
Appendix: Theoretical considerations
concerning the effect of removing the ephaptic

current

In this appendix, we will provide theoretical arguments indicating the asymp-
totic nature of the errors introduced by removing the ephaptic current. These
arguments are founded on strong assumptions on the analytical properties of the
solutions and rigorous mathematical arguments would require a priori proofs of
these properties. We therefore emphasize that the arguments provided here just
indicate relations and it is an open problem to rigorously prove these relations
mathematically.

As discussed above, the key step in deriving the classical Cable model is to re-
move the ephaptic current, Ieph. We have given computational evidence indicating
that

Ieph ∼ O (1/σe) .

This relation can also be derived from the classical summation formula (see Equa-
tion (27) in the paper). If we assume that (27) holds and assume that ∂2ue

∂x2
is uni-

formly bounded, we find that

Ieph = η
∂2ue

∂x2
= O

(
hσi

σe

)
,

where we have used that η = hσi
4

; recall that h = ly = lz (the width of the neuron).
Next, our aim in this appendix is to provide a rough estimate of the error

introduced in the membrane potential by removing the ephaptic current given by
(12) in the paper. The theoretical bound will be based on the assumption that the
term ∂2ue

∂x2
in (12) is bounded independently of the parameter η.

In order to derive the bound, we compare the two models given by

Cmvt + Iion(v, x, t) = η (vxx + uexx) , (1)

and
Cmv̄t + Iion(v̄, x, t) = ηv̄xx. (2)
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Here subscript t represents the derivative with respect to t and subscript xx repre-
sents the double derivative with respect to x. For simplicity, we assume that both
models are equipped with the boundary condition v = vrest at x = 0 and x = lx.

By subtracting (1) from (2), we find that the error

e = v̄ − v

is governed by
Cmet + g(x, t)e = ηexx − ηuexx, (3)

with the boundary condition e(0, t) = e(lx, t) = 0, initial condition e(·, 0) = 0,
and where

g(x, t) = gL + gs(x)e−
t−t0
α .

By multiplying (3) by e and integrating over the length of the neuron, we get

1

2
Cm

d

dt

∫ lx

0

e2dx+

∫ lx

0

g(x, t)e2dx = −η
∫ lx

0

e2xdx− η
∫ lx

0

euexxdx. (4)

First, we note that ∫ lx

0

g(x, t)e2dx > gL

∫ lx

0

e2dx, (5)

and secondly, we use the Poincaré inequality (see e.g. [1]) to find that

l2x
2

∫ lx

0

e2xdx >
∫ lx

0

e2dx. (6)

In order to estimate the last term of (4), we note that, for any a, b and ε 6= 0, we
have

0 6

(
εa− b

ε

)2

= (εa)2 − 2ab+

(
b

ε

)2

and therefore

ab 6
1

2

(
(εa)2 +

(
b

ε

)2
)
.

By using this inequality with a = e, and b = uexx , we find that

−
∫ lx

0

euexxdx 6
∫ lx

0

|euexx| dx 6
1

2

(∫ lx

0

(εe)2 dx+

∫ lx

0

(
uexx
ε

)2

dx

)
. (7)

We define

E(t) =

∫ lx

0

e2dx,
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and note that, by (4, 5, 6, 7), we have

1

2
CmE

′ 6 − 2

l2x
ηE − gLE +

ηε2

2
E +

η

2ε2
F0, (8)

where we have introduced

F0 = max
t

∫ lx

0

(uexx)
2 dx.

Again, if we assume that the extracellular potential is faithfully represented by the
classical summation formula (27), we have

F0 = O(1/σ2
e ).

Equation (8) can be written as
1

2
CmE

′ 6 (Aε2 −B)E + C/ε2

with A = η/2, B = 2η/l2x + gL and C = ηF0/2. Provided that B > Aε2 this
ODE will be bounded by the steady state

E∗(ε2) =
C

ε2(B − Aε2)
.

Choosing ε2 = B/2A in order to minize this upper bound, it follows that

E(t) 6 E∗
(
B

2A

)
=

4AC

B2
=

η2

(2η
l2x

+ gL)2
F0.

Since, F0 = O(1/σ2
e ), we find that for small values of η we have

E(t) 6 O

(
η2

g2Lσ
2
e

)
= O

(
hσi

gLσe

)2

,

where we recall that h = ly = lz represents the width of the neuron. Finally, we
conclude that

‖e(t)‖ = E1/2(t) = O

(
hσi

gLσe

)
.

This estimate indicates that the error introduced by removing the ephaptic current
is reduced as h or σi are reduced, and it is reduced if σe or gL is increased.
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