles in signal transduction in animals and simple eukaryotes, such as G proteins. G proteins are members of a specific family of guanine nucleotide-binding regulatory proteins that participate in a variety of signaling processes of eukaryotic organisms, from yeasts to humans (for reviews, see refs. 8-10). These heterotrimeric proteins $(\alpha, \beta, and \gamma \text{ subunits})$ are associated with the cytoplasmic side of cell membranes and transmit signals from transmembrane receptors to effector proteins, which, in turn, produce, often through a cascade of reactions, changes in cellular metabolism. G protein α subunits bind guanine nucleotides and have a GTP as activity. The best characterized α subunits are from mammals: stimulatory and inhibitory guanine nucleotide-binding regulatory proteins (G_s and G_i) are involved in the stimulation or inhibition of adenylate cyclase activity, respectively; transducin (T_r) is responsible for signal

transduction in the rod photoreceptor from rhodopsin to cGMP phosphodiesterase. More recently discovered α subunits include G_0 , of unknown function (11), found in mammalian brain and heart, and transducin from the bovine cone photoreceptor (12). Furthermore, Strathmann et al. (13) demonstrated by isolating sequences of five distinctive α subunits that, in mammals, G protein α subunits are members of a diverse family with several subfamilies. In yeast, a G protein has been shown to participate in the signaling of the pheromone response, and genes for all three subunits have been isolated (14–17). G protein α subunit genes have also been isolated from Drosophila melanogaster (18) and Dictyostelium discoideum (19). Although the degrees of amino acid sequence similarity of G protein α subunits between mammals and yeast or between mammals and slime mold are moderate (40-50%), they all have several highly conserved consensus regions for guanine nucleotide binding and hydrolysis (for review, see ref. 9).

Although no G protein genes have been isolated from plants previously, there has been evidence suggesting the existence of guanine nucleotide-binding regulatory proteins in plants. By using antisera raised against a peptide conserved between mammalian G protein α subunits, other workers have identified cross-reacting proteins from the cell membranes of Cucurbita pepo L (20), Arabidopsis thaliana (21), and Commelina communis (21), and partially purified those from Arabidopsis (21). To identify and study heterotrimeric G proteins in plants, we have taken a molecular approach of cloning genes encoding G protein subunits. We chose as our experimental organism A. thaliana, a small flowering plant that has become a model system for plant genetics and molecular biology (22, 23). Here we report the isolation and characterization of a gene encoding a G protein α subunit from A. thaliana.[†]

MATERIALS AND METHODS

Plasmid and Plant Ecotypes. The A. thaliana plants used here are in either the Columbia [for polymerase chain reaction (PCR)] or Landsberg (er) (for cosmid and cDNA libraries) ecotypes. The plasmid pCIT1828 was constructed by inserting the longest GPA1 cDNA fragment from the $\lambda gt10$ clone (see below) into the EcoRI site of the Promega vector pGEM7Zf(+).

PCR. PCR was performed as described (24) by using a 53°C hybridizing temperature, plant genomic DNA, and degenerate oligonucleotides similar to those described by Strathmann *et al.* (13): (*i*) 5'-C<u>GGATCC</u>AA(AG)TGGAT(ACT)CA(CT)-

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism; ORF, open reading frame; G_s , stimulatory G protein; G_{i1} , G_{i2} , and G_{i3} , inhibitory G proteins 1, 2, and 3, respectively.

^{*}To whom reprint requests should be addressed.

[†]The sequence reported in this paper has been deposited in the GenBank data base (accession no. M32887).

TG(CT)TT-3' (same as oMP19, ref. 13), (*ii*) 5'-G<u>GAAT-TC</u>(AG)TC(AGT)AT(CT)TT(AG)TT(AGCT)AG(AG)AA-3', and (*iii*) 5'-G<u>GAATTC</u>(AG)TC(AGT)AT(CT)TT(AG)TT-(CT)AA(AG)AA-3' (similar to oMP20 and oMP21, respectively, ref. 13). The underlined sequences are restriction sites for convenient cloning of the PCR products. Oligonucleotide *i* is based on the peptide Lys-Trp-Ile-His-Cys-Phe, and oligonucleotides *ii* and *iii* are both based on the peptide Phe-Leu-Asn-Lys-Ile-Asp. Oligonucleotide *i* is in the sense, and oligonucleotides *ii* and *iii* are in the antisense orientation.

Library Screening and DNA Sequencing. A cosmid library (M.F.Y. and J. Bowman, unpublished work) containing A. thaliana Landsberg (er) nuclear DNA was screened with ³²P-labeled PCR fragment under stringent hybridization conditions as described (25). A λ gt10 cDNA library constructed with poly(A)⁺ RNA from young flowers of the Landsberg (er) ecotype (J. Bowman, personal communication) was screened using a ³²P-labeled 2.7-kilobase (kb) genomic *Eco*RI fragment as probe, as described (25). DNA sequencing was performed using either single- or double-stranded template procedures provided in the Sequenase kit (United States Biochemical).

RNA Blot Hybridizations. Poly(A)⁺ RNA was isolated from different tissues of A. *thaliana* Landsberg (er) plants by using a described procedure (26), and similar amounts of RNAs from different tissues were electrophoretically separated on an agarose gel. The RNA was then transferred to a nylon filter (Hybond-N; Amersham) and hybridized to ³²P-labeled GPA1 cDNA.

