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SI Materials and Methods

Animal social networks. We obtained previously published
(and publicly available) social networks of 69 groups across
43 animal species. The networks were selected based on the
criterion that edge connections can serve as actual routes
of infectious disease spread. For groups that had multiple
temporal snapshots of social network, we randomly selected
one network for the analysis to avoid intra-group correlation in
network metrics. Few networks had weighted edges. To enable
consistent comparison across all networks, we transformed
the edges of these networks to binary edges by employing an
edge filtering approach (1). To this end, edges with weights
less than 50th percentile of edge weights were removed from
the network, and the remaining edges were assigned an edge
weight of one.

Measure of relative modularity. We used modularity (Q) pro-
posed by Newman (2, 3) to measure the strength of modular
organization in networks. Modularity can be defined as:

Q =
K∑
k=1

(ekk − a2
k) [1]

where ekk denotes the fraction of edges within the subgroup
k and ak is the fraction of the total edges present within the
subgroup. If dk is the average degree of individuals in subgroup
k, dkw is the average within subgroup degree and sk is the total
number of individuals in the subgroup, then the equation 1
can be rewritten as:

Q =
K∑
k=1

[
dkwsk

dn
−
(
dksk

dn

)2
]

[2]

where d is the average degree of the network, and the total
number of individuals and subgroups in the network are n and
K, respectively.

Let Lk be the total edges of individuals of a subgroup k
out of which Lwk are the edges present within the subgroup.
Equation (2) can then be further reduced to:

Q =
K∑
k=1

[
Lwk
L
−
(
Lk
L

)2
]

[3]

where L is the total edges present in the network.
We estimated Newman modularity, Q, for the largest con-

nected component of each animal social network using the
Louvain method as described in (4).

The highest possible modularity in a network is achieved
when all individuals in a subgroup k only interact with each
other and no edges are present between subgroups (i.e., sub-
groups are disjointed). In other words, Qmax of a network is
when Lwk = Lk. Equation S3 can be therefore written as

Qmax =
K∑
k=1

[
Lk
L
−
(
Lk
L

)2
]

[4]

A network is more modular if its observed Q value is closer
to the maximum possible modularity. We thus normalize the
strength of modular organization with respect to its Qmax by
computing relative modularity of networks as Qrel = Q

Qmax
.

Mechanisms of modular organization. We test the role of sev-
eral features of social organization in animal societies that may
contribute towards the observed magnitude of relative mod-
ularity. These features include network size (n); (log of the)
number of subgroups in the social network (network fragmen-
tation); preferential association with own subgroup (subgroup
cohesion, measured as the proportion of total contacts that
occur within subgroups); variation in subgroup cohesion across
the network; average and variation in subgroup sizes; average
and variation in number of individual contacts (degree); and
variation in contacts among subgroups (subgroup degree varia-
tion). We note that this is not an exhaustive list but includes
factors that we believe can be important in the context of
animal social networks. Average contacts of subgroups was
not included in the analysis because mathematically it is equal
to the average degree of individuals.

To examine the relative contribution of these factors to-
wards network modularity, we ran the following mixed effects
beta regression model using glmmADMB package (version
0.8.3.3) in R (version 3.2.3). All predictors were centered and
scaled to unit variances to assign same prior importance to
each predictor in the analysis (5). The distributions of network
size and number of subgroups were skewed to the right and
therefore were natural log-transformed for further analyses.
For all the variance predictors, we estimated coefficient of
variation (CV = σ/µ) to avoid possible correlation with their
average predictor counterparts. To avoid multicollinearity, we
estimated the variance inflation factor (VIF) implemented in
the package ’car’ in R, and removed predictors with VIF >5
(6). We treated the species nested within the order of the
social group and sociality as random effects in the model.

Generation of null networks. Two types of null networks were
generated for each animal social network. Modular null net-
works were created in two steps: first, within-subgroup con-
nections were randomized and the second step involved ran-
domization of between-subgroup connections. Edges were
randomized using the double-edge swap operation in the Net-
workX package (7). The modular null networks, therefore,
had the same modular subdivision and degree sequence as the
empirical networks, but were random with respect to other
higher-order network properties. We generated homogeneous
null networks by performing simultaneous edge swaps over
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within- and between-subgroup connections, which preserves
the local contact heterogeneity but randomizes all higher-order
features of the network including network modularity (8).

