Supplementary Data

Formula S1. Calculation of IG fluctuation from continuous glucose monitoring profiles

$$\frac{1}{T} \int_{O}^{T} |IG(t) - \overline{IG}| dt$$

IG, interstitial glucose; IG(t), IG value at time t; \overline{IG} , mean IG from the patient profile; T, duration of continuous glucose monitoring profile (excluding gaps with no, or invalid IG measurements).

SUPPLEMENTARY TABLE S1. DUAL I EXTENSION BASELINE CHARACTERISTICS

Characteristic	IDegLira (n=833)	IDeg (n=413)	<i>Liraglutide</i> (n=414)
Female/male, %	48/52	52/48	50/50
Age, years	55.1 (9.9)	54.9 (9.7)	55.0 (10.2)
$BMI, kg/m^2$	31.2 (5.2)	31.2 (5.3)	31.3 (4.8)
Duration of diabetes, years	6.6 (5.1)	7.0 (5.3)	7.2 (6.1)
HbA _{1c} , %	8.3 (0.9)	8.3 (1.0)	8.3 (0.9)
HbA _{1c} , mmol/mol	67 (9.7)	67 (10.7)	67 (10.3)
FPG, mmol/L	9.2 (2.4)	9.4 (2.7)	9.0 (2.6)
SMBG, ^a mmol/L			
Before bedtime	$10.8 (3.2)^{\rm c}$	$11.0 (3.3)^{\rm f}$	$10.7 (3.4)^{i}$
04:00	9.3 $(2.6)^{d}$	9.2 $(2.5)^{g}$	9.1 $(2.8)^{j}$
Fasting C-peptide, nmol/L ^b	0.72 (46) ^e	$0.71(54)^{h}$	$0.68(51)^{k}$

Values are mean (SD) unless otherwise stated. Adapted from Gough et al.¹⁵

^aSMBG assessed with glucose meter as plasma equivalent values of capillary whole blood glucose.

^bValues are geometric mean (CV).

 ${}^{c}n = 788.$ ${}^{d}n = 790.$

 ${}^{e}n = 803.$ ${}^{f}n = 392.$

 $^{g}n = 397.$

 ${}^{h}n = 402.$

n = 393.n = 401.

 $k_n = 398.$

BMI, body mass index; CV, coefficient of variation; FPG, fasting plasma glucose; HbA_{1c}, glycated hemoglobin; IDeg, insulin degludec; IDegLira, fixed-ratio combination of insulin degludec and liraglutide; SD, standard deviation; SMBG, self-monitored blood glucose.

Characteristic	IDegLira n=199	IDeg n=199
Female/male, %	44/56	47/53
Age, years	56.8 (8.9)	57.5 (10.5)
$BMI, kg/m^2$	33.6 (5.7)	33.8 (5.6)
Duration of diabetes, years	10.3 (6.0)	10.9 (7.0)
HbA _{1c} , %	8.7 (0.7)	8.8 (0.7)
HbA _{1c} , mmol/mol	72 (8)	73 (8)
FPG, mmol/L	9.7 (2.9)	9.6 (3.1)
SMBG, ^a mmol/L	× /	× ,
Before bedtime	$11.9 (3.5)^{c}$	$11.5 (3.3)^{\rm e}$
04:00	9.1 $(3.2)^{d}$	$9.2(3.0)^{f}$
Fasting C-peptide, nmol/L ^b	0.54 (54)	0.50 (59) ^g

SUPPLEMENTARY TABLE S2. DUAL II **BASELINE CHARACTERISTICS**

Full analysis set. Values are mean (SD) unless otherwise stated. Adapted from Buse et al.¹³ ^aSMBG assessed with glucose meter as plasma equivalent values of capillary whole blood glucose. ^bValues are geometric mean (CV). ^cn = 103