Restriction Fragment Length Polymorphism (RFLP) Mapping. RFLP mapping was done as described by Chang *et al.* (27). Two DNA fragments \approx 30 kb away from *GPA1* were found to reveal DNA polymorphisms between appropriate ecotypes of *Arabidopsis*. They were used to probe genomic DNA blots of segregating progeny of three crosses that involved the visible marker *ER* (erecta; ref. 28) on chromosome 2, including one that was previously used to generate an *Arabidopsis* RFLP map (27).

RESULTS AND DISCUSSION

Isolation of GPA1. PCR (24) is the ideal method for isolating genes encoding G protein α subunits from plants because the level of similarity between different types of G protein α subunits is moderate and the amino acid similarity is clustered in short regions. To obtain a DNA probe for genes encoding G protein α subunits in A. thaliana, we carried out PCR experiments with genomic DNA and degenerate oligonucleotides. The sequences of three degenerate oligonucleotides were derived from two highly conserved hexapeptides of known mammalian and yeast G protein α subunits. Although no specific PCR product was generated by using

oligonucleotides *i* and *ii*, a specific DNA product of ≈ 360 base pairs (bp) was generated by using oligonucleotides *i* and *iii* with genomic DNA of *A. thaliana* (Columbia ecotype) as template. This fragment was cloned, and its nucleotide sequence was determined. This fragment contains sequences potentially encoding a peptide having a high degree of similarity to mammalian and yeast G protein α subunits (data not shown). In addition, based on the comparison to known G protein α subunit sequences, the fragment contains two small introns of A + T rich sequences with appropriate intron donor and acceptor sites. Using this PCR product as a probe, we isolated several genomic cosmid clones and several overlapping cDNA clones. Fig. 1A shows a restriction map of the genomic region of this gene, named *GPA1* for G protein α subunit 1.

Sequence of GPA1. The DNA sequences of two GPA1 cDNAs, including the longest one, cDNA1828, and of the entire GPA1 genomic region were determined. By comparing the genomic and cDNA sequences, we deduce that the GPA1 gene has 14 exons, ranging from 38 to 348 bases, and 13 introns, from 77 to 489 bases (Fig. 1B). The nucleotide sequences of cDNA1828 and of 5' and 3' genomic sequences are shown in Fig. 2. A large open reading frame (ORF), which begins at the translation initiation ATG codon and ends at a TGA termination codon, is 1149 nucleotides long, and the predicted protein has 383 amino acid residues (44,582 Da, Fig. 2). The protein encoded by this ORF, which we name $GP\alpha 1$, is probably the gene product of GPA 1, based on amino acid sequence comparison to known G protein α subunits (see below). The region in pCIT1828 encoding GP α 1 is identical to the same region in the second completely sequenced cDNA, as well as to the corresponding regions in the genomic sequence.

Within a 215-bp region 5' to the GP α 1 initiation ATG in the longest cDNA there are two additional ATG codons, which are followed by two short ORFs that could code for 20 (ORF1) and 7 (ORF2) amino acids (Fig. 2). The sequences flanking the ATGs of these small ORFs do not match the plant initiation consensus sequence: WMAACAATGGC (where W = A or T and M = C or A) (29), unlike the GP α 1 ATG region, which does show similarity to the consensus sequence. The presence of short ORFs upstream of the protein coding region is atypical but has been seen for the yeast GCN4 (30) and HAP4 (31) genes, several mammalian oncogenes (32), and recently for the maize glutamine synthetase (33) and opaque endosperm (o2) cDNAs (34). It is not known whether these short ORFs are translated in vivo. At the 5' end of the cDNA and extending into the genomic sequence are four repeats of the sequence $(CTT)_n$, where n is between 2 and 9, starting at -58, -18, 30, and 62 (Fig. 2). In addition, further upstream in the genomic sequence is an element of eight consecutive

FIG. 1. (A) Restriction map of the GPA1 genomic region; thick arrow indicates direction of transcription, and short bar on the genomic map denotes position of the PCR-amplified fragment. Restriction sites are derived from the DNA sequences of genomic and cDNA clones. Enzymes: A, Sca I; B, BamHI; D, Dra I; G, Bgl II; H, HindIII; L, Sal I; N, HincII; P, Hpa I; R, EcoRI; S, Sph I; T, Pst I; U, Pvu II; V, EcoRV; X, Xba I; the sites in boldface letters are in exons. (B) The exon-intron structure of GPA1. Filled boxes are exons, including 5'- and 3'-nontranslated regions; the lines between the exons are introns. Numbers above exons and below introns are their sizes in nucleotides. Positions of the initiation ATG codon and the termination codon are indicated. A and B are scaled to each other.

