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Supplementary Note 1: Definition of the tight-binding model

Here, we present a tight-binding model for BiAg2. The Bravais lattice vectors are defined as

R = n1a1 + n2a2, (S1)

where n1 and n2 are integers and
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(
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2
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3

2
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)
, (S2)
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2
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2
ŷ

)
, (S3)

are unit lattice vectors, where a is the lattice constant. For convenience, we also define a3 = − (a1 + a2). Within each unit cell,
there are one Bi and two Ag atoms, the locations of which are

rBi = 0, (S4)

rAg1 =
2

3
a1 +

1

3
a2, (S5)

rAg2 = −rAg1. (S6)

We first consider a spinless model. We will return to a spin-full model when we consider the effect of spin-orbit coupling.
Near the Fermi energy, the most relevant atomic orbitals are the px, py , pz orbitals of Bi atoms, and s orbitals of Ag atoms,
which are sufficient to capture the essential features of the orbital Rashba effect in BiAg2. We define φpα(r) (α = x, y, z) and
φs(r) as pα- and s-like Wannier functions localized around r = 0, respectively. Considering up to the first- and second-nearest
hoppings, we define the following hopping amplitudes:

Es = +

∫
drφ∗s(r)Ĥφs(r), (S7)

Ep = +

∫
drφ∗px(r)Ĥφpx(r) = +

∫
drφ∗py (r)Ĥφpy (r) = +

∫
drφ∗pz (r)Ĥφpz (r), (S8)

tpσ = +

∫
drφ∗px(r)Ĥφpx(r± ax̂) = +

∫
drφ∗py (r)Ĥφpy (r± aŷ), (S9)

tpπ = −
∫
drφ∗px(r)Ĥφpx(r± aŷ) = −

∫
drφ∗py (r)Ĥφpy (r± ax̂)

= −
∫
drφ∗pz (r)Ĥφpz (r± ax̂) = −

∫
drφ∗pz (r)Ĥφpz (r± aŷ), (S10)

ts(1) = −
∫
drφ∗s(r)Ĥφs(r±

a√
3
x̂) = −

∫
drφ∗s(r)Ĥφs(r±

a√
3
ŷ), (S11)

ts(2) = −
∫
drφ∗s(r)Ĥφs(r± ax̂) = −

∫
drφ∗s(r)Ĥφs(r± aŷ), (S12)

γsp = ±
∫
drφ∗s(r)Ĥφpx(r∓ a√

3
x̂) = ±

∫
drφ∗s(r)Ĥφpy (r∓ a√

3
ŷ), (S13)

Vz(1) = −
∫
drφ∗s(r)Ĥφpz (r±

a√
3
x̂) = −

∫
drφ∗s(r)Ĥφpz (r±

a√
3
ŷ), (S14)

Vz(2) = ±
∫
drφ∗px(r)Ĥφpz (r± ax̂) = ±

∫
drφ∗py (r)Ĥφpz (r± aŷ). (S15)

Note that Vz(1) and Vz(2) are zero if z-inversion symmetry is preserved. The effect of Vz(2) was studied by Petersen et al. [S1].
In sp alloys such as BiAg2, the quantity Vz(1) arising due to the buckling of Bi atoms becomes important.
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In order to find a k-space representation of the Hamiltonian, let us define basis states

ϕnk(r) =
1√
N

∑
R

eik·Rφn(r− rn −R), (S16)

where n = px, py, pz, s1, s2, and rs1(2) = rAg1(2), and N is the number of lattice sites. We compute a matrix representation of
the Hamiltonian as

Hnm(k) =

∫
drϕ∗nk(r)Ĥϕmk(r), (S17)

where

Hpxpx(k) =

(
1

2
tpσ −

3

2
tpπ

)
cos(k · a1) +

(
1

2
tpσ −

3

2
tpπ

)
cos(k · a2) + 2tpσ cos(k · a3), (S18)

Hpypx(k) =

(√
3

2
tpσ +

1

2
tpπ

)
cos(k · a1)−

(√
3

2
tpσ +

1

2
tpπ

)
cos(k · a2), (S19)

Hpypy (k) =

(
3

2
tpσ −

1

2
tpπ

)
cos(k · a1) +

(
3

2
tpσ −

1

2
tpπ

)
cos(k · a2)− 2tpπ cos(k · a3), (S20)

Hpzpx(k) = −iVz(2) sin(k · a1)− iVz(2) sin(k · a2) + 2iVz(2) sin(k · a3), (S21)

Hpzpy (k) = −
√

3iVz(2) sin(k · a1) +
√

3iVz(2) sin(k · a2), (S22)
Hpzpz (k) = −2tpπ cos(k · a1)− 2tpπ cos(k · a2)− 2tpπ cos(k · a3), (S23)
Hs1s1(k) = −2ts2 cos(k · a1)− 2ts2 cos(k · a2)− 2ts2 cos(k · a3), (S24)