 $c_n = 193$ $d_n = 191.$

 ${}^{e}n = 194.$ ${}^{f}n = 193.$

 $g_{n=198.}$

Time point	Reason for missing data	<i>IDegLira</i> (n=131), n (%)	<i>IDeg</i> (n=64), n (%)	<i>Liraglutide</i> (n=65), n (%)
Baseline	All	27 (21)	11 (17)	13 (20)
	CGM download, upload, or recording failure	6 (5)	2 (3)	4 (6)
	Technical problem with CGM sensor	2 (2)		1 (2)
	Withdrawal of subject ^a		_	2 (3)
	Other	3 (2)	_	_
	No information	16 (12)	9 (14)	6 (9)
Week 52	All	48 (37)	29 (45)	23 (35)
	CGM download, upload, or recording failure	11 (8)	7 (11)	3 (5)
	Technical problem with CGM sensor	1 (1)	1 (2)	
	Withdrawal of subject ^a	23 (18)	13 (20)	13 (20)
	Site closed prematurely	11 (8)	5 (8)	5 (8)
	Other	1 (1)	3 (5)	2 (3)
	No information	1 (1)		_
Baseline or week 52	All	59 (45)	30 (47)	28 (43)

SUPPLEMENTARY TABLE S3. OVERVIEW OF MISSING CONTINUOUS GLUCOSE MONITORING DATA AT BASELINE AND WEEK 52

Values are number of subjects (%). ^aWithdrawal from trial or sub-study participation. CGM, continuous glucose monitoring.

SUPPLEMENTARY TABLE S4. BASELINE CHARACTERISTICS OF PATIENTS IN THE DUAL I EXTENSION SUB-STUDY WITH USABLE CONTINUOUS GLUCOSE MONITORING DATA AT WEEK 52

Characteristic	IDegLira (n=72)	IDeg (n=34)	<i>Liraglutide</i> $(n=37)$
Female/male, %	43/57	27/73	41/59
Age, years	55.9 (8.5)	55.6 (9.3)	53.3 (10.7)
$BMI, kg/m^2$	33.0 (4.2)	32.8 (4.0)	33.1 (4.5)
Duration of diabetes, years	8.0 (5.9)	7.3 (4.7)	7.9 (4.8)
HbA ₁ , %	8.1 (0.8)	8.0 (0.7)	8.2 (1.0)
HbA _{1c} , mmol/mol ^a	65 (9)	64 (8)	66 (11)
FPG, mmol/L	9.0 (1.9)	9.3 (2.9)	8.9 (2.0)
Fasting C-peptide, nmol/L ^b	$0.69 (47)^{\circ}$	0.69 (59)	$0.71 (48)^{d}$

Values are mean (SD) unless otherwise stated.

^aCalculated, not measured.

^bValues are geometric mean (CV).

 ${}^{c}n = 70.$ ${}^{d}n = 36.$

SUPPLEMENTARY TABLE S5. GLYCEMIC FLUCTUATION ASSESSED BY MAGE, LBGI, AND HBGI
IN PATIENTS WITH TYPE 2 DIABETES TREATED FOR 52 WEEKS IN THE DUAL I EXTENSION
Continuous Glucose Monitoring Sub-Study

CGM parameter	IDegLira (n = 131)	IDeg (n=64)	ETD [95% CI]: IDegLira vs. IDeg	<i>Lira</i> (n=65)	ETD [95% CI]: IDegLira vs. Lira
MAGE (mmol/L)					
Mean at haseline	36(12)	37(15)		37(13)	
Mean Δ , w52	-1.3 (1.6)	-0.5(2.0)	-0.7 [-1.3 to -0.1] (P=0.0229)	-0.9(2.2)	-0.3 [-0.9 to 0.3] (P=0.2939)
LBGI (mmol/L)					
Mean at baseline	30.2 (20.7)	31.6 (21.0)		36.7 (20.2)	
Mean Δ , w52	17.2 (21.5)	13.2 (21.4)	0.1 [-4.1 to 4.2] (<i>P</i> =0.9819)	7.8 (23.0)	3.8 [-0.2 to 7.9] (P=0.0622)
HBGI (mmol/L)					
Mean at baseline	65.4 (4.9)	65.4(4.5)		65.7 (5.2)	
Mean Δ , w52	-7.8 (9.4)	-5.7 (4.4)	-2.4 [-5.4 to 0.6] (P=0.1110)	-5.0 (6.1)	-2.8 [-5.7 to 0.1] (P=0.0545)

Values are mean (SD) unless otherwise stated. Parameters are analyzed based on observed data using an ANCOVA method with treatment, region, baseline HbA_{1c} stratum (≤8.3% [≤67 mmol/mol], >8.3% [>67 mmol/mol]) and previous OAD treatment as fixed effects and baseline response as covariates.