					0																						
-400	GTTA	ACTI	AA	TAGT	ATAT	AA A	ATAA	AAAT	G CA	TATA	GGTT	CCG	TAAT	TAA	TCTC	TTAT	CG T	CACG	AGAG	G CA	CATC	TTTT	TCC	AACA	TTT	GACC	ACTCTC
-300	TCTC		TC	<u>TC</u> AG	GACC	тт т	CGGC	GTAA	T TT	CGTC	TTCC	ССТ	TTGC	TTA	ACA <u>T</u>	TTTC	TT T	CTTT	CTTT	<u>T T</u> G	ACCA	ААТА	TTA	АЛАА	TAT	ATCC	ATTTTT
-200	ATTT	TATI	TT	TAAT	TAAA	тт с	ATAA	TTTG	с ат	TTGT	AATA	GAA	аааа	ААА	GAAG	AGAA	TA A	ATCC	аааа	G AG	TGAA	GCAA	AAA	CATT	AAA	GCGG	AAAGAA
-100	AGTG	GTAA	AA	AAT	AATA	GA A	ACAG	GAGA	A GC	AGAA	GTAC	TAC	TTCT	тст	TCTT	CTGC	тс т	<u>стт</u> с	TCAG	A CC	TTGT	TTTG	TA <u>C</u>	TTTC	ITC_	TTCT	<u>ICTTCT</u>
1	TTCT	TCTT	CT	<u>T</u> GTT	TGCG	аа с	тссс	ATA <u>T</u>	C TT	CTTC	АСТА	сст	TTGA	стс	CATT	T <u>CTT</u>	TT T	CTTC	TTCA	GT	GTAG	GCAT	TGT	CTTG	IT <u>A</u>	TGAG	AAGCAA
101	CIGI	AGCT	GG	AAGC	TCAA	GT <u>A</u>	TTTG	TTTT	T AG	CTGT	GGAG	CTT	GAAT	<u>CT</u> T	GATA	GTTT	IC G	ACTT	CTAT	G TT	ATTA	CCTG	TGG	GGAT	ATA	GAAA	CAATC
200	ATG	GGC	тта	CTC	TGC	AGT	AGA	AGT	CGA	САТ	САТ	ACT	GAA	GAT	ACT	GAT	GAG	AAT	ACA	CAG	GCT	GCT	GAA	ATC	GAA	AGA	CGG
1	Met	Gly	Leu	Leu	Cys	Ser	Arg	Ser	Arg	His	His	Thr	Glu	Asp	Thr	Asp	Glu	Asn	Thr	Gln	Ala	Ala	Glu	Ile	Glu	Arg	Arg
281	ATA	GAG	CAA	GAA	GCA	AAG	GCT	GAA	AAG	CAT	ATT	CGG	AAG	CTT	TTG	СТА	CTT	GGT	GCT	GGG	GAA	тст	GGA	ААА	тст	ACA	ATT
28	Ile	Glu	Gln	Glu	Ala	Lys	Ala	Glu	Lys	His	Ile	Arg	Lys	Leu	Leu	Leu	Leu	GIY	Ala	GIY	GIU	Ser	GIY	Lys	Ser	Thr	lie
362	TTT	AAG	CAG	ATA	AAA	CTT	CTA	TTC	CAA	ACG	GGA	TTT	GAT	GAA	GGA	GAA	CTA	AAG	AGC	TAT	GTT	CCA	GTC	ATT	CAT	GCC	AAT
55	Phe	Lys	GIn	11e	Lys	Leu	Leu	Pne	GIN	Inr	GIY	Pne	Asp	GIU	GIY	GIU	Leu	Lys	Ser	ıyr	vai	Pro	vai	IIe	HIS	AIA	ASN
443	GTC	TAT	CAG	ACT	ATA	ААА	TTA	TTG	CAT	GAT	GGA	ACA	AAG	GAG	TTT	GCT	CAA	AAT	GAA	ACA	GAT	TCT	GCT	AAA	TAT	ATG	TTA
82	Val	Tyr	Gln	Thr	Ile	Lys	Leu	Leu	His	Asp	Gly	Thr	Lys	Glu	Phe	Ala	Gln	Asn	Glu	Thr	Asp	Ser	Ala	Lys	Tyr	Met	Leu
524	TCT	тст	GAA	AGT	ATT	GCA	ATT	GGG	GAG	ААА	СТА	тст	GAG	ATT	GGT	GGT	AGG	TTA	GAC	TAT	CCA	CGT	CTT	ACC	AAG	GAC	ATC
109	Ser	Ser	Glu	Ser	Ile	Ala	Ile	Gly	Glu	Lys	Leu	Ser	Glu	Ile	Gly	Gly	Arg	Leu	Asp	Tyr	Pro	Arg	Leu	Thr	Lys	Asp	Ile
605	GCT	GAG	GGA	ATA	GAA	ACA	СТА	TGG	AAG	GAT	ССТ	GCA	ATC	CAG	GAA	АСТ	TGT	GCT	CGT	GGT	AAT	GAG	CTT	CAG	GTT	сст	GAT
136	Ala (Glu	Gly	Ile	Glu	Thr	Leu	Trp	Lys	Asp	Pro	Ala	Ile	Gln	Glu	Thr	Cys	Ala	Arg	Gly	Asn	Glu	Leu	Gln	Val	Pro	Asp
696	TCT	NCC		T A T	CTG	ATC	GNG	220	TTC	MG	202	ста	тса	CAT	מדא	аат	тат	מיד	CC 3	аст	AAG	GAG	СЪТ	GTA	стт	тат	603
163	Cys '	Thr	Lys	Tyr	Leu	Met	Glu	Asn	Leu	Lys	Arg	Leu	Ser	Asp	Ile	Asn	Tyr	Ile	Pro	Thr	Lys	Glu	Asp	Val	Leu	Tyr	Ala
	-									-			Y								-					-	
767	AGA (GTT (Val	Ara	ACA	ACT	GGT	GTC	GTG Val	GAA	ATA	CAG	TTC	AGC	Pro	GTG Val	GGA	GAG	AAT	LVS	AAA Lvs	AGT	GGT	GAA	GTG Val	TAC	Ara	TTG
150	nrg	vui i	my	1	1	019	vui	·ui	010	110	•								2,5	270	001	0 1j	010		-] -		Doa
848	TTT (GAC	GTG	GGT	GGA	CAG	AGA	AAT	GAG	AGG	AGG	AAA	TGG	ATT	CAT	CTG	TTT	GAA	GGT	GTA	ACA	GCT	GTG	ATA	TTT	TGT	GCT
217	Pne /	Asp	Val	GIY	GIY	GIN	Arg	Asn	GIU	Arg	Arg	Lys	Trp	TTe	HIS	Leu	Pne	GIU	GIY	vai	Inr	AIA	vai	шe	Pne	Cys	AIA
929	GCC 1	ATC 2	AGC	GAG	TAC	GAC	CAA	ACG	стс	TTT	GAG	GAC	GAG	CAG	AAA	AAC	AGG	ATG	ATG	GAG	ACC	AAG	GAA	TTA	TTC	GAC	TGG
244	Ala :	Ile :	Ser	Glu	Tyr	Asp	Gln	Thr	Leu	Phe	Glu	Asp	Glu	Gln	Lys	Asn	Arg	Met	Met	Glu	Thr	Lys	Glu	Leu	Phe	Asp	Trp
1010	GTC (CTG 2	ААА	CAA	ccc	TGT	TTT	GAG	ААА	ACA	тсс	TTC	ATG	CTG	TTC	TTG	AAC	AAG	TTC	GAC	ATA	TTT	GAG	AAG	ААА	GTT	CTT
271	Val 1	Leu 1	Lys	Gln	Pro	Cys	Phe	Glu	Lys	Thr	Ser	Phe	Met	Leu	Phe	Leu	Asn	Lys	Phe	Asp	Ile	Phe	Glu	Lys	Lys	Val	Leu
1091	GAC	.		TTG	AAC	GTT	TGC	GAG	TGG	ፐፐር	AGA	GAT	тас	CAA	600	GTT	тса	AGT	222	מממ	C & A	GAG	ልጥጥ	GAG	СЪТ	602	ተልሮ
298	Asp \	/al H	Pro	Leu	Asn	Val	Cys	Glu	Trp	Phe	Arg	Asp	Tyr	Gln	Pro	Val	Ser	Ser	Gly	Lys	Gln	Glu	Ile	Glu	His	Ala	Tyr
1170								~ ~	~~~		m > m	m 2 <i>c</i>	~~~		100	~~~	~~~	~~~		~~~	~ ~	100	~~~				
325	GAG I Glu F	he V	Jal	Lvs	Lvs	Lvs	Phe	GAG	GAG Glu	Leu	TAT	TAC	Gln	AAC	Thr	Ala	Pro	Asn	AGA Ara	Val	Asn	AGG	GTA Val	Phe	AAA Lvs	Tle	TAC Tvr
				-1-	-1-	-1-					-1-	-1-						p			p				-1-		-] -
1253	AGG A	ACG A	ACG	GCT	TTG	GAC	CAG	AAG	CTT	GTA	AAG	AAA	ACG	TTC	AAG	CTC	GTA	GAT	GAG	ACA	CTA	AGA	AGG	AGA	AAT	TTA	CTG
352	rtg 1	r. 1	mt	n14	Leu.	чар	GTU	гуз	Leu	vai	гуз	гуз	TUL	rne	гуз	ьeu	vai	кар	GIU	TUL	Leu	мгg	мrg	AIG	ASN	Leu	Leu
1334	GAG G	ст с	GC	CTT	TTA	TGA	CCTT	ATTA	т та	CATA	тстс	TAG	ТААА	TTA	сстс	тсст	ТА Т	TATT	АТАА	G AA	АААС	TCGA	ААА	CTGA	ATG	ACCG	TGTAAT
379	Glu A	la G	51y	Leu	Leu	End									*										+		
1431	* * * * * * * * * * * * * * * * * * *										стстс																

