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section S1: Hadamard correlation measurements
A Hadamard matrix is defined as an N×N matrix with elements that take the values of +1 or -1, and with rows
that are orthogonal to one another. The supplementary information of reference [7], and the references therein
give an excellent description of the generation and use of the Hadamard matrices.

In summary, a 2D uniform resolution mask of index n is formed by reformatting row n of the Hadamard matrix
into a uniform 2D grid, as shown in Figs. 2(a-b). However, our experimental implementation uses a DMD that
can represent masks that transmit (mirrors ‘on’) or block (mirrors ‘off’) intensity regions within the image. This
corresponds to masks consisting of +1 (transmitted light) and 0 (blocked light), but not the -1 required by the
Hadamard matrix. This problem is circumvented by performing a double exposure for each measurement: first
displaying a ‘positive’ pattern of +1s and 0s (in place of the -1s), yielding signal aposn for Hadamard pattern n,
followed by the ‘negative’ of this pattern (i.e. where the positions of 1s and 0s have been swapped), yielding signal
anegn . The weighting of the Hadamard basis vector, an, can then be emulated by subtraction of the intensity
transmitted by the negative pattern from the positive pattern, here we use the normalised subtraction:

an =
aposn − anegn

aposn + anegn
. (1)

Although halving the frame-rate, this double exposure strategy also acts to cancel out some of the noise due to
fluctuations (at frequencies lower than 10kHz) in the ambient illumination (see S3 below), a technique analogous
to differential ghost imaging [61].

section S2: Foveated sub-frames reconstruction
Here we derive and discuss in further detail Equation 2 of the main text. We will make use of the transformation
matrix T , which maps from N -element cell space to the larger M -element hr-pixel space. T is an M×N binary
matrix where the locations of the ‘ones’ in column n denote the hr-pixels that belong to cell n.

With the help of this matrix, we can define a new basis sn, formed by “stretching” the Hadamard vectors hn

to conform to our nonuniform pixel grid:

sn = Thn, (2)

These are the raw patterns that we will measure using our DMD. It is important to note that, in contrast to
conventional computational imaging using Hadamard matrices on a regular grid, the vectors sn are not orthogonal
in hr-pixel space. However, after some matrix algebra it can be shown that there exists a dual basis s̃m = A−1sm
forming a biorthogonal set with sn, i.e. the following relation holds:

sTn s̃m = sTnA
−1sm = Nδmn.

Here A is an M×M diagonal matrix such that Amm is equal to the area of the cell to which hr-pixel m belongs.
The existence of this biorthogonality relationship makes it helpful to represent our high-resolution object o in

the dual basis s̃m as follows:

o =
1

N

N∑
m=1

bmA
−1 sm + ε, (3)

where ε represents those high-spatial-frequency components that are orthogonal to all sn (i.e. sTnε = 0 for all n),
and hence that the imaging system described here is not sensitive to.

Then, by projecting o onto our basis set sn and expanding, we can show that sTn o = bn as follows:

sTn o = sTn
1

N

N∑
m=1

bmA
−1 sm + sTnε

=
1

N

N∑
m=1

bm s
T
n A

−1 sm = bn. (4)

These measurements can then be used to derive our estimate osv of the object (Equation 2 in the main text):

osv = A−1
1

N

N∑
n=1

bnsn. (5)



However, if we substitute (2) into this equation then we see that the same reconstruction in fact be computed
more efficiently in cell space:

osv =
1

N

N∑
n=1

bnA
−1Thn = A−1T

1

N

N∑
n=1

bnhn. (6)

Although this matrix equation is slightly more long-winded than (2), it shows that the reconstruction can be
performed in the (lower-dimensional) cell space, and then the final result remapped just once onto the uniform
hr-pixel grid.

section S3: Signal-to-noise ratio
There are a variety of different ways signal-to-noise ratio (SNR) can be defined for images. For a uniform
resolution image, here we define SNR as:

SNR =
σo

< σ >
, (7)

where σo is the standard deviation of pixel intensities in a noiseless ideal image o (which may be approximated
by averaging a large number of sequentially recorded images of an unchanging scene). Therefore σo provides
a measure of the level of signal variation we expect to measure in the image. σ is a vector of M elements
representing the standard deviation of the fluctuation due to noise in each pixel, measured from the same large
number of images. < σ > denotes the mean value of the elements in σ, i.e. the standard deviation of the noise
fluctuations in each pixel, averaged over all of the pixels in the image. In our experiments SNR depends heavily
on the illumination conditions. A typical example for a 64× 64 pixel image recorded using the double exposure
technique (see S1) under similar conditions to our experiments in this work, is an SNR of ∼ 10 (measured using
140 frames).

