Dose-response Relationships for Environmentally Mediated Infectious Disease Transmission

Models: Appendix

1. Alternate models

We consider several variations on the environmentally mediated infectious disease transmission
model with dose-response (Egs. (3)). In the first, we count the number W* rather than the con-

centration W of pathogens. This requires a slight redefinition of the shedding « and pick-up p

parameters, because it shifts the implicit volume of the environment from incorporation in « to p.

We write these redefined parameters as o* = oV and p* = p/V.

S=—rf(p*W*)S
E=rf(pW")S —oE
[ =0FE —~I
R= ~I

W* =a*I — W™

Next, we include (frequency dependent) person-to-person transmission at rate 3.

S=—(rf(pW) + BI/N)S

E = (kf(pW) + BI/N)S — oE
[=0E—~I

R:

W = al — W

Then, we include human birth-death, occurring at rate v.

S=v(1-25)—kf(pW)S
E=rf(pW)S — (0 +V)E
I=0F —(y+v)I
R=~I—-vR

W =al — W

Finally, we extend the current model to include m exposed compartments,
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S=—kf(pW)S
Ey = kf(pW)S — moE;

Ey =moE, — moEs

Ei = maEi,l — maEi

f:mUEm—7]
szl

W = al — W,
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2. Example details

In the example (Fig. 8) where a transmission model with each of the dose-response functional
forms were fit to simulated data, the data were simulated in the following way. The model in
Egs. (3) was run with parameters N=1000, k=8, p=0.15, 0=0.2, y=0.1, V=4E8, a«=6E5/V,
#=0.04, and and initial conditions S(0)=997, 1(0)=3, E(0)=2, R(0)=0, and W (0)=0.05. Case
data were simulated from the model trajectory by drawing from a binomial distribution with size N
and probability given by the fraction of the population infected in the model trajectory on that day.
Environmental concentration data were similarly simulated by drawing a number of oocysts per 10L
from a Poisson distribution with mean determined from the model trajectory of the environment
(modeled concentration times 10L). Computation was done in R (v3.3.1), and the seeds were set
to 0 and 1 for the environmental monitoring and case data, respectively. Parameter combinations
akp, & = u+ kpN/V, ~, and o, as well as initial conditions F(0) and W (0)S(0)/a were estimated
using the maximum likelihood approach described in the main text; the initial number of observed
cases was used for 7(0). We assumed S(0) = N — I(0) — £(0) (no prior immunity) and that NV was

known.

The model used for the Milwaukee cryptosporidosis outbreak (Fig. 9) uses the Cryptosporidium
and turbidity data to estimate a time course of Cryptospordium concentration 7'(¢) in the water
supplied to homes. This model also uses two exposed compartments. Because the data is new
onset of symptoms rather than infection, we only keep track of cumulative new cases Y (t). We
assume new cases data K; on day ¢; comes from a binomial distribution with size N and probability
(Y'(t:) = Y(t; —1))/N.

S =—kpTS
E1 = rpT'S — 20E;
EQ = 20'E1 — 20’E2

Y = 20'E2

(S5)
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3. Dose-response model fits

Dose-response functions and corresponding dynamics for influenza, rotavirus, and Salmonella typhi
are shown in Figs. S1, S2, and S3 respectively. Estimated parameters and negative log-likelihoods
for the maximume-likelihood estimators of the seven dose-response functions and six pathogens