1431 TTATCTITCG GGACAAAAGA CITAGCGATT CAAAATCTAA IGIGICICGA IGGCIACGAC IAGIIICAII TITAICAIIG IIIIGIIAA CAIICCICIG 1531 ICIIIGACII CIIAIIIIII TICICAICAA AAACAICICA IIIIGAICII GIIIIIGGG IIAIAIIAII AIIAAAAIGA GGCAICCACA ICCCGAAAIC

FIG. 2. Nucleotide sequence of the *GPA1* gene and the deduced amino acid sequence of GP α 1 protein. Sequences of introns are not shown; \mathbf{v} , positions of introns. Nucleotide 1 corresponds to the beginning of the longest cDNA. Sequences for nucleotides -400 to 11 and 1522-1830 are from genomic clones and that for 12-1521 is identical for cDNA and genomic clones. The first 11 nucleotides of the cDNA are thymidines and are believed to result from priming by the oligo(dT)-primer after first-strand synthesis. Thick arrows 1 and 2 are two pairs of inverted repeats; arrow 1 is a 19 out of 20 match, and arrow 2 is a 15 out of 17 match. The CTT and CT repeats are indicated by thin underlining. Short ORFs are double-underlined. Potential TATA sequence and two hexapeptides used to design degenerate oligonucleotides are boxed. The sequence of the PCR fragment agrees with the genomic sequence of the corresponding region. At the 3' end of *GPA1*, two cDNAs were found to have different polyadenylylation sites, separated by 36 bp, as indicated by asterisks.

repeats of the dinucleotide CT (-305 to -289, Fig. 2). Although the significance of these repeats is unknown, similar repeated sequences have been found in the promoter regions of a number of genes (35-37). Proteins have recently been purified from *Drosophila* nuclei that bind to these elements (37, 38), and one of them was shown to stimulate transcription *in vitro* (38).