There are two main source of noise in our experiments: (i) noise in the photodiode measurement, and (ii)
fluctuations in illumination intensity during the measurement of a single image. Using Hadamard patterns
rather than, for example, raster scanning a single pixel across the DMD, raises the level of illumination reaching
the photodiode for each pattern, and so serves to combat (i). Performing the double exposure technique serves
to combat (ii) by going some way towards normalising intensity fluctuations that occur on a timescale slower
than 10 kHz (half of the DMD modulation rate). For example, performing only a single exposure per pattern
measurement (e.g. just positive patterns), significantly degrades the SNR in the above example from SNR ∼ 10
to ∼ 0.5.

In passive uniform resolution single-pixel imaging techniques, the SNR scales approximately in inverse propor-
tion to the square of the linear resolution, for a given constant exposure-time. Following from this observation,
we expect the SNR in our spatially-variant resolution imaging system to vary across each individual sub-frame,
with the higher resolution regions being most sensitive to noise. Therefore the local SNR scales in inverse
proportion to the square of the local linear resolution, which is what we observed qualitatively during our exper-
iments. Therefore a single number can no longer meaningfully be used to capture the SNR of the image. The
weighted-averaging method does go some way towards improving the SNR, as is discussed in more detail in [45].

However, our space-variant imaging system does offer a reduction in the noise caused by motion blur. When a
scene changes during the measurement of a computational image using Hadamard patterns (uniform or spatially-
variant), the reconstruction not only exhibits conventional motion blur, but also a splash of noisy pixels across the
field-of-view. This pattern multiplexing noise is due to scene movement causing inconsistencies in the measured
weights of each pattern. By lowering the resolution in regions of the scene deemed static, our foveated imaging
system reduces the amount of time required to image a moving part of the scene to a given resolution (in the
examples here, by a factor of 4), therefore reducing both conventional motion blur and pattern multiplexing noise.

section S4: Weighted-averaging image fusion
Each hr-pixel is formed by weighting the contribution of data from each sub-frame in inverse proportion to the
area of the corresponding sub-frame cell that the data is taken from. Therefore the intensity of pixel i, j in the
weighted mean composite image is given by:

Owm(i, j) =
1

B(i, j)

K∑
k=1

O(k)(i, j)

A(k)(i, j)
, (8)

where k indexes the sub-frames used to calculate the composite image and K is the total number of sub-frames
to combine. o(k)(i, j) is the value of pixel i, j in space-variant sub-frame k, and A(k)(i, j) is the area of the cell



that pixel i, j belongs to. B(i, j) =
∑K

k=1(A(k))−1(i, j) serves to normalise the sum. Consistent with our earlier
vector notation, we can equivalently write:

owm = B−1
K∑

k=1

(A(k))−1 o(k), (9)

where B =
∑K

k=1(A(k))−1. Owm(i, j) is element i, j of the 2D image denoted by matrix Owm, where Owm =

reshape[owm,mp,mp], and mp = M
1
2 , the number of hr-pixels along one side of the square image. Equations 8

and 9 therefore specify an equal weighting of sub-frames within the fovea (where the pixels are all of the same
size), and in the peripheral region promotes data from pixels that have a smaller area and thus a higher local
resolution. This strategy incorporates local data from all sub-frames in every composite image pixel, which has
the benefit of suppressing noise.

