SUPPLEMENTARY MATERIALS

Supplementary Methods

Live-cell imaging

Negative control or AHNAK2 shRNA-tranduced CAKI-1 cells were cultured in glass bottom dishes (In Vitro Scientific, D35-20-1-N) for 12–18 h before imaging live at 37°C in a confocal microscope (Nikon). Each image shown in video corresponds to a 8-min interval. Data were analysed using the Nikon-Elements AR Analysis software.

Cell proliferation assay

This assay was performed with the Cell Counting Kit 8(CCK-8) (Dojindo) according to the manufacturer's protocol. Briefly, 2000 cells were seeded into 96-well plates per well and cultured for 0h, 24h, 48h and 72h. Then, each well was added with 10 μ l of CCK-8 solution and incubated 2 h. The absorbance value was determined at a wavelength of 450 nm using a microplate reader (BioTek). All experiments were performed in quintuplicate.

Colony-formation assay

500 cells per well were seeded on 6-well culture plates and cultured for two weeks. Then, the cells were fixed with 4% paraformaldehyde, and colonies were stained with 0.05% crystal violet and counted.

Cell migration assays

Cell invasion was determined using the 24-well chambers (Corning, #3422) with 8 μ m pore polycarbonate membranes either uncoated (for migration) or coated with Matrigel Basement Membrane Matrix (for invasion; Corning). The chambers were rehydrated in serum-free medium. Complete medium with 20% FBS (600 μ l) served as chemoattractant in the bottom chamber and 4 x 10⁴ cells in serum-free medium were seeded with the top chambers and exposed to 21% O₂ or 1% O₂ at 37°C. After 24-48 h, cells on the top chambers were removed and the cells were stained with 0.05% crystal violet solution for 30 min and imaged on a bright-field microscope.

Supplementary Table S1. Primer sequences for quantitative RT-PCR, ChIP

quantitative RT-PCR Primers		
Gene	Sequence	
AHNAK2-F	GAGAAGGAGGACACGGATGTTGC	
AHNAK2-R	CCCCGCTTGCTCTTTATGGATTG	
HIF1α-F	GAACGTCGAAAAGAAAGTCTCG	
HIF1α-R	CCTTATCAAGATGCGAACTCACA	
HIF2α-F	GC TCTCCACGGCCTGATA	
HIF2α-R	TTGTCACAC-CTATGG CATATCACC	
ZO-1-F	ACCAGTAAGTCGTCCTGATCC	
ZO-1-R	TCGGCCAAATCTTCTCACTCC	
Vimentin-F	GACGCCATCAACACCGAGTT	
Vimentin-R	CTTTGTCGTTGGTTAGCTGGT	
OCT-4-F	CTTGAATCCCGAATGGAAAGGG	
OCT-4-R	GTGTATATCCCAGGGTGATCCTC	
Nanog-F	TTTGTGGGCCTGAAGAAACT	
Nanog-r	AGGGCTGTCCTGAATAAGCAG	
Glut1-F	GGCCAAGAGTGTGCTAAAGAA	
Glut1-R	ACAGCGTTGATGCCAGACAG	
VEGFA-F	AGGGCAGAATCATCACGAAGT	
VEGFA-R	AGGGTCTCGATTGGATGGCA	
LDHA-F	ATGGCAACTCTAAAGGATCAGC	
LDHA-R	CCAACCCCAACAACTGTAATCT	
actin-F	CATGTACGTTGCTATCCAGGC	
actin-r	CTCCTTAATGTCACGCACGAT	
ACSS1-F	CACAGGACAGACAAGGTC	
ACSS1-R	CCTGGGTATGGACGATGCC	

assay, mutant constructs, and shRNAs of AHNAK2.