Hs2s1(k) = −ts1e−ik·a1 − ts1eik·a3 − ts1eik·(a3−a1), (S25)
Hs2s2(k) = −2ts2 cos(k · a1)− 2ts2 cos(k · a2)− 2ts2 cos(k · a3), (S26)

Hs1px(k) = −
√

3

2
tsp +

√
3

2
tspe

−ik·a3 , (S27)

Hs1py (k) = −1

2
γsp + γspe

ik·a1 − 1

2
γspe

−ik·a3 , (S28)

Hs1pz (k) = Vz(1) + Vz(1)e
ik·a1 + Vz(1)e

−ik·a3 , (S29)

Hs2px(k) =

√
3

2
γsp −

√
3

2
γspe

ik·a3 , (S30)

Hs2py (k) =
1

2
γsp − γspe−ik·a1 +

1

2
γspe

ik·a3 , (S31)

Hs2pz (k) = Vz(1) + Vz(1)e
−ik·a1 + Vz(1)e

ik·a3 . (S32)

The above equations define a spin-less model Hamiltonian. A spin-full model Hamiltonian can be constructed by simply adding
spin-orbit coupling as

H(k) =


HpxpxI2×2 Hpxpy I2×2 Hpxpz I2×2 Hpxs1I2×2 Hpxs2I2×2
HpypxI2×2 Hpypy I2×2 Hpypz I2×2 Hpys1I2×2 Hpys2I2×2
HpzpxI2×2 Hpzpy I2×2 Hpzpz I2×2 Hpzs1I2×2 Hpzs2I2×2
Hs1pxI2×2 Hs1py I2×2 Hs1pz I2×2 Hs1s1I2×2 Hs1s2I2×2
Hs2pxI2×2 Hs2py I2×2 Hs2pz I2×2 Hs2s1I2×2 Hs2s2I2×2

+Hsoc, (S33)

where

Hsoc =
λsoc

2h̄2
L̂ · Ŝ = λsoc



0 0 −i 0 0 1 0 0 0 0
0 0 0 i −1 0 0 0 0 0
i 0 0 0 0 −i 0 0 0 0
0 −i 0 0 −i 0 0 0 0 0
0 −1 0 i 0 0 0 0 0 0
1 0 i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


(S34)
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is the spin-orbit coupling Hamiltonian at the intra-atomic level.

Supplementary Note 2: Parameters of the tight-binding model

The parameters occuring in the above tight-binding model were chosen as

Es = 1, Ep = 0, tpσ = 0.7, tpπ = 0, ts(1) = 1.5, ts(2) = 0, γsp = 1.3, Vz(1) = 0.6, Vz(2) = 0, λsoc = 1.2,

in order to reproduce the band structure which resembles the result obtained from the first principles calculation (see Supple-
mentary Figure 1). The Fermi energy is introduced as a parameter, and we set EF = 0.6 and EF = 0.75 for the case without
and with spin-orbit coupling, respectively, such that the location of the spin-split bands near the Gamma-point is similar to that
of the first-principles calculation. All parameters are given in electronvolt.

Supplementary Note 3: Derivation of Eq. (5)

In order to derive the orbital Rashba Hamiltonian from a tight-binding model of the sp-alloy, let us consider a two-dimensional
square lattice in the xy-plane with three p orbitals and one s orbital at each site. A generalization to different lattice systems of
sp-alloys is straightforward. The tight-binding Hamiltonian is written as

H(k) =

(
Hp(k) h(k)
h†(k) Hs(k)

)
, (S35)

where the basis states are |ϕnk〉 = (1/
√
N)
∑

R e
ik·R |φnR〉 with |φnR〉 as the n-th (n = px, py, pz, s) Wannier function

localized around the Bravais lattice vector R, and N is the total number of the lattice sites. Here, Hp(s) is the Hamiltonian
spanned by p(s) orbitals, i.e., Hp(k) = diag

[
Epx(k), Epy (k), Epz (k)

]
, and Hs(k) = Es(k), where En(k) where En(k)

refers to the energy dispersion of the n-th isolated basis state. Most importantly,

h(k) =
(
iγsp sin(kxa) iγsp sin(kya) Vz(k)

)T
(S36)

describes the hybridization between s and p orbitals, where γsp is the nearest-neighbor hopping amplitude between s and px(y)
orbitals, and Vz(k) is the hopping amplitude between pz and s orbitals, which is induced by the surface potential gradient. Near
k = 0,

h(k) ≈
(
iγspkxa iγspkya Vz(0)