We note that a variety of other weightings may also be applied. Other examples that we investigated include
using only data from the sub-frame with the highest resolution pixel (with equal weighting given in regions
where sub-frames have the same sized pixels), and the weighting of more recent measurements more prominently.
This second weighting strategy can be applied if some parts of the scene are expected to change throughout the
measurement. The weighting choice depends upon the distribution of pixel areas in the sub-frames, the noise
levels in the measurement, and the expected level of scene motion.

section S5: Linear-constraints image fusion
For our linear-constraint algorithm, we fuse information from multiple sub-frames by forming a system of linear
equations representing constraints on the high-resolution reconstructed image. The problem can be expressed as
the matrix equation:

To′sv = C, (10)

where T and C are composed of information from multiple sub-frames as follows:
(T (k=1))T

(T (k=2))T

...
(T (k=K))T

o′sv =


c(k=1)

c(k=2)

...
c(k=K)

 . (11)

Here o′sv is our improved estimate of the original scene fusing data from multiple sub-frames. T (k) is our binary
stretching transform matrix as defined as above. As before, k indexes the sub-frames used to calculate the
composite image, and K is the total number of sub-frames combined. Therefore here (T (k))T is an M×N binary
matrix encoding which hr-pixels belong to each cell (i.e. element m,n is 1 if pixel m belongs to cell n, and 0
otherwise). c(k) is a column vector of length N , element n of which represents the sum of all the hr-pixel values in
cell n of sub-frame k. Conveniently, the vector c is already computed as part of the reconstruction of sub-frame
k (referring to Equation 6, we see that c = 1

N

∑N
n=1 bnhn).

Note that in Eqs. 10 and 11, each individual constraint (i.e. row) only applies to a localized region of the
composite image (i.e. one cell). This offers a natural method to account for local motion within the scene during
the acquisition of the k sub-frames. Information about which parts of the scene have changed is encoded in the
difference map stacks, and if motion is detected in a given cell then we can simply omit the constraints that
apply to this position, for this and earlier times. This is achieved by deleting any affected rows from the matrices
T (k), along with the corresponding elements from vectors c(k).

We also note that, in the same way as T maps from cell space to hr-pixel space, T T maps from hr-pixel space to
cell space. These transformations are related by: T TA−1T = 1, indicating that conversion from cell to hr-pixel
space and back again is lossless. However, the reverse transformation A−1TT T does not equal 1, indicating that
a transformation from hr-pixel to cell space and back again is not lossless, and high resolution detail is lost in
the transformation.

In practice, we solve for o′sv using a least-squares method that is suitable for systems that may be locally
overdetermined, critically determined, or underdetermined depending on the number of sub-frames available for
the reconstruction. Specifically, in this work we used the LabVIEW solve linear equations function, although
other routines in other languages may be more efficient. This function decomposes T into an orthogonal matrix
Q and an upper triangular matrix R, so that T = QR. Substituting for T in Eq. 10 yields QRo′sv = C, which can
be rearranged to Ro′sv = QTC. This triangular system of equations is then solvable using recursive techniques.



Our linear-constraint method can be sensitive to noise in the sub-frame measurements, and in particular noise is
amplified in the highest spatial frequencies of the composite image (i.e. within the fovea). If necessary we suppress
this noise by applying a spatially-variant smoothing constraint to the system of equations, which is derived from
the weighted average composite image formed from the raw data (which although has lower resolution, crucially
also possess a lower level of noise - see ref [45]). This is achieved adding extra rows to the system of equations
incorporating the information present in the weighted average composite image owm, and solving the following
matrix equation which enables us to weight the relative importance of the smoothing constraint using a weighting
matrix W : [

T′TWT′
]
o′′sv =

[
T′TW

]
C′, (12)

where: T′ =

[
T
I

]
, C′ =

[
C
owm

]
, (13)

Here o′′sv is the improved estimate of the original scene, now also including the noise suppression smoothing
constraint. I is an M × M element identity matrix, with each row representing one hr-pixel. I therefore
represents a system of equations expressing the weighted mean reconstruction owm in the hr-pixel basis. W is a
P ×P diagonal matrix, where P is the total number of rows of T′. The value of the diagonal elements in the first
D rows set to 1, where D is the total number of rows of T. The diagonal elements in the remaining rows of W are
set to the value w, which represents the weighting of the smoothing constraint terms in the reconstruction. This
effectively gives us a tunable compromise between noise suppression and faithful reproduction of the high spatial
frequencies close to the cut-off frequency of the reconstruction: for example a greater weighting of the constraint
w leads to lower noise images but with high frequencies suppressed (non-uniformly across the field of view,
reflecting the underlying measurements). In practical terms it is highly attractive to use the weighted average
image as a constraint for the linear-constraint reconstruction, as it represents a ready-made space-variant noise
suppression function which is near to the optimum answer, which would be non-trivial to otherwise synthesise
from our irregular grids of sub-frame cells.