Generation of synthetic modular networks. We generated syn-
thetic modular networks using modular random network gener-
ator described in (8). This model allows generation of modular
networks by varying the level of network fragmentation or sub-
group cohesion while keeping other network properties (such as
degree homophily, clustering coefficient) close to homogeneous
null network with no modular structure. In this study we gen-
erated modular networks with 10,000 nodes. The strength of
modular organization was varied by adjusting either subgroup
cohesion or network fragmentation. As the total number of
individuals was fixed across all generated synthetic networks,
increasing network fragmentation (i.e., the number of sub-
groups) also coincided with decreasing the average subgroup
size in the network. Unless otherwise noted, we assumed local
contact heterogeneity in social groups to follow an exponential
degree distribution with mean contact (degree) of 10.

Disease simulations. We performed Monte-Carlo simulations
of discrete-time susceptible-infected-recovered (SIR) model
of disease spread. Each disease simulation was initiated by
infecting a randomly chosen individual in the social group.
At subsequent time steps every infected individual(s) in the
population could either transmit infection to a susceptible
neighbor with probability parameter β or recover with prob-
ability parameter γ. The disease simulation was terminated
when there were no remaining infected nodes in the network.
As we were interested only in major outbreaks, we considered
only those simulations in our calculations where at least 10%
individuals in the network acquired infection. Pathogen conta-
giousness was measured in terms of infection transmissibility.
Transmissibility was defined as the probability of pathogen
transmission from an infected to susceptible host during the
period when the host is infectious. Assuming the individual’s
recovery and infection transmission to be a Poisson process,
transmissibility was calculated as: T = β

β+γ .
Disease simulations in Figure 2C and 5: To compare

epidemiological consequences of empirical networks, we simu-
lated infectious disease spread with basic reproduction number,
R0 = 1.2. Basic reproduction number is defined as the average
number of secondary infections caused by a single infected
host in a completely susceptible population. Following ref. (9),
we estimate transmissibility of pathogen corresponding as:

T = R0

( 〈k〉
〈k2〉 − 〈k〉

)
[5]

where 〈k〉 and 〈k2〉 are the mean degree and mean square
degree of the networks, respectively. Since empirical networks
had varying values of 〈k〉 and 〈k2〉, we obtained a different
value of pathogen transmissibility corresponding to a R0 = 1.2
for each empirical network. For consistent comparison, disease
simulations on null networks were performed using the same
value of pathogen transmissibility that was estimated for their
empirical network counterpart using equation 5.

Threshold analysis. We identified the threshold of pathogen
contagiousness below which there is a minimal risk of large
outbreak in modular networks using the formula proposed in

ref. (10). Specifically, the threshold is estimated numerically
as:

∆ =
√
〈ρ2〉 − 〈ρ〉2

〈ρ〉 [6]

where ρ denotes the outbreak sizes of Monte-Carlo disease
simulations, and ∆ is a variability measure. The epidemic
threshold is estimated by performing disease simulations over a
wide range of pathogen transmissibility and estimating the cor-
responding ∆ measure. The pathogen transmissibility where
∆ peaks is considered to be the epidemic threshold (10).

Table S1. Multivariable analysis on determinants of modular organi-
zation in the dynamic networks of four species (C. fellah, C. pennsyl-
vanicus, P. lotor, and M. agrestis)

Explanatory variable Effect size 95% confidence intervals
Intercept 0.05 0.03 – 0.07
Network size -0.03 -0.05 – 0.00
Network fragmentation* 0.48 0.44 – 0.52
Subgroup cohesion* 0.87 0.85 – 0.90
Subgroup cohesion variation – –
Subgroup size average – –
Subgroup size variation* -0.10 -0.12 – -0.08
Individual degree average – –
Individual degree variation -0.02 -0.06 – 0.02
Subgroup degree variation* -0.04 -0.07 – -0.02
Random effects Variance estimate (σ2)
Group identification 0.0002