considered are given in Table S1.
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Figure S1: Influenza dose-response and dynamics. a) Maximum-likelihood estimates of dose-response functions for
Influenza virus (HIN1 and H3N2). Data from [S1, S2]; sizes of data points are proportional to sample size. b) Modeled
fraction of infected people under different influenza dose-response relationships. Model parameters are N = 1000, o=
1/2,v=1/5, k=8, p= 252,V = 6E5, a=1E6/V, 1=8.64 [S3].
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Figure S2: Rotavirus dose-response and dynamics. a) Maximume-likelihood estimates of dose-response functions for
rotavirus. Data from [S4]; sizes of data points are proportional to sample size. b) Modeled fraction of infected people
under different rotavirus dose-response relationships. Model parameters are N = 1000, o= 1/2, v=1/5, k=8, p= 0.15,
V = 4E8, a=5E4/V, 4=0.23.
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Figure S3: Salmonella typhi dose-response and dynamics. a) Maximum-likelihood estimates of dose-response func-
tions for Salmonella typhi. Data from [S5, S6]; sizes of data points are proportional to sample size. b) Modeled fraction
of infected people under different Salmonella typhi dose-response relationships. Model parameters are N = 1000, o=
1/10, v=1/25, k=3, p= 2, V = 2E3, a=1E4/V, u=1/30.
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4. Stochastic basic reproduction number

Here we prove Proposition 2. A careful accounting of the transition events and rates for the stochas-
tic analog of the model given in Egs. (3) is given in Table S2. Because pick-up and die-off are
separate events, we do not use the parameterization £ = kpN + u here. Further, it is more intu-
itive to use number of pathogens W* in this derivation, although the concentration formulation is

equivalent for a fixed environmental size V. Here, a and p are scaled as described in Section S1.

Proposition 2. The basic reproduction number for the stochastic analog of the model given in Egs (3)

is

o kpN

Ri =2 MY
07 & kpN +p

f(2). (S6)
Proof. Although there are three infected compartments (F, I, and W*), because all exposed people
necessarily become infectious, it is sufficient to consider I to be the “offspring” of W* without
explicitly considering the intermediate E.

In the notation of [S11], we write the offspring probability generating function for I given 7(0) = 1
and W*(0) = 0:

aujug + 1y

o+ 7y (57)

fl(ul,UQ) =

Similarly, we write the offspring probability generating function for W* given I(0) = 0 and W (0) =
1:

kpN f(Dur + kpN(1 = f(1)) + p
kpN + p '

fa(ur,uz) = (S8)

Then, the expectation matrix is

a kpN f(1)
M = a+y KpN~+p
o 0
o+
Since f; and f, are not simple functions and M is irreducible, then spectral radius of M determines

whether the probability of ultimate extinction is 1 or less than 1. We have

1 a a? a kpNf(1)
p(M)_Q<a+’y+\/(a+v)2+4a+’yﬁp1\7+u> (59)
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The Jury conditions state that p(M) < 1 if and only if trace(M) <, 1+ det(M) <, 2. The second
(#*) Jury inequality is easily satisfied as det(M) < 0. The first (x) is satisfied if

.. aBpNf(1)
Y(BpN + )

This condition can also be found by solving p(M) < 1 directly.

O]

When R < 1, the branching process is subcritical, and the disease will die out with probability 1.
If the disease is supercritical Rj; > 1, then there are unique fixed points ¢;, and ¢, such that the
probability of ultimate disease extinction is ¢!' ¢ given I(0) = 4, and E(0) = is.

The fixed points are found by solving

fila, g2) = aqufj” — (510)
NT(1 N(1— f(1
fa(q1, q2) = rpNf (L) —;:]ff +(M f) + =q (S11)

This admits the following solution

_Y(EpN +p) 1
" i) G o
arpN (1 = f(1)) + kpNy + pla +7)
a(kpN + p)
_ (L - rol¥ a
~ (g 1w+ f)) R

q2 =
(S13)

These fixed points have epidemiological interpretations. An infectious individual successfully trans-
mits an infection with probability 1/Rj. A pathogen either dies with probability p/(xpN + ) or is
picked up with probability kpN/(kpN + u). If the pathogen is picked up, it either does not cause
disease with probability 1 — f(1) or it does with probability f(1). If it causes disease, the probability
of successfully transmitting an infection is 1/Rj.
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5. Global dynamics results

We extend Theorem 1 to include person-to-person transmission.
Corollary 1. Let © = {(S5,0,0,R,0) : S+ R = N}. If f is concave down in Egs. (S2), then, if Ry < 1,

© is globally asymptotically stable.

