Class	Subclass	Description
Ι		"Cannot-make evidence": Compound X predicted or demonstrated to be not
		synthesized by the cell could be a candidate for supplementation in the culture
	D	medium.
	D	Deficiency in the biosynthesis of X (predicted or experimental)
TT	Ν	Not synthesized generally (e.g. inorganic molecules such as metal ions)
Π		"Can-uptake evidence": Compound X predicted or demonstrated to be up taken by the cell could be a candidate for supplementation in the culture medium.
	Т	Transporter for compound X is predicted or demonstrated to be present in the cell. The transporting mechanisms can be either active or spontaneous
	R	permeation. Related organisms are known to uptake <i>X</i> , although this is not demonstrated for the bacterium.
III		"Utilizing evidence": Compound X predicted or demonstrated to be utilized
		by the cell could be a candidate for supplementation in the culture medium.
	G	Generally, <i>X</i> must be present in any bacterial cells, since <i>X</i> is a building block for the biosynthesis of proteins, RNA, DNA or membrane phospholipids. For
		this category, we currently consider the 20 amino acids, nucleoside
		triphosphates (ATP, GTP, UTP, CTP, TTP) and fatty acids. Inorganic
	С	molecules such as H_2O and metal ions are not included in this category. Cofactor X must be present in the bacterial cell since the cell possesses
	C	enzymes utilizing the cofactor X (predicted or experimental). We consider
		those cofactors that are described in the "Cofactor(s)" records of the
		ExPaSy/ENZYME database. Those cofactors (organic molecules or metal
		ions) are not included in the enzymatic reaction formula.
	\mathbf{V}	Vitamin (or precursor) form molecule X of the cofactor Y must be present in
		the cell, since the cell possesses enzymes utilizing the cofactor Y (predicted or experimental). Y (but not X) is described in the "Cofactor(s)" records of the
		ENZYME database. The relationships between vitamins and cofactors were
		obtained from online resources such "microbiology textbook
		(http://www.bact.wisc.edu/Microtextbook/) and other biochemistry textbooks.
	S	Substrate X must be present since the cell possesses metabolic pathways
		utilizing X as a starting substrate. The use of X can be suggested by <i>in silico</i>
		model or experiments. This category of compounds does not include generally required compounds (" C ") contactors (" C ") or vitaming (" V ")
IV		required compounds ("G"), cofactors ("C") or vitamins ("V"). Other evidences
1 1	Ε	Positive experimental results (e.g. temperature, pH, anti-oxidants etc.)
	U	Unspecified
L	-	1

Table S1. Classes and subclasses of the evidence type in Metagrowth