In our reconstructions, typically we used 1 <∼ w <∼ 10. When w = 0, the reconstruction o′′sv = o′sv and the
smoothing constraint is ignored. As w →∞, then o′′sv → owm (in practice o′′sv becomes practically indistinguish-
able from owm for values of w >∼ 1× 105). Once W is incorporated, Eqn. 12 is solved in an identical manner to
Eqn. 10.

We note that the matrices in the equations presented here are highly sparse, and an efficient implementation
of the reconstruction code benefits significantly from exploiting this property. Note also that in the case of a
regular square pixel grid (e.g. Fig. 2(a)) the algebraic problem is separable in the x and y dimensions. This
reduces the formal computational complexity of the problem, thus making it possible to implement a realtime
reconstruction. However, it would be significantly more challenging to construct an irregular pixel grid (e.g.
Fig. 2(d)) that is separable in this way, while still meeting the other requirements for our geometry.

section S6: Reconstructions with additional assumptions
The foveated sampling strategy described in S2 results in the reconstruction of images possessing irregularly
sized and shaped cells. Each cell is formed from a group of hr-pixels, which form the underlying uniform higher
resolution Cartesian pixel grid of each image. We perform enough measurements so as to critically sample the
total intensity of each cell - so therefore we know the sum of the intensities of the hr-pixels inside each of the cells,
however our measurements provide no information about how this intensity may be distributed between the hr-
pixels within each cell. Therefore, in the case of the reconstruction of an individual sub-frame, our reconstruction
method (Eqn. 5) assigns the same value to each hr-pixel inside a particular cell: the average intensity of hr-pixels
within that cell (by dividing the known total measured intensity by the number of hr-pixels in that cell - which is
the function of the A−1 term in Eqns. 5 and 6). This approach mirrors the standard raw output of conventional
uniform resolution camera sensors in that the intensity distribution within a pixel is represented as uniform as
there is no information available to determine how it is distributed at finer scales.

Employing the weighted average and linear constraints image fusion methods described above in S4 and S5
increases the number of individual cells in the reconstruction - therefore these cells are smaller, and also become
more irregular in shape (the new shapes depending upon the relative boundary positions of the cells in each fused
sub-frame). Similarly to the reconstruction of an individual sub-frame, in both of the sub-frame fusion methods
we assign the same value to each hr-pixel inside these new cells: once again the average intensity of hr-pixels
within that cell.

However, following ideas from conventional uniform resolution compressed sensing, it is also possible to incor-
porate additional assumptions about the nature of the scene to attempt to redistribute the intensity between
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S1: Reconstruction comparison

hr-pixels within each cell in a more realistic manner. As our measurements for an individual sub-frame yield
information only about low spatial frequencies in the periphery, we cannot hope recover any high spatial fre-
quency detail in this region should it be present. However, under the assumption that the periphery has few
high spatial frequencies, we can attempt to find a distribution of hr-pixels within each cell that yields a more
smoothly varying intensity profile across the image.

Figure 1 shows a comparison of reconstructions of two 64×64 hr-pixel images from the same 1024 stretched
Hadamard measurements. Figure 1(a) shows a direct fast reconstructive using Eqn. 6 as described in the main
paper. This can be performed in real time at well above the 10 Hz frame-rate of our single-pixel camera.
Figure 1(b) shows a reconstruction with the additional constraint of reducing the variation in intensity across the
image, performed using the freely available CVX Matlab library [62,63]. We can see that the central critically
sampled hr-pixels within the fovea remain unchanged, while the values of the hr-pixels in the peripheral cells
have been adjusted to smooth the image. In this case we defined the variation in the image (V = v

1
2 ) as the

square-root of sum of the squared absolute difference in hr-pixel values along the x and y dimensions, where:

v =

mp∑
j=1

mp−1∑
i=1

[
|O′′′sv(i, j)−O′′′sv(i+ 1, j)|2

]
+

mp∑
i=1

mp−1∑
j=1

[
|O′′′sv(i, j)−O′′′sv(i, j + 1)|2

]
, (14)

where O′′′sv(i, j) is element i, j of the 2D image denoted by matrix O′′′sv, where O′′′sv = reshape[o′′′sv,mp,mp],

mp = M
1
2 as above, and o′′′sv is a vector representing the current estimate of the image with the intensity

variation constraint. We note that here we did not optimise the efficiency of the reconstruction, and there are
a wide variety of different optimisation techniques and software available, some of which may potentially be
more suited and efficient at solving our system of foveated measurements. The reconstruction of the composite
images from the information present in multiple sub-frames could also be performed and potentially improved
by applying additional assumptions about the nature of the scene, for example knowledge of the basis in which
the image can be sparely represented. A study of which compressive sensing algorithms perform optimally with
foveated measurements is currently the subject of ongoing work.