Response variable is the relative modularity, Qrel, of the social
networks. Asterisks and bold text indicate significance. We treated
the social group identity of each network as the random effect.
Explanatory variables with VIF>5 were dropped from the model,
and therefore their effect sizes therefore were not estimated.
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Fig. S1. Empirical animal social networks and the corresponding homogeneous null
networks included in Fig.2C. Animal social network abbreviations: AC = Acanthiza
spp., CC = Cercopithecus campbelli, CCR = Crocuta crocuta, CF = Camponotus fellah,
CP = Camponotus pennsylvanicus, BB= Bison bison, BL = Branta leucopsis, EP =
Erythrocebus patas, GA = Gasterosteus aculeatus, HM = Haemorhous mexicanus,
MA = Mirounga angustirostris, MAR = Macaca arctoides , MM = Macaca mulatta, MS
= Myotis sodalis, OC = Ovis canadensis, PC = Papio cynocephalus , PL = Procyon
lotor, PP = Pan paniscus, PT = Pan troglodytes, TR = Tiliqua rugosa, TT = Tursiops
truncatus, ZA = Zonotrichia atricapilla. Numbers next to the species acronym indicate
a separate social group.
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Fig. S2. Threshold value of relative modularity above which the empirical networks
tend to experience lower outbreak sizes as compared to homogeneous null networks
in Fig.2C. The breakpoint is atQrel ≈ 0.618. ∆ Outbreak size is the relative outbreak
size and is calculated as

Snull−Semp
Semp

where S = average outbreak size, emp =
empirical network, null = homogeneous null networks. We recursively fit a piecewise
linear mixed regression model with a sequence of increasing breakpoint values. The
optimum breakpoint value was selected from the model with minimum deviance. To
take into account any correlation within the taxonomic groups, we used the species
nested with genus and taxonomic order of the groups as a random effect in the model.
Sociality of the animal groups analyzed (relative solitary, social, and fission-fusion)
was also included as a random effect.
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Fig. S3. Extended figure of Fig.2C Comparisons between real (filled points) and
their homogeneous null networks (tip of arrows) with respect to the percentage of
infected individuals (outbreak size) due to an outbreak with basic reproduction number,
R0 equal to 1.45, 1.8, 2.4 and 4.8. Point color corresponds to the taxonomic class
of the animal group. Social networks with non-significant modular subdivision (as
indicated by t test analysis) have been excluded. The generated homogeneous null
networks preserve only the local heterogeneity of contacts among individuals; the
arrows therefore indicate the change in direction and magnitude of outbreak size
under the scenario where all higher-order structural complexities (including modular
subdivisions) are removed from animal social networks.
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Fig. S4. The values of network fragmentation and subgroup cohesion present in
empirical animal social networks. Network fragmentation is the log-transformed value
of the total subgroups present in the social network. Circles are the networks with
Qrel <0.618 (the threshold value shown in Fig.2c of the main text and SI Appendix,
Fig.S2) and triangles represent social networks above the modularity threshold.
Animal social networks above the threshold experienced lower outbreak size as
compared to homogeneous null networks in Fig.2C. In this study, we show that the
disease consequences of modular subdivision in animal social networks are driven by
network fragmentation and subgroup cohesion.
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Fig. S5. Reduction in outbreak size experienced by empirical animal social networks
as compared to their homogeneous null networks (as shown in Fig.2C) as a function
of subgroup cohesion and (A) network fragmentation, and (B) subgroup size variation.
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Fig. S6. Extended figure of Fig.3D. Disease implications of modular subdivisions
in synthetic modular networks as a function of subgroup cohesion and network
fragmentation. Outbreak size and duration have been normalized to the maximum
observed outbreak size and duration respectively. Subgroup cohesion measures the
tendency of individuals to interaction with members of their own subgroup, and is
measured as the proportion of contacts within-subgroups to total contacts across the
entire social network. In theory, a social network with two subgroups is considered
to have Qrel=0 when the proportion of contacts within subgroups is equal to the
proportion of contacts between subgroups (=0.5). The minimum subgroup cohesion
realized in a network is therefore a function of the number of subgroups (fragmentation)
present in the network. Circles, triangles and squares summarize disease outbreaks
of pathogen transmissibility of 0.1, 0.18 and 0.3, respectively.
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Fig. S7. (A) Outbreak size and (B) outbreak duration in networks with different hetero-
geneity in subgroup sizes. Constant = all subgroups have equal number of individuals;
homogeneous = subgroup size distribution follows a Poisson distribution; heteroge-
neous = subgroup sizes follow an exponential distribution. For homogeneous and
heterogeneous subgroup size distribution, the average subgroup size = N /network
fragmentation, where N is total number of individuals in the social group. Results
summarize disease simulations of a pathogen with transmissibility = 0.1 over networks
with 10 subgroups. Outbreak size and duration have been normalized to the maximum
observed outbreak size and duration respectively.
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Fig. S8. Disease burden in modular social networks with Poisson (purple bars)
and exponential (orange bars) contact heterogeneity. The y-axis measures the
change in outbreak size and duration of modular networks as compared to disease
burden in homogeneous networks (with Qrel=0), and is calculated as Omodular −
Onon−modular , where Omodular and Onon−modular is the average outbreak
size or duration of networks with Qrel > 0 and Qrel = 0, respectively. Errors bars
represent standard error of the means.
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Fig. S9. Extended figure of Fig.5. Percentage error in outbreak size predictions
using modular and homogeneous null networks for 19 animal social networks due
to an outbreak with R0 = 1.05, 1.45, 1.8 and 2.0. Percentage error is calculated as
(Semp −Snull)/Semp × 100, where S = outbreak size, emp = empirical network,
null are modular or homogeneous null networks of the empirical network. The social
networks are ordered according to the increasing value of relative modularity (red
solid curve, secondary y-axis). The shaded region indicates the range of percentage
error values below 15%. BA, Brachyteles arachnoides;BB, Bison bison; CC, Cer-
copithecus campbelli ; CCR, Crocuta crocuta; CF, C. fellah; CP, C. pennsylvanicus;
DC, dairy cattle; DR, Desmodus rotundus; HM, Haemorhous mexicanus; MA, M.
angustirostris; MF, Macaca fuscata; MM, Macaca mulatta; MT, Macaca tonkeana;
PC, Papio cynocephalus; TR, T. rugosa; TT, T. truncates. Numbers denote separate
groups of the same species.
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Fig. S10. Outbreak size predictions from modular and homogeneous null networks as
compared to the "true" outbreak size (empirical networks, gray vertical bars). Results
are shown for simulations of a slowly (R0=0.85) and rapidly (R0=4.8) spreading
infectious disease. Outbreak size is averaged across all disease simulations. Both the
null networks (in most cases) yield identical and accurate outbreak size predictions.

