eTable2. Empirical prediction models for the measured plasma and erythrocyte EPA and DHA

	NHS					HPFS					
	Food (servings/d)	Cohort [‡] , %	β	SE	p		Food (servings/d)	Cohort [§] , %	β	SE	p
EPA											
Erythrocyte [¶]	Canned tuna	17.9	0.23	0.07	<.001	Erythrocyte [¶]	Canned tuna	10.2	0.37	0.08	<.001
$(Mean \pm SD)$	Dark fish	38.2	1.27	0.16	<.001	$(Mean \pm SD)$	Dark fish	43.4	1.33	0.11	<.001
$(0.41 \pm 0.16 \%)$	Other fish	20.0	0.23	0.08	0.003	$(0.46 \pm 0.25\%)$	Other fish	13.8	0.74	0.11	<.001
n=1,557	Shrimp and shellfish	8.2	0.69	0.18	<.001	n=1,364					
	Chicken w/ skin	12.1	0.17	0.07	0.01						
	$R^2 = 0.09$						$R^2 = 0.19$				
Plasma¶	Canned tuna	17.9	0.20	0.10	0.04	Plasma¶	Canned tuna	10.2	0.40	0.10	. 001
	Dark fish	38.2	0.20	0.10	0.04		Dark fish	10.2	0.48	0.10	<.001
$(Mean \pm SD)$	Other fish		1.13	0.22	<.001	$(Mean \pm SD)$		43.4	1.21	0.14	<.001
$(0.45 \pm 0.23\%)$		20.0 8.2	0.25	0.11 0.25	0.02	$(0.54 \pm 0.37\%)$	Other fish	13.8	0.78	0.14	<.001
n=1,353	Shrimp and shellfish $R^2 = 0.05$	0.2	0.66	0.25	0.009	n=1,321	$R^2 = 0.14$				
	10.00						10 - 0.11				
DHA											
Erythrocyte [¶]	Canned tuna	29.1	0.40	0.05	<.001	Erythrocyte [¶]	Canned tuna	19.8	0.42	0.06	<.001
$(Mean \pm SD)$	Dark fish	22.3	1.23	0.11	<.001	$(Mean \pm SD)$	Dark fish	29.5	0.90	0.08	<.001
$(3.29 \pm 0.98\%)$	Other fish	26.4	0.40	0.06	<.001	$(3.32 \pm 1.11\%)$	Other fish	23.2	0.60	0.08	<.001
n=1,966	Shrimp and shellfish	3.2	0.34	0.13	0.007	n=1,365	Chicken w/o skin	8.7	0.09	0.04	0.03
	$R^2 = 0.17$						$R^2 = 0.25$				
Plasma¶	Canned tuna	29.1	0.38	0.06	<.001	Plasma	Canned tuna	19.8	0.59	0.07	<.001
$(Mean \pm SD)$	Dark fish	22.3	1.40	0.15	<.001	$(Mean \pm SD)$	Dark fish	29.5	1.05	0.09	<.001
$(1.42 \pm 0.58\%)$	Other fish	26.4	0.46	0.07	<.001	$(1.37 \pm 0.60\%)$	Other fish	23.2	0.66	0.10	<.001
n=1,766	Shrimp and shellfish	3.2	0.46	0.17	0.007	n=1,319					
	$R^2 = 0.14$						$R^2 = 0.24$				

^{† 1986-1990} average percent contribution to total intake in the NHS full cohort § 1990-1994 average percent contribution to total intake in the HPFS full cohort ¶ Mean level was expressed as the percentage of total fatty acids; biomarker concentrations were adjusted for age, BMI, pack-year of smoking, fasting status, case-control status, menopausal status and hormone use ¶Total calories were forced into all models