ACLY -F	TCGGCCAAGGCAATTTCAGAG	
ACLY -R	CGAGCATACTTGAACCGATTCT	
ACC-F	ATGTCTGGCTTGCACCTAGTA	
ACC-R	CCCCAAAGCGAGTAACAAATTCT	
FASN-F	AAGGACCTGTCTAGGTTTGATGC	
FASN-R	TGGCTTCATAGGTGACTTCCA	
Lipin 1-F	CCAGCCCAATGGAAACCTCC	
Lipin 1-R	AGGTGCATAGGGATAACTTCCTG	
SCD1-F	TCTAGCTCCTATACCACCACCA	
SCD1-R	TCGTCTCCAACTTATCTCCTCC	
ELOVL6-F	AACGAGCAAAGTTTGAACTGAGG	
ELOVL6-R	TCGAAGAGCACCGAATATACTGA	
CHIP Primers		
Target	Sequence	
HRE1-F	GCTAACGGGAACTGTCTAGG	
HRF1-R	CTGCATGCATGAACACCCACAC	
HRE2-F	TCTATGAGTGTGTGTGTGTCTGCC	
HRE2-F HRE2-R	TCTATGAGTGTGTGTGTGTCTGCC CATAGAGGCACACTCACACAC	
HRE2-F HRE2-R HRE3-F	TCTATGAGTGTGTGTGTGTCTGCC CATAGAGGCACACTCACACAC GTACCTGTGTATCTCTGTGT	
HRE2-F HRE2-R HRE3-F HRE3-R	TCTATGAGTGTGTGTGTGTCTGCC CATAGAGGCACACTCACACAC GTACCTGTGTATCTCTGTGT ACGGATACACACACACATAC	
HRE2-F HRE2-R HRE3-F HRE3-R HRE4-F	TCTATGAGTGTGTGTGTGTCTGCC CATAGAGGCACACTCACACAC GTACCTGTGTATCTCTGTGT ACGGATACACACACACATAC TGCACTCTGATCCTCACCAA	
HRE2-F HRE2-R HRE3-F HRE3-R HRE4-F HRE4-R	TCTATGAGTGTGTGTGTGTCTGCC CATAGAGGCACACTCACACAC GTACCTGTGTATCTCTGTGT ACGGATACACACACACACACAC TGCACTCTGATCCTCACCAA TGCCACTTAAGGCTCCAAGC	
HRE2-F HRE2-R HRE3-F HRE3-R HRE4-F HRE4-R	TCTATGAGTGTGTGTGTGTCTGCC CATAGAGGCACACTCACACAC GTACCTGTGTATCTCTGTGT ACGGATACACACACACACACAC TGCACTCTGATCCTCACCAA TGCCACTTAAGGCTCCAAGC Mutant Construct Primers	
HRE2-F HRE2-R HRE3-F HRE3-R HRE4-F HRE4-R Target	TCTATGAGTGTGTGTGTGTCTGCC CATAGAGGCACACTCACACAC GTACCTGTGTATCTCTGTGT ACGGATACACACACACACAC TGCACTCTGATCCTCACCAA TGCCACTTAAGGCTCCAAGC Mutant Construct Primers Sequence	
HRE2-F HRE2-R HRE3-F HRE3-R HRE4-F HRE4-R Target AP-MUT1-F	TCTATGAGTGTGTGTGTGTGTCTGCC CATAGAGGCACACTCACACAC GTACCTGTGTATCTCTGTGT ACGGATACACACACACACATAC TGCACTCTGATCCTCACCAA TGCCACTTAAGGCTCCAAGC Mutant Construct Primers Sequence p-TGGGCCCGCTAGCTcacacacaTCTCCAAATGA	
HRE2-F HRE2-R HRE3-F HRE3-R HRE4-F HRE4-R HRE4-R AP-MUT1-F AP-MUT1-R	TCTATGAGTGTGTGTGTGTGTCTGCC CATAGAGGCACACTCACACAC GTACCTGTGTATCTCTGTGT ACGGATACACACACACACATAC TGCACTCTGATCCTCACCAA TGCCACTTAAGGCTCCAAGC Mutant Construct Primers Sequence p-TGGGCCCGCTAGCTcacacacaTCTCCAAATGA p-GGTGAGCCACCCGGGCACGATG	
HRE2-F HRE2-R HRE3-F HRE3-R HRE4-F HRE4-R HRE4-R AP-MUT1-F AP-MUT1-R AP-MUT2-F	TCTATGAGTGTGTGTGTGTGTCTGCC CATAGAGGCACACTCACACAC GTACCTGTGTATCTCTGTGT ACGGATACACACACACACATAC TGCACTCTGATCCTCACCAA TGCCACTTAAGGCTCCAAGC Mutant Construct Primers P-TGGGCCCGCTAGCTcacacacaTCTCCAAATGA p-GGTGAGCCACCCGGGCACGATG p-ATGAGCCCAGGAcacacacaGCCCCTGTGTGTAT	
HRE2-F HRE2-R HRE3-F HRE3-R HRE4-F HRE4-R HRE4-R AP-MUT1-F AP-MUT1-R AP-MUT2-F AP-MUT2-R	TCTATGAGTGTGTGTGTGTCTGCC CATAGAGGCACACTCACACAC GTACCTGTGTATCTCTGTGT ACGGATACACACACACACATAC TGCACTCTGATCCTCACCAA TGCCACTTAAGGCTCCAAGC Mutant Construct Primers P-TGGGCCCGCTAGCTcacacacaTCTCCAAATGA p-GGTGAGCCACCCGGGCACGATG p-ATGAGCCCAGGAcacacacaGCCCCTGTGTGTAT p-TTGGAGACCACGCACAGCTAGCGGG	