Fig. S11. Highly modular networks are able to reduce outbreak size. Empirical
evidence from the spread of Babesia parasite in the field voles (Microtus agrestis):
Babesia are spread by ticks and therefore networks based on common space use
are appropriate to model the parasite transmission (11, 12). We therefore used the
bipartite networks described in (13) to examine the relationship between network
modularity and parasite transmission. Specifically, generalized linear mixed model
with binomial response distribution was used, where Babesia prevalence was entered
as the response and the relative modularity of networks in the previous sampling
period was entered as the explanatory variable (for details see (13)). The number of
nodes and the total edges were also entered as explanatory variables in the model
to control for variation in the sampling effort. Additionally, the site of data collection
was included as a random effect. To control for autocorrelation, we included the
parasite prevalence in the previous sampling period as an explanatory variable. Two
models were fit - one that explored the relationship between parasite prevalence
and relative modularity in networks where Qrel ≤ 0.6, and other that examined
association between parasite prevalence and relative modularity for networks where
Qrel > 0.6. No significant association was found between network modularity and
Babesia prevalence when Qrel ≤ 0.6 (χ2 = 0.21, P=0.65). However, Babasia
prevalence decreased with increasing modularity when Qrel > 0.6 (χ2 = 12.50, P
< 0.001).

Fig. S12. Low modular networks do not limit global disease transmission. Em-
pirical evidence from the spread of a gastrointestinal parasite in brown spider monkeys
(Ateles hybridus) (14). Gastrointestinal parasites have been empirically shown to
spread through the networks of physical interaction in brown spider monkeys (14).
In the social networks of brown spider monkeys described in ref. (14), we identified
four connected subgroups with a Qrel of 0.24. Node colors indicate different sub-
groups. The triangle shaped nodes are the individuals that were reported infected
with Strongyloides sp. in (14). The parasite prevalence in the connected component
of the network was 57%. No structural trapping was observed in the network (i.e.,
infections were reported in all subgroups), which suggests that the low modularity of
spider monkey social network does not inhibit the global spread of parasites.
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Fig. S13. Structural trapping of infectious disease increases with network frag-
mentation. Empirical evidence from the spread of pneumonia in the big horn lambs
(Ovis canadensis). Subgroups in big-horn lambs in (15) were identified based on
direct or indirect association between animals to study the spread of pneumonia
between individuals. This definition of subgroup implies that between-group interac-
tion was minimal (i.e., high subgroup cohesion). Lamb mortality was considered to
be a reasonable proxy of infection status (15); we therefore calculated the outbreak
size as the proportion of deaths within each lamb herd (population). In the figure,
each population is represented by a different point color. We found negative (albeit
weak) relationship between network fragmentation and outbreak size (χ2 = 3.29, P
= 0.069).
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Fig. S14. High subgroup cohesion can induce structural delay of infection
spread. Empirical evidence from the spread of Mycoplasma gallisepticum in house
finches (Haemorhous mexicanus) (16). The social network of the songbirds based on
common feeder use has been associated with spread of Mycoplasma gallisepticum
(16). We estimated the relative modularity of the songbird social network to be
0.29 with three connected subgroups. Node colors indicate different subgroups. The
triangle shaped nodes are the individuals that were reported infected with Mycoplasma
gallisepticum in (16). The infection prevalence in the connected component of network
was 9%. No structural trapping was observed (i.e., infections were reported in all the
subgroups) in the network, which suggests that low modularity does not inhibit global
transmission. However, the local disease prevalence (B) was inversely correlated to
