

FIG. S1. Comparison of the contigs of pKp1130 with the plasmid p1 of *K. pneumoniae* NY9 (199,497 bp; GenBank accession number CP015386). In the BLAST analysis of the complete set of 14 pKp1130 contigs, the p1_NY9 sequence was the GenBank entry that showed high similarity scores with the largest number (9) of contigs (shown in the figure). DNA sequences are represented by thick horizontal lines. The regions of p1_NY9 sharing high identity with the pKp1130 contigs are indicated by grey-shaded areas and the corresponding % of identity is shown. Relevant genetic features shown are: genes encoding plasmid replication proteins (diagonally hatched bars); the following color-coded insertion sequences (white triangles indicate the sense of *mpA* transcription): blue, IS903B-like; fuchsia, ISKpn28; red, ISEcp1; orange, IS26; violet, ISKpn26-like; black, IS1F-like (the asterisks indicate consecutive fragments); green, ISKpn38-like and brown, ISEc11-like, and regions containing 43-bp-long direct repeats (DRs, thick vertical lines); genes encoding functions for conjugative plasmid transference (white boxes); a Tn3 family truncated transposon TnAs3 (Δ TnAs3, dotted box), and the *qnrE1*-containing region mobilized by ISEcp1 (red box). DNA insertions are indicated by dotted lines. The Contig_5 was the unique that showed a cover query <100%. Both the position and orientation, as well as the number of copies of Contig_9 in pKp1130 could not be unequivocally determined because it comprises an IS26 fragment and four copies of this insertion sequence were found in p1_NY9. Considering the remaining 5 contigs of pKp1130 that did not show a relevant similarity to p1_NY9, three of them displayed the best BLAST hits with plasmids of Serratia marcescens, Yersinia pestis or Shigella dysenteriae, respectively, while the other two comprised an IS2 or a *dhfrVIII* gene¹, respectively.

1. Sundström L, Jansson C, Bremer K, Heikkilä E, Olsson-Liljequist B, Sköld O. 1995. A new *dhfrVIII* trimethoprim-resistance gene, flanked by IS26, whose product is remote from other dihydrofolate reductases in parsimony analysis. Gene **154:**7–14.

qnrVC qnrA qnrB qnrC1 qnrD qnrS qnrE1 48.8 48.4 50.3 qnrA 59.5 59.0 60.2 51.2 50.2 qnrB 49.4 63.1 51.0 75.0 40.5 50.6 49.6 61.2 69.3 47.9 qnrC1 51.6 50.4 47.9 51.6 qnrD 36.9 63.0 41.0 52.1 49.8 qnrS 49.8 38.8 64.5 qnrVC 39.8 49.0 48.4 35.5 51.1 30.7 49.7 25.0 52.1 37.0 50.2 48.9 qnrE1

В		10	20	30	40	50	60	70
qnrB con qnrE1	ATGRSWC	TDGYRYTVRI	'NDGCGWWAA <i>I</i>	AATTRRCAGR	AABHGNTTCAC	CYRGKGHRAAA	ARTYGAWARYRG	YA A.
qnrB con qnrE1	CDTTTTT	80 YWWHTGYGAI	90 TTTTTCRGGNF C	100 RCSGAYHTNW	110 GYRGYACTGAF	120 RTTTATYGGCI	130 1 CGYCARTTHTAT	.40 'GA
qnrB con	TCGHGAR	150 AGYCARAAAG	160 GVKGYAAWTT	170 FYAGYCGYRCI	180 DAWVYTRARRO	190 GATRCYATTTT	200 2 TYAAAAGYWGYG	210 GAT
qnrE1 qnrBcon	YTMTCMA	220 TGGYNGRTTI	230	240 ZARYGCNYTK	250 GRHATHGARAT	260 TT <mark>HSYCAYTG</mark> Y	270 2 MGNGCDCARGG	280 3BD
qnrE1	G.	290	C	310	320	330	340 3	350
qnrB con qnrE1	CRGATTT	YCGCGGYGCV	AGYTTYATG	AAYATGATYA	YYAYNCGNACY	TGGTTYTGY	410 4	
qnrB con qnrE1	BARYWCN AA. <mark>G</mark> .	AAYYTRWSYT	'AYGCCAAYT'	TTTCDAARGYI	HGTVYTKGARA G.T.	ARTGYGARYI	ITGGGARAAYC	CGY
qnrB con qnrE1	TGGATRG	430 GDRCYCAGRI	440 RVYKGGBRCF	450 RACGTTBAGT CCC	460 GGWTCVGAYYT	470 TYKYBGGHGG GG.	480 4 CGARTTTWