Supplementary Tables

Table S1 – Density of sign epistasis and mutational additivity in published datasets^a

System	Assay	Density of sign epistasis ^b	R^2 for mutational additivity ^c	Data source
Avian lysozyme mutants	Melting temperature	0/12	0.99	(Malcolm et al. 1990)
E. coli dihydrofolate reductase mutants	in vitro enzymatic activity	0/12	0.95	(Aita and Husimi 1996)
A. niger visible mutants	Growth rate	17/80	0.71	(de Visser et al. 1997, Franke et al. 2011)
D. melanogaster visible mutants	Fecundity and survival	18/80	0.61	(Whitlock and Bourguet 2000)
··	Male mating success	21/80	0.48	٠.
E. coli isopropyl malate dehydrogenase mutants	Growth rate	372/2304	0.50	(Lunzer et al. 2005)
E. coli β-lactamase mutants	MIC against cefotaxime at 35° C	21/80	0.92	(Weinreich et al. 2006)
··	MIC against pipericillin with inhibitor	15/80	0.94	(Tan et al. 2011)
α	MIC against cefotaxime at 25° C	18/80	0.97	Knies et al, in prep.
"	$k_{ m cat}/K_{ m M}$	11/32	0.94	This study

··	$T_{ m m}$	2/32	0.99	
Mammalian glucocorticoid receptor mutants	Cortisol binding	11/32	0.63	(Bridgham et al. 2007)
Solinaceae sequiterpine mutants	5-EA synthesis	69/192	0.27	(O'Maille et al. 2008)
P. falciparum dihydrofolate reductase mutants	IC ₅₀ against pyrimethamine in <i>E. coli</i>	9/32	0.57	(Lozovsky et al. 2009)
66	MIC against pyrimethamine in S. cerevisiae	2/12	0.90	(Brown et al. 2010)
"	IC ₅₀ against cycloguanil in <i>S.</i> cerevisiae	4/12	0.86	(Costanzo et al. 2011)
S. cerevisiae visible mutations	Haploid growth rate	70/192	0.81	(Hall et al. 2010)
66	Diploid growth rate	58/192	0.80	
HIV glycoprotein mutants	in vitro infectivity	22/80	0.62	(da Silva et al. 2010)
Metholobacterium extorquens beneficial mutations in novel metabolic pathway	Growth rate	0/32	0.99	(Chou et al. 2011)
E. coli visible mutations	Growth rate	7/80	0.94	(Khan et al. 2011)

^a Independent datasets with $R^2 > 0.80$ shown in bold.

^b See methods.

 $^{^{}c}$ In each case, linear regressions were performed on both raw and log-transformed data; the larger R^{2} value is reported here.