subgroup cohesion in the interaction networks of songbirds. This suggests that high
local (subgroup) cohesion induces structural delay of infection spread within the social
network.
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Fig. S15. Modular networks influence disease transmission of moderately, but
not low, contagious pathogens/parasites. Networks based on physical proximity
are associated with the spread of Salmonella in Australian sleepy lizards (17). Our
investigation of modular subdivisions in the social network revealed network modu-
larity to be moderately high (Qrel = 0.624). We used the transmission data of two
Salmonella strains (published in ref. (17)) to validate our theoretical prediction that
network modularity influences disease transmission of moderately, but not of low
contagious pathogen. To do so, we first estimated pathogen transmissibility of the
two Salmonella strains (Genotype 17 and 2) to be 0.043 (R0 = 0.48) and 0.1788
(R0 = 2.02), respectively. The estimated transmissibility value was used to perform
simulations of Salmonella spread in the modular and homogeneous null networks
of sleepy lizards. Finally, the outbreak size of disease simulations was compared to
the real transmission data of the two genotypes in the sleepy lizard social network.
For the low transmissible strain (Genotype 17), we found that the homogeneous and
modular null networks produced identical and accurate outbreak size predictions. This
suggests that modular subdivision does not influence transmission of low contagious
parasites. Conversely, for the moderately transmissible strain (Genotype 2), modular
null networks performed better in estimating the true outbreak size as compared to
homogeneous null networks, which suggests that modular subdivision does influence
the transmission of moderately transmissible parasites.
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Table S2. Empirical (or data-driven modeling) evidence that matches the predictions of our study

Key findings of this study Evidence Specific findings Notes Reference

Structural trapping by highly modular network
localizes infection to a small proportion of sub-
groups

Plague (Yersinia pestis) infection
in the great gerbil (Rhombomys
opimus)

Plague spread easily within burrow systems (defined as subpop-
ulations in the study) than between them. Probability that an an-
imal was infectious or recovered was higher if its subpopulation
was known to harbour infected animals in the recent past than if
there was no evidence of recent infection

Although network modularity was not explicitly calculated, limited move-
ment of gerbil or infected fleas between burrow systems is indicative of a
high network modularity

(18)

Structural delay of infection spread
Canine distemper virus outbreak
in Greater Yellowstone ecosystem’s
wolves (Canis lupus) and coyotes
(Canis Latrans)

Low connectivity (indicative of high modularity) between host
population increases outbreak duration

Data driven model (19)

Epidemic of phocine distemper virus
in the North Sea population of har-
bour seals (Phoca vitulina)

When coupling between host patches is weak (indicative of high
modularity), higher number of host patches (fragmentation) in-
creases outbreak duration

Data-driven model (20)

Low levels of modular organization does not
structurally trap infection

Esherichia coli transmission in wild
elephants (Loxodonta africana)

No evidence that animals were more likely to be infected with
E. coli from members of their own subgroup than members of
other subgroups

Aggregation of animals in single large groups suggests social networks
to be homogeneous (or low modular) during rainy periods. In addition,
the authors observe high overlap in home-ranges around water sources,
which indicates social networks are not highly modular during non-rainy
seasons

(21)

Effect of modular structure on disease trans-
mission depends on pathogen contagious-
ness

Cryptosporidium spread in wild
lemurs

Increasing network modularity reduces outbreak size for moder-
ately transmissible pathogen, but not for low and high pathogen
transmissibility

Pathogen transmissibility can be derived from Figure 7 based β and γ
values. Data-driven model

(22)
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