Proof. First, we note that Q@ = {(S,E,I,R,(W):0< S< N, 0<W <N, 0<I<N 0<RZ
N, 0<EL %} is a compact, invariant set for trajectories of Eqs. S2. In the notation of [S12], let

x = (E,I,W) be the disease compartments and y = (S, R) the non-disease compartments. Then,

we may write

where

Then we have new-infection and compartment transfer matrices

Then, the next generation matrix is K =

Ro

Define

F=F -V (S14)
(5 (W) + BI/N)S
0 , (815)
0
[ oF
~I —ocFE (516)
—al +&W
0 8 kpNJ'(0)
0 0 0 , (817)
0 0 0
(s 0 0
-0 v 0 (518)
0 —a ¢
FV~1, and Ry is the spectral radius of K, namely
/
_ akpN f'(0) n ﬁ (S19)
7€ v

S11



h(l‘,y) = (F - V):E - F(ﬂ?,y) + V(:an)
kN J'(0)E — kSf(pE) + BI(1 — S/N)

(S20)
= 0
0
Assume that f is concave down. Then pEf'(0) > f(pE), and h(z,y) > 0.
The rest of the proof proceeds as in that of Theorem 1. O

6. Identifiability

Finally, we prove Theorem 2 using differential algebra techniques [S13, S14, S15].

Theorem 2. The identifiable combinations of the model given in (Eqs (4)) given time series data of
prevalence of infected individuals I are arkp, & v+ o, and ~yo. If the time series of the environmental

compartment W is also observed, then « is separately identifiable.

Proof. First, we prove the theorem for prevalence data I. The model equations are

0=25+mrpWs (S21)

0=E —nrpWS +cFE (S22)

0=1—0FE+~I (523)

0=R—~I (S24)

0=W —al +&W (S25)

Eq. (S24) gives us no parametric information. Solving Eq. (S21) for W, W = f%, the other
three equations become

0=E+S+0E (S26)

0=1-0E+~I (S23)

0=—S55+ 5% —arkplS? — €SS (S27)

j+7[

o b

Then, solving the second equation for F, F = the other equations become

S12



0=I+(y+0)+~ol+0S (528)
0=-59+ 5% — ankplS? — ¢SS (S27)

Using Ritt’s pseudodivision [S15] and substituting p1 = v, p2 = akpm, ps = &, and ps = o we arrive
at the following input—output equation:

