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1 The ORI Third-Order Response Function

The macroscopic polarization, P(t), generated by an incident electric field connects a measured
optical signal to the microscopic response of the molecules or materials. In the dipole approxi-

mation, this polarization can be expressed as
P(t) = Tr(fp(t)) =< fip(t) >,

where /i is the dipole operator, p(t) is the time-dependent density matrix, and the angle brackets
denote a trace.! In the perturbative regime where the electric field of the light only weakly couples
to the material system, it is possible to perturbatively expand the density matrix. For a third-order

nonlinear experiment, involving three interactions of an electric field with a sample at distinct
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times denoted as ¢;, 12, and ¢3, in the interaction picture, we can write the trace above as the

following convolution integral

t t3 to
P(3)(t):/ dtg/ dtz/ dty E(t)E(t2)E(ts) - R®) (ty, ty, t3),

where F denotes an electric field interaction and R(t1, 2, t3) is a third-order response function
that can be written
i

ROty 12, t3) = (-)°0(11)0(t2)O(ts) < u(t) - [u(ts), [p(t2), [u(tr), p(—o00)]]] >,

where O(t) is the Hevaside step function.
The time variables discussed above are defined for absolute times, but it is more useful experi-
mentally to discuss time intervals corresponding to the time differences between a pair of pulses.

As such we can make the following definitions:

t1 =0
T=1—1
T =t3—1t
tr =t —ts,

where 7 is the time between pulses 1 and 2, 7" is the time between pulses 2 and 3, and ¢y, is the
time between pulse 3 and the signal time t. This allows us to redefine the response function as
RO (7, T,tg).

In a canonical third-order nonlinear spectroscopic measurement, such as 2DES or 2DIR, where
none of the pulses have pulse-front tilt, the third-order polarization generated in the sample,
and thus the emitted third-order signal, is a function of three temporal intervals defined above.
These three variables are controlled experimentally by moving an opto-mechanical delay line to

delay one pulsefis arrival relative to the other. Performing different measurements with different



values of 7 and then Fourier transforming over this coordinate produces a frequency axis that is
equivalent to spectrally resolving the pump frequency (or excitation frequency, w,). The second
time variable, 7', corresponds to the time difference between pulses 2 and 3. During this time, the
measured system is generally thought to be in a population state, meaning the system evolves in
time as an eigenstate of the unperturbed Hamiltonian. Again, this time is controllable by varying
the arrival time of pulse 3 relative to pulse 2 using an opto-mechanical delay line. The final time
domain, tp, is defined as the time after the third pulse, when the signal is emitted. This time
domain is typically measured intereferometrically by using a spectrometer to convert from time
to frequency and mixing the signal with the local oscillator, producing the second frequency axis,
or probe frequency, w;,, presented in a typical 2D plot.

A nonseparable spatio-temporal coupling, such as pulse-front tilt, of pulse 3 means that arrival
time of this pulse, ie. time variable ¢3, will vary across the sample as a function of position,

allowing us to write the spatially-dependent temporal interval between pulses two and three as

t3—t2:T—px,

where p denotes pulse-front tilt and x is a spatial coordinate. As such the spatial-temporal cou-
pling is present in the response function, which can be written as R®) (7, T — px,tz). Thus, all
the time intervals, including 7', remain experimentally controllable variables. This should enable
the extraction of both two-dimensional spectra as well as optical resonant images from the same

experimental setup, as long as all the time intervals are experimentally scanned.

2 Kostenbauder Matrix Calculations

The Kostenbauder formalism discussed in the main text allows us to follow the spatio-temporal

coupling of pulse 3.2 Fig. S1 confirms that the pulse still has a 15 fs FWHM.
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Figure S1. A slice through the point ' = 0 from Fig.1. The ordinate is in normalized intensity

units.

3 Fourier Optics Simulation

The simulated ORI signal was calculated by propagating the emitted dipole fields through a /2
optical system. Fig. S2 shows the field as calculated before the first lens. The lens applies a
quadratic phase which cancels the phase from the emitted signal wave since the source was at
the focus. The wave was then propagated to just before the second lens. The calculated collimated
field can be seen in Fig. S3. Finally the field was propagated to the focus of the second lens, which
in this model corresponds with the entrance slit of the simulated spectrometer. This simulated

signal can be seen in Fig. S4.
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Figure S2. The real-valued electric field before the first lens of the collection optics.
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Figure S3. The real-valued electric field before the second lens of the collection optics.
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Figure S4. The real-valued electric field at the entrance slit of the simulated spectrometer.
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