GPa1 Shares Strong Sequence Similarity with Known G Protein a Subunits. Amino acid sequence alignment reveals strong similarities of GPa1 to other G protein α subunits (Fig. 3). GPa1 has a very high degree of similarity to all members of the same family in several conserved regions; it has all of the known regions of the Holliday consensus sequences (42) for guanine nucleotide-binding (Fig. 3). Among the previously characterized G protein α subunits, rat G_{i1-3} (9) and bovine rod transducin (39) are most similar to GPa1. These proteins have 36% amino acid residues identical to GPa1, and allowing for conservative substitutions, they share \approx 73% similar residues with GPa1. The genomic *GPA1* sequence was compared with those of genes encoding the human G_s (12 introns; ref. 35), rat G_{i2} and G_{i3} (8 introns; ref. 43), and **Drosophila** DG α 1 (4 introns; ref. 18) proteins. Most intron positions are not conserved; however, the third GPA1 intron was found to share the same position with the first introns of the human G_s, rat G_{i2} and G_{i3}, and Drosophila DG α 1encoding genes, as well as with the first intron of the rat G_{i1} α gene (partial sequence; ref. 43) and G_o α subunit gene (44). In addition, the fifth GPA1 intron is at the same position as the fourth G_s intron (35), and the sixth GPA1 intron shares the same position with the third intron of G_{i2}, G_{i3}, and G_o (35).

GPA1 Is Differentially Expressed. To identify the GPA1encoding RNA and as a start toward determining the pattern of GPA1 expression, a blot with RNA from several tissues was hybridized with a cDNA probe. The result (Fig. 4) indicates that there is a single mRNA for GPA1. Because equal amounts of poly(A)⁺ RNAs were loaded in these lanes, the result suggests that the GPA1 mRNA is most abundant in vegetative tissues, including leaves and/or roots, less in floral stems, and least in floral buds and floral meristem. The same blot was probed with the cDNA of a florally expressed gene (Ag; G. Drews, personal communication); the result shows that the floral RNA was present and not degraded. The fact