)T
(S37)

up to the first order in k. Considering k and Vz(0) as perturbative parameters, the eigenstates of Eq. (S35) are given by

|ϕ′pxk〉 ≈ |ϕpxk〉 −
iγspkxa

Epx(0)− Es(0)
|ϕsk〉 , (S38)

|ϕ′pyk〉 ≈ |ϕpyk〉 −
iγspkya

Epy (0)− Es(0)
|ϕsk〉 , (S39)

|ϕ′pzk〉 ≈ |ϕpzk〉+
Vz(0)

Epz (0)− Es(0)
|ϕsk〉 , (S40)

|ϕ′sk〉 ≈ |ϕsk〉+
iγspkxa

Es(0)− Epx(0)
|ϕpxk〉+

iγspkya

Es(0)− Epy (0)
|ϕpyk〉+

Vz(0)

Es(0)− Epz (0)
|ϕpzk〉 . (S41)

Using these basis states to obtain a matrix representation of the Hamiltonian Eq.(S35), we arrive at an effective Hamiltonian
decoupling the manifolds of s and p orbitals:

Heff(k) =

(
Hp,eff(k) 0

0 Hs,eff(k)

)
. (S42)

In particular for the effective Hamiltonian describing the manifold of p orbitals [Eq. (S42)], we note the occurence of the
so-called orbital Rashba Hamiltonian:

Hp,eff(k) = Hp(k) +HOR(k), (S43)

where

HOR(k) =
αOR

h̄
L̂ · (ẑ× k). (S44)
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The orbital Rashba constant αOR is given by

αOR = aγspVz(0)

[
1

Epxy (0)− Es(0)
+

1

Epz (0)− Es(0)

]
, (S45)

where we assumed Epx(0) = Epy (0) ≡ Epxy (0). The orbital angular momentum operator in a given basis is defined as

L̂x = h̄

0 0 0
0 0 −i
0 i 0

 , L̂y = h̄

 0 0 i
0 0 0
−i 0 0

 , L̂z = h̄

0 −i 0
i 0 0
0 0 0

 , (S46)

which satisfy the canonical commutation relations of the angular momentum, [L̂α, L̂β ] = ih̄εαβγL̂γ

[S1] L. Petersen and P. Hedegård, A simple tight-binding model of spin-orbit splitting of sp-derived surface states, Surf. Sci. 459, 49 (2000).

Supplementary Figures
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FIG. S1. Electronic band structures of BiAg2. The tight-binding (a) and the first-principles (b) band structures were calculated with and
without taking into account spin-orbit coupling (SOC). The tight-binding parameters were chosen such that the first-principles band structure
is closely reproduced (see Supplementary Note 1).
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a b c

d e f
p-1,↓ p0,↓ p+1,↓

p-1,↑ p0,↑ p+1,↑

( ≡ 1. 0µB )

FIG. S2. Orbital moment of p-derived bands in BiAg2 in the presence of spin-orbit coupling (SOC). States of distinct orbital symmetry
are denoted as p−1, p0, and p+1 following the convention of the main text. Down and up arrows represents lower and upper spin-split bands,
respectively. These are degenerate in the absence of SOC. By comparing to the case without SOC shown in Fig. 3 of the main text, we find
that overall orbital chirality is unchanged near the Γ-point.
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( ≡ 1. 0µB )

FIG. S3. Spin moment of p-derived bands in BiAg2 in the presence of spin-orbit coupling (SOC). Comparing the spin texture of the
p-derived bands to the corresponding orbital texture in Fig. S2, we observe that the spin moment is aligned along the opposite(same) direction
as the orbital moment of the lower(upper) spin-split bands. Exceptions are the states p+1,↓ and p0,↑ [(c) and (e)] since their orbital character
is inverted by SOC.
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FIG. S4. Projected Berry curvature and orbital moment (OM) along the MΓ-line. (a) Band structure along the MΓ-line. Colors on top
of the first-principles electronic band structure indicate the value of the projected Berry curvature 〈∂kyunk| z |unk〉 along the high-symmetry
line MΓ. As expected, the projected Berry curvature is pronounced in the vicinity of the band crossing. (b) The magnitude of the OM
calculated from the modern theory and atom-centered approximation (ACA). The modern theory gives a spiky distribution near the crossing
point. Remarkably, both modern theory and ACA results show qualitatively similar behavior apart from the crossing point.
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FIG. S5. Decomposition of the orbital moment (OM) obtained from the modern theory. (a) Decomposition of OM into local and itinerant
contributions. The singular behavior of the OM near the band crossing is purely due to the local contribution. (b) The individual OM
contributions of the upper and lower bands at the crossing. Both lower and upper bands show pronounced values of OM at the crossing point,
which confirms that the spiky distribution of the OM is coming from the hybridization between the two crossing bands.