ANCOVA, analysis of covariance; CI, confidence interval; ETD, estimated treatment difference; HBGI, high blood glucose index; IG, interstitial glucose; LBGI, low blood glucose index; Lira, liraglutide; MAGE, mean amplitude of glycemic excursions; OAD, oral antidiabetic drug; w, week.

	IDegLira	IDeg	Lira
IG <3.9 mmol/L during nocturna	al period (00:01–05:59)		
Episodes, number			
Baseline	12	4	6
Week 52	29	25	5
Rate, number/100 h			
Baseline	2.0	1.4	2.1
Week 52	4.5	8.0	1.5
IG <3.1 mmol/L during nocturna	l period (00:01–05:59)		
Episodes, number	I (())		
Baseline	6	6	6
Week 52	13	7	0
Rate, number/100 h			
Baseline	1.0	2.0	2.1
Week 52	2.0	2.2	0

SUPPLEMENTARY TABLE S6.	Episodes of Nocturna	l Low Interstitial G	LUCOSE (<3.9 AND <3.1 MMC	JL/L)
Among Patients in	THE DUAL I EXTENSION	CONTINUOUS GLUCOSE	MONITORING SUB-STUDY	

Sub-study analysis set.

SUPPLEMENTARY FIG. S1. Distribution of postprandial SMBG* measurements across treatment arms in (a) DUAL I and (b) DUAL II at baseline and EOT. *SMBG assessed with glucose meter as plasma equivalent values of capillary whole blood glucose. Data are based on FAS, with LOCF for all subjects with a full nine-point profile at baseline. EOT, end-of-trial; FAS, full analysis set; IDeg, insulin degludec; IDegLira, fixed-ratio combination of insulin degludec and liraglutide; Lira, liraglutide; LOCF, last observation carried forward; SMBG, self-monitored blood glucose.

SUPPLEMENTARY FIG. S2. Proportion of patients with all three postprandial SMBG assessments <9.0 mmol/L. SMBG assessed with glucose meter as plasma equivalent values of capillary whole blood glucose. Data are based on FAS, with LOCF for all patients with a full nine-point profile at baseline; *P*-values are derived from logistic regression with treatment, region, baseline HbA_{1c} stratum ($\leq 8.3\%$ [≤ 67 mmol/mol], >8.3% [>67 mmol/mol]), and previous OAD treatment as fixed effects. HbA_{1c}, glycosylated hemoglobin; OAD, oral antidiabetic drug; OR, odds ratio.

SUPPLEMENTARY FIG. S3. Distribution of preprandial SMBG* measurements across treatment arms in (a) DUAL I and (b) DUAL II at baseline and EOT. *SMBG assessed with glucose meter as plasma equivalent values of capillary whole blood glucose. Data are based on FAS, with LOCF for all patients with a full nine-point profile at baseline..

SUPPLEMENTARY FIG. S4. Proportion of patients with all four preprandial SMBG* assessments 3.9-7.2 mmol/L. *SMBG assessed with glucose meter as plasma equivalent values of capillary whole blood glucose. Data are based on FAS, with LOCF for all patients with a full nine-point profile at baseline; *P*-values are derived from logistic regression with treatment, region, baseline HbA_{1c} stratum ($\leq 8.3\%$ [$\leq 67 \text{ mmol/mol}$], >8.3% [>67 mmol/mol]), and previous OAD treatment as fixed effects..

SUPPLEMENTARY FIG. S5. Proportion of patients with all nine SMBG* values between 3.9 and <9 mmol/L. *SMBG assessed with glucose meter as plasma equivalent values of capillary whole blood glucose. Data are based on FAS, with LOCF for all patients with a full nine-point profile at baseline; *P*-values are derived from logistic regression with treatment, region, baseline HbA_{1c} stratum ($\leq 8.3\%$ [≤ 67 mmol/mol], >8.3\% [>67 mmol/mol]) and previous OAD treatment as fixed effects..