AP-MUT3-R	p-GGGGCACACGCATTCCTGGGCT	
shRNA Sequence		
Target	Sequence	
sh-AHNAK2 #1	TTGTTGTGTACACTCTAGCCTG	
sh-AHNAK2 #2	TTGAACTTGCTGTCTTTGGTGG	
sh-HIF1α#1	AGTTATGATTGTGAAGTTA	
sh-HIF1α#2	GCGAAGTAAAGAATCTGAA	
sh-HIF2α#2	GGAGACGGAGGTGTTCTAT	
sh-HIF2α#3	GACAAGGTCTGCAAAGGGT	

Figure S1. A y HVAK2 (002) 2⁰ 2⁰ 2⁰ 2⁰ 2⁰ 2¹⁰ 2⁰ 2¹⁰ 2¹⁰

HK2 2931 1898 1860 ACHN CANN

Figure S1. Expression of AHNAK2 in ccRCC cell lines.

(A) and (B) Q-PCR assay and immunofluorescence staining analysis of AHNAK2 transcription and expression in human RCC cell lines. Q-PCRs were normalized to the mRNA level of beta-actin. Scale bar = $20 \ \mu m$. ** *p* < 0.01, *** *p* < 0.001. Data are mean ± SD of three independent experiments. Two-sided t test.

Supplementary Figures and Figure legends

Figure S2. AHNAK2 knockdown inhibits the growth of ccRCC cells in vitro and in vivo.

(A) 786-O cells stably transfected with shRNAs were performed by qPCR analysis. (B) Representative immunofluorescence staining of AHNAK2 expression in each of the indicated cell lines. Scale bar = 20 μ m. (C) The growth inhibition rates were measured in 786-O cells. (D) Representative images of clonogenic assays of 786-O cells stably expressing AHNAK2 shRNAs (sh#1 and #2) or control shRNA. (E) Representative images of migration assays of 786-O cells (left) and quantification of the relative migration cell numbers (right). Scale bar = 100 μ m. (F) Representative images of xenografts derived from 786-O cells (n = 6/group). (G) Tumor volume and (H) weights of xenografts derived from control or AHNAK2-knockdowned 786-O cells were evaluated.

(A) Co-expression analysis of AHNAK2 in Grumz Renal dataset. (B) Q-PCR assay of AHNAK2 transcription in DU145, MCF-7 and H460 cells under hypoxia for 0, 6, 12, 24, and 48 hours respectively. * p < 0.05, ** p < 0.01, *** p < 0.001.

(A) Representative images of spheres in CAKI-1 cells stably transfected with control sh-neg or AHNAK2 sh#1 (left) and quantification of the number of spheres (right). ** p < 0.01. (B) Relative expression of AHNAK2, Nanog and Oct-4 at the mRNA level in sphere cultures compared to attachment cultures of CAKI-1 cells . ** p < 0.01, *** p < 0.001.

Figure S4