	*	
At GPA1	MGLLCS-RS-RHHTEDTDENTOAAE-IERRIEOEAKAEKHIRKLLLLGAGESGKSTIFKOIKLLFOTGFD	67
Boy Tr	MGAGASAEEKHSRE-LEKKLKEDAEKDABTVKLLLLGAGESGKSTLVKOMKITHODGYS	58
Rat Go	MGCTLSAFERAALFRSKA-IEKNLKEDGISAAKDVKLLLLGAGESGKSTLVKOMKITHEDGFS	62
Pat Cil	MGCTLSAEDKAAVERSKM-IDENLEEDGEKAABEVKLLLLGAGESGKSTLVKOMKIIHEAGYS	62
Rat GII	MCCTION EDINETRAOPENNEK-TEKOLOKOKOVYBATHBLLLLGAGESGESTIVKOMBILHUNGENGEGGEEDPOAARSNS	84
Rat GS	HOC LOUGHTE DE CARRENARY - TEREBURDEN THAT IN THE DE COCESCICATION OF THE DIVISION HOL COCESCIC TO A CONSTRUCTION OF THE CARRENARY IN THE COCESCIC TO A CONSTRUCT OF THE CARRENARY IN THE CARRENARY INTERNARY	70
ystacdi		62
Dm DGI	MGCAV51ARDREATERSKN-IDRALRAEGERAASEVALLLIGAGESGK511VNQMKIIND165-	60
Da GZ	MGICASSMEGEKTNTDINLSIEKE-KKKKNNEVKLLLLGAGESGKSIISKQMKIIHQSGIS	60
	GAAAAGA	
		150
At GPA1	EGELKSYVPVIHANVYQTIKLLHDGTKEFAQNETDSAKIMLSSESIAIGEKLSEIGGKLDIPKL-TKDIAEGIETLW-KDPAIGE	150
Bov Tr	LEECLEFIAIIYGNTLQSILAIVRAMTTLNIQYGDSARQDDARKLMHMADTIEEGTM-PREMSDIIQRLW-RDSGIQA	134
Rat Go	GEDVKQYKPVVYSNTIQSLAAIVRAMDTLGVEYGDKERKADSKMVCDVVSRMEDTEPFSAELLSAMMRLW-GDSGIQE	139
Rat Gil	EEECKQYKAVVYSNTIQSIIAIIRAMGRLKIDFGDAARADDARQLFVLAGAAEEGFM-TAELAGVIKRLW-KDSGVQA	138
Rat Gs	DGEKATKVQDIKNNLKEAIETIVAAMSNLVPPVELANPENQFRVDYILSVMNVPNFDFPPEFYEHAKALW-EDEGVRA	161
ystSCG1	HQERLQYAQVIRADAIQSMKILIIQARKLGIQLDCDDPINN-KDLFACKRI-(117)-HEDIAKAIRGLWNNDKGIKQ	257
Dm DGA1	OEECEEYRRVVFSNTVOSLMVIIRAMGRLKIEFADPSRTDIARQFFTHASAADEGIL-LPEIVLLMKKLW-ADGGVQQ	139
Dd G2	NEERKEFKPIITRNILDNMRVLLDGMGRLGMPIDPSNSDAAVMIKELTSLOASIVTDCWGELNEDOGKKIKALW-TDPGVKO	141
	ғ ала сол	
At GPA1	TCARGNELOVPDCTKYLMENLKRLSDINYIPTH	235
Boy Tr	CEDRASEYOLNDSAGYYLSDLERLVTPGYVPTEODVLRSRVKTTGIIETOFSFKDLNFRMFDVGGORSERKKWIHCFEG	213
Rat Go	CENRSBEYOLNDSAKYYLDSLDRIGAADYOPTEODILRTRVKTTGIVETHFTFKNLHFRLFDVGGORSERKKWIHCFED	218
Rat Gil	CENRSBEYOLNDSAAYYLNDLDRIAOPNYLPTOODVLRTRVKTTGIVETHFTFKDLHFKMFDVGGORSERKKWIHCFEG	217
Rat Gs	CYERSNEYOLIDCAOYFLDKIDVIKOADYVPSDODLLBCRVLTSGIFETKFOVDKVNFHMFDVGGORDERRKWIOCFND	240
vet SCG1	CEARSNEFOLEGSAAYYEDNIEKEASDNYCCDEDILKCEIKTTGITETEENIGSSKEKVIDAGGORSERKKWIHCEEG	336
	TEAGEDEVOLUDEACYVINELDETADDVIDTODDUTTOTIDTUKTTCITETNESCKOLUSELDEDGOSTAKKULCEEC	218
		220
Da Gz		220
	Ę – G –	
At GPA1	VTAVIFCAAISEYDOSVFEDEOKNRMMETKELFDWVLKOPCFEKTSFMLFLNKFDIFEKKVLDVPLNVCEWFRDYOPVSSGKOEI	320
Boy Tr	VTCIIFIAALSAYDMVLVEDDEVNRMHESLHLENSICNHRYFATTSIVLFINKKDVESEKIKKAHLSICFPDYNGPNTY	292
Pat Co	VTA I FCVALSCYDOVI HEDETTNDMHESI MI FDSICNNKFFTDTSI I FLNKKDI FGFKI KKSDLTICFDFYDGSNTY	297
Pat Cil	VIAILIEVALGEIDVI VIAPPEMNDMUESMKI FOSTONNKUETDISTI EINKKOL FEKTKKEDITICYDEVBESNTY	296
Rat GII		321
Kat GS	VIAILE VASSSINEVIKEUVIKEUVENTIKEUVENTETI I NEVEVIKUNTETI EINKUULISEKVUKONTETIAKIIT	A15
ystacgi	11AVLEVLAMSE IDQMLE EDERVINAMESTMLE DI LENSAMERDIFI ILE LINKIDLE BERVINAMETACFUT	207
	VTATIFCVALSGIDLVLAEDEENNKMIESLALFDSICNSKWFVEISILFLNKADLFEEKIKKSPLITC	297
Ja GZ	VTAVVFCVALSEIDLLLIEDNSTNRMLESLRVFSDVCNS-WFVNTPIILFLNRSDLFRERIRHVDLSEIFPEIRGGRDI	299
	NKXD	
At GPA1		
lov Tr	FDACH	
Dat Go	EDADA TINYY BEN-TANARAV-TETTINICATULYAA VIDAVDITTRENDRUGGE 330	
at GU		
at GII	EDAMA	
at 65	EDATFEFGEDFRVIRARTITEDEFEKISTASGDGRHICI-FHFICAVDIENTRKVFNDCKDILQKMHLKQIELL 394	
SCSCGI	ALAGL	
DGAI	EEAAN	
DD G2	ERASNYIKERFWQINKTEQKAIY-SHITCATDTNNIRVVFEAVKDIIFTQCVMKAGLYS 357	

FIG. 3. Alignment of GPa1 amino acid sequence with other G protein α subunit sequences. Proteins: At GPA1, A. thaliana GPa1; Bov Tr, bovine rod transducin (39); rat Go (rat G_o) (11), rat Gi1 (rat G_{i1}) (40), and rat Gs (rat G_s) (11), ystSCG1, Saccharomyces cerevisiae SCG1 (14, 15); Dm DG1, Dr. melanogaster DGa1 (18); Dd G2, Di. discoideum G_a2 (19). The amino acid sequences were aligned using the FASTP program (41). Regions A, C, E, G, and I (9, 42) are indicated, and known consensus sequences are shown below three of the regions. Solid bars indicate the positions of amino acid sequences used to design the degenerate oligonucleotides for PCR amplification. As in all known G protein α subunits, GPa1 also has a glycine residue at position 2 (\star) as a site for potential N-myristoylation (9) and an arginine residue at position 190 (#) as a potential site for ADP-ribosylation by cholera toxin (9). Unlike G_i, G_o, and transducins, GPa1 lacks the C-terminal cysteine, the site of ADP-ribosylation by pertussis toxin (9).

that GPA1 mRNA is more abundant in roots and/or leaves suggests that its product, GP α 1, may be involved in signaltransduction pathways in one or both of these tissues. The GPA1 mRNA is ≈ 1.55 kb in length, indicating that the longest cDNA clone (cDNA1828), which has 1537 bp, is nearly full length.