0= —dpipiI® — 12pipspiI°1 — 12p7pI°T — prp3piI° + —12pTp3pal* I? — 24pipspaI* 1T — p1p2pi (3p2ps + 2pa) 11
— 12p2paI*1? — p1p3 (302 + 6paps + 4pa) 14T — 2p1 (3pa2 + 2p3)p3 14D — dp1p3 14T — 4p?p3 1313 — 12p2p2 13121
+ p1pa (—3p3p3 + 4p3) 1312 — 12p2ps 13 11? — 2p1p3pa (3p3 + 6paps + pa) 1311 + 2p1ps (—6paps — 4p3 + 3ps) 1311
— 8p1p3palPITW — 4p? 1313 — pipy (3p3 + 12paps — 3p3 + 8pa) 1312 — 2py (6p2 + p3)paIPTT1®) — 8pypa I3 TT™
— p3p3(p2p3 + pa) 1P T + 3p1pa I3 (I®)? — p3(pa + pa)pa I3 1) — p3pi 1P 1™ + pips (—p3p3 + 6papspa + 6p3) I°1°
+ p1 (—3p3D3 + 2p4 (3 + 3pa) — 6p2 (p§ — 2pspa)) 12121 — 2p1p3 (3p2ps + 2p3 — 3p4) P21 — 4p p2 121214
+ p3p3 (p2ps + pa) 1212 + p1 (—3p3ps + 3p3 — 2p3pa + 6p2 (—2p3 + pa)) 1211% — 2p1 (6p2ps + p3 — 3pa) 12111
— 8p1p3 121 IT W popa (—2papspa — p3 + 13 (—203 + pa)) 1211 + 3p1p3 12 1(I)2 — popspa (2p3 + 2paps + pa) 1211
— papa(2p2p3 + pa) 21T — py (p3 + 6paps — 3p3 + 4pa) 1213 + 2py (=3p2 + p3) 21213 — 4p 1221
— pa (203p3 + 2p2p3pa + P37 + P23 (p3 + 2pa)) 12012 + 3p1 IPT(I®)2 — 2(pa + p3)pa (p3 + p2ps + pa) 1211
= 2pa (p3 + paps + pa) 21T — (pa + p3)?pal>(I®)? — 2(py + p3)pa P IO 1) — py 12 (1‘4’)2 + p1p3 (4paps + 3pa) I 1*
+ 6p1p3(2p2ps + pa) [ 131 + paps (203p3 + 3p2pspa + pi) 11 + 3p1 (4paps + pa) 11212
+ (3p2p3p? + 203 + p3pa (V3 + 3pa) — B3 (V3 — 4pspa)) 1120 + (—p3p3 + 3p2p3 + 2p3p3 — P3 (P — 2papa)) 1121
+ (—p3p3 +2p3) 11T + dp1po I 11 + (—p3p3 — 2p3 (3 — pa) + p2p3pa + 2pap3) 1117
+ (—2p3ps + p3 (—4p3 + 2pa) + pa (P3 + 3pa) — 2p2 (P§ — 2p3pa)) 11T + p3 (—2p3 — 2pops + pa) TITTH
— (0> +s) (p2ps + 73 — 3p3) LH(I®)? 1 (~2paps — 203 + 8ps) THTOTW — g1 (19)
— (p3ps +pa (—p3 +pa) + 13 (3 +pa) — p2 (P — 2pspa)) 11® + (—p3 — 3p3ps + pf + p2 (pF — 2pa)) 1121
— (03 + 2p2p3 — p3 + 2pa) TI2T™ + (—p3 + paps + p§ + pa) TII®)2 — 2pp [T TW — [ (I<4>)2 + (p2 +p3)I(I®)3
+ I(I®Y2IW 4 pyp3I° + 3p1p3 14T + (p3p3 + 2p3p3pa — p3) I* + 3p1p3[°12
+p3 (3p3p3 + p2pspa — 203 + 2p3 (p3 + 2p4)) 131 + (203p3 + p2p3 + (p3 — 3pa) pa) 21 + p3(paps + pa) 131
+p1I21® + (3p3ps + 2papspa + pa (—203 + pa) + 203 (203 + pa)) 1212 + p3 (4p3 + 2p2ps + p3 — 4pa) 1211
+ (2p2p3 + p3 +pa) PPITW + (pF — 3pa) 12(I)2 4+ p3 121D I 4 (py + p3) (p3 + p2ps — p3 + pa) 113
+ (Qp% + pops — 2p§ +p4) IrPI® 4 (p2 +p3)ff21(4) - 2p3jf([<3))2 + T I.(I(s))3
(529)

Because this equation is an input-output equation (i.e. a monic polynomial in the data I and its
derivatives that is equivalent to the original model), the coefficients are identifiable, and thus it is
clear that pi, ps, p3, and py4 can be individually be identified. Because the input—output equation
may be written in terms of p; = akpm, p2 =&, p3 = v + 0, and py = ~yo, their constituents are not
individually identifiable. Because v and o can each take only one of two values, they are locally
identifiable; it is sufficient two know which one is larger, for example, to separately identify them.

Finally, we show that « is separately identifiable when case I and environment data W are both

available. Returning to the original equations, we solve Eq. (523) for E.

S13



0=2S+TrpW S (S21)
0=1+ (y+0)I+~ol —onkpSW (S30)

0=W —al +&W (S25)

We then solve Eq. S30 for S.

0=WI® — Wi+ (y+0)WIi+rkprW2 — (y 4+ 0)WI + (v + 0)kpaW2I + voW 1
— oW T + yorprW2I

0=TW —al + W (S25)

(S31)

These are the input—output equations for this model and data, and the coefficients are the identifi-
able combinations: «, k7p, &, v+ o, and vo.
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