section S7: Media file descriptions
movie S1: Real-time sub-frame display. This movie shows data presented in Fig. 3(a). The left hand panel
shows the sub-frames captured at 8 Hz (and processed and displayed in real-time). The super-sampling from one
frame to the next can be seen both within the fovea where they repeat every 4 frames, and in the periphery
where they repeat every 36 frames (the same as the length of the movie). The right hand panel shows the cell
grid for each frame.

movie S2: Post-processed linear constraints reconstruction. This movie shows data presented in Fig. 3(c).
The left hand panel shows the frame-by-frame linear constraints reconstruction. The high resolution appears to
spread from the centre as in the periphery each new frame is fused with the existing data to improve the
reconstruction. Right hand panel shows the effective exposure-time across the field-of-view. Initially the entire
field-of-view has the same effective exposure-time as only a single frame has been recorded. In the centre only the
most recent 4 sub-frames are used in the reconstruction (hence an effective exposure-time of 0.5 s). Surrounding
this data from progressively more frames back is used in the reconstruction (thus increasing the effective exposure
time).

movie S3: Real-time motion tracking and fovea guidance. This movie shows data presented in Fig. 4(b).
The top-left panel shows the low-resolution blip-frame (recorded after every 4th sub-frame in ∼ 31 ms). The
bottom-left panel shows the difference between the 2 most recent consecutive blip-frames. The region of the
moving object is clearly visible. The blip-frame and blip-difference frame are reconstructed, analysed and
displayed in real-time. The middle panel shows the sub-frames captured at 8 Hz (and processed and displayed
in real-time). Here the fovea is programmed to follows the moving part of the scene to image it at high
resolution. Additionally, 20% of the time the fovea is programmed to jump to a random location within the
field-of-view that was not recently accessed. This is performed to ensure that all of the sub-frames are at
least intermittently sampled, improving the quality of the longer exposure super-sampled reconstruction of

S2: Media 1 snapshot

S3: Media 2 snapshot



S4: Media 3 snapshot

static parts of the scene (shown in Media 4). The global position of the fovea is updated at 2 Hz (every 4
sub-frames), based on the blip-difference frame analysis. During each 4 sub-frame fixation phase in-between
blip-frame measurements, the fovea cell footprints are shifted by 4 half-cell displacements in x and y [45]. This
enables the resolution within the fovea to be doubled by combining the 4 measurements should the scene with
the fovea remain static for the time of the measurements. The right hand panel shows the cell grid for each frame.

movie S4: Real-time weighted-averaging and post-processed linear constraints reconstruction of a
dynamic scene. This movie shows data presented in Fig. 4(c-d). The top-left panel shows the post-processed
linear-constraints reconstruction of the raw data shown in Media 3. The effective exposure-time of this
reconstruction is shown in the top-right panel. Here the minimum effective exposure-time is 0.25 s and the
maximum is 4 s. Therefore in the parts of the scene that are currently deemed to be moving, we display the

S5: Media 4 snapshot



average of the most recent 2 frames. In other regions the data used in this reconstruction is flushed after a
maximum of 4 s (i.e. the maximum number of previous sub-frames from which data is used is 32). In this case
as in some regions no change was detected throughout the entire duration of the clip (15 s, ∼ 120 sub-frames),
the maximum effective-exposure could have been 15 s. We show the case for a reduced 4 s maximum effective
exposure-time to demonstrate the super-sampled recovery of the entire field-of-view. The bottom-left panel
shows the real-time weighted-averaging reconstruction. Here instead of choosing a hard limit on the maximum
effective exposure-time we have weighted older frames less prominently, which promotes recent measurements.
The bottom-right panel shows a uniform resolution video of a similar scene, using the same measurement
resource as the data in the other panels. Here the data is completely flushed every frame (0.125 s), however
the resolution is never high enough to identify the lettering on the moving sign, or any of the features on the
resolution target in the background.