GPA1 Maps on Chromosome 2 Near Two Known Genes. Although GP α 1 is likely to be involved in some signaltransduction pathway in Arabidopsis, the specific signaling

FIG. 4. Autoradiogram of an RNA blot probed with *GPA1* cDNA. Lanes: V, vegetative tissues from whole plants before bolting, including roots and leaves; S, floral stems; F, floral buds and apical meristems. Two micrograms of $poly(A)^+$ RNA was loaded in each lane.

process for which GP α 1 is needed is not yet known. A large number of known mutations affect various responses to signals in Arabidopsis. As a first step toward determining whether or not GP α 1 protein is involved in one of the known plant responses, we would like to determine whether GPA1 is the same as one of the previously identified genes. For this purpose, we determined the genetic map position of GPA1 using the RFLP mapping method (27). Five recombinants between ER and the DNA polymorphism were found among 433 meiotic products. These results localized the GPA1associated polymorphisms to 1.2 centimorgans (on average, \approx 150 kb) from *ER* on chromosome 2, although our data do not reveal to which side of ER GPA1 maps. The only other known Arabidopsis gene in this region is HY1, which also maps ≈ 1 centimorgan from ER and is one of several genes (HY1-HY5, ref. 45; HY6, ref. 46) that are defined by mutations that cause the failure of homozygous mutant seedlings to respond properly to light.

Conclusion. We have isolated a gene (*GPA1*) from *A*. thaliana that encodes a G protein α subunit that shares substantial similarity with known G protein α subunits. The *GPA1* gene is differentially expressed and maps to chromosome 2 near the visible marker *ER*. Isolation of this G α subunit gene demonstrates that, like animals and simple eukaryotes, *Arabidopsis* has at least one G protein α subunit. Although high-stringency hybridizations reveal only the bands expected for the *GPA1* gene, low-stringency hybridization of an Arabidopsis genomic DNA blot with the GPA1 cDNA uncovers additional bands (data not shown), suggesting the presence of other G α subunit genes in the Arabidopsis genome. From our knowledge of G proteins in other systems, it seems likely that there are β and γ subunits in Arabidopsis as well. Furthermore, it is reasonable to conclude that all plants have heterotrimeric guanine nucleotide-binding regulatory proteins. Having isolated a gene coding for a G protein α subunit, we can now begin to study the function of G proteins in plants to gain insight into the presently unknown mechanisms of plant signal transduction.

We thank M. Simon, M. Strathmann, M. Lochrie, and T. Wilkie for gifts of oligonucleotides, advice, and helpful discussions; A. van der Bliek for help with PCR experiments; J. Bowman for the cDNA library and RFLP DNA blots; G. Drews for helping with the RNA blot; S. Kempin for computer analysis of the RFLP mapping data; S. Kempin and Y. Hu for excellent technical assistance; and T. Stearns for help with the protein sequence data base search. We thank R. Bourret, L. Brockman, C. Chang, G. Drews, M. Lochrie, M. Simon, M. Strathmann, A. van der Bliek, D. Weigel, and T. Wilkie for critical reading of this manuscript. This work was supported by a grant from the National Science Foundation (DCB 8703439) and a grant from the Lucille P. Markey Charitable Trust to E.M.M. H.M. was supported by a postdoctoral fellowship from the Helen Hay Whitney Foundation, and M.F.Y. was supported by a postdoctoral fellowship in plant biology from the National Science Foundation (DCB 8608456).

- Karssen, C. M., Brinkhorst-van der Swan, D. L. C., Breekland, A. E. & Koornneef, M. (1983) Planta 157, 158-165.
- Karssen, C. M., Groot, S. P. C. & Koornneef, M. (1987) in Developmental Mutants of Higher Plants, eds. Thomas, H. & Grierson, D. (Cambridge Univ. Press, Cambridge), pp. 119– 133.
- 3. Mirza, J. I. (1987) Plant Physiol. 83, 118-120.
- Mirza, J. I., Olsen, G. M., Iversen, T.-H. & Maher, E. P. (1984) Physiol. Plant. 60, 516-522.
- Koornneef, M., Reuling, G. & Karssen, C. M. (1984) Physiol. Plant. 61, 377-383.
- Estelle, M. A. & Somerville, C. R. (1987) Mol. Gen. Genet. 206, 200-206.
- Bleecker, A. B., Estelle, M. A., Somerville, C. & Kende, H. (1988) Science 241, 1086–1089.
- Gilman, A. G. (1987) Annu. Rev. Biochem. 56, 615-649.
 Lochrie, M. A. & Simon, M. I. (1988) Biochemistry 27, 4957-
- 4965.
- 10. Ross, E. M. (1989) Neuron 3, 141-152.
- Itoh, H., Kozasa, T., Nagata, S., Nakamura, S., Katada, T., Ui, M., Iwai, S., Ohtsuka, E., Kawasaki, H., Suzuki, K. & Kaziro, Y. (1986) Proc. Natl. Acad. Sci. USA 83, 3776-3780.
- 12. Lochrie, M. A., Hurley, J. & Simon, M. I. (1986) Science 228, 96–99.
- Strathmann, M., Wilkie, T. M. & Simon, M. I. (1989) Proc. Natl. Acad. Sci. USA 86, 7407-7409.
- Nakafuku, M., Itoh, H., Nakamura, S. & Kaziro, Y. (1987) Proc. Natl. Acad. Sci. USA 84, 2140-2144.
- 15. Dietzel, C. & Kurjan, J. (1987) Cell 50, 1001-1010.
- Miyajima, I., Nakafuku, M., Nakayama, N., Brenner, C., Miyajima, A., Kaibuchi, K., Arai, K., Kaziro, Y. & Matsumoto, K. (1987) Cell 50, 1011-1019.
- 17. Whiteway, M., Hougan, L., Dignard, D., Thomas, D. Y., Bell,

L., Saari, G. C., Grant, F. J., O'Hara, P. & Mackay, V. L. (1989) Cell 56, 467-477.

- Provost, N. M., Somers, D. E. & Hurley, J. B. (1988) J. Biol. Chem. 263, 12070-12076.
- Pupillo, M., Kumagai, A., Pitt, G. S., Firtel, R. A. & Devreotes, P. N. (1989) Proc. Natl. Acad. Sci. USA 86, 4892– 4896.
- Jacobs, M., Thelen, M. P., Famdale, R. W., Astle, M. C. & Rubery, P. H. (1988) Biochem. Biophys. Res. Commun. 155, 1478-1484.
- Blum, W., Hinsch, K.-D., Schultz, G. & Weiler, E. W. (1988) Biochem. Biophys. Res. Commun. 156, 954-959.
- 22. Meyerowitz, E. M. (1987) Annu. Rev. Genet. 21, 93-111.
- 23. Meyerowitz, E. M. (1989) Cell 56, 263-269.
- 24. Mullis, K. B. & Faloona, F. (1987) Methods Enzymol. 155, 335-350.
- Chang, C. & Meyerowitz, E. M. (1986) Proc. Natl. Acad. Sci. USA 83, 1208-1212.
- Crawford, N. M., Campbell, W. H. & Davis, R. W. (1986) Proc. Natl. Acad. Sci. USA 83, 8073-8076.
- Chang, C., Bowman, J. L., DeJohn, A. W., Lander, E. S. & Meyerowitz, E. M. (1988) Proc. Natl. Acad. Sci. USA 85, 6856-6860.
- Koornneef, M. (1987) in Genetic Maps 1987: A Compilation of Linkage and Restriction Maps of Genetically Studied Organisms, ed. O'Brien, S. J. (Cold Spring Harbor Lab., Cold Spring Harbor, NY), pp. 742-745.
- Lutcke, H. A., Chow, K. C., Mickel, F. S., Moss, K. A., Kern, H. F. & Scheele, G. A. (1987) *EMBO J.* 6, 43–48.
- 30. Hinnebusch, A. G. (1984) Proc. Natl. Acad. Sci. USA 81, 6442-6446.
- 31. Forsburg, S. L. & Guarente, L. (1989) Genes Dev. 3, 1166-1178.
- 32. Kozak, M. (1987) Nucleic Acids Res. 15, 8125-8148.
- Snustad, D. P., Hunsperger, J. P., Chereskin, B. M. & Messing, J. (1988) Genetics 120, 111-124.
- Schmidt, R. J., Burr, F. A., Aukerman, M. J. & Burr, B. (1990) Proc. Natl. Acad. Sci. USA 87, 46-50.
- Kozasa, T., Itoh, H., Tsukamoto, T. & Kaziro, Y. (1988) Proc. Natl. Acad. Sci. USA 85, 2081–2085.
- Ishii, S., Xu, Y.-H., Stratton, R. H., Roe, B. A., Merlino, G. T. & Pastan, I. (1985) Proc. Natl. Acad. Sci. USA 82, 4920-4924.
- Gilmour, D. S., Thomas, G. H. & Elgin, S. C. R. (1989) Science 245, 1487–1490.
- 38. Biggin, M. D. & Tjian, R. (1988) Cell 53, 699-711.
- Medynski, D. C., Sullivan, K., Smith, D., Van Dop, C., Chang, F.-H., Fung, B. K.-K., Seeburg, P. H. & Bourne, H. R. (1985) *Proc. Natl. Acad. Sci. USA* 82, 4311–4315.
- Nukata, T., Tanabe, T., Takahashi, H., Noda, M., Haga, K., Haga, T., Ichiyama, A., Kangawa, K., Hiranaga, M., Matsuo, H. & Numa, S. (1986) FEBS Lett. 197, 305-310.
- 41. Lipman, D. J. & Pearson, W. R. (1985) Science 227, 1435-1441.
- Holliday, K. R. (1983–1984) J. Cyclic Nucleotide Protein Phosphorylation Res. 9, 435–448.
- Itoh, H., Toyama, R., Kozasa, T., Tsukamoto, T., Matsuoka, M. & Kaziro, Y. (1988) J. Biol. Chem. 263, 6656–6664.
- Kaziro, Y., Itoh, H., Kozasa, T., Toyama, R., Tsukamoto, T., Matsuoka, M., Nakafuku, T., Obara, T., Takagi, T. & Hernandez, R. (1988) Cold Spring Harbor Symp. Quant. Biol. 53, 209-220.
- Koornneef, M., Rolff, E. & Spruit, C. J. P. (1980) Z. Pflanzenphysiol. 1005, 147–160.
- Chory, J., Peto, C. A., Ashbaugh, M., Saganich, R., Pratt, L. & Ausubel, F. (1989) Plant Cell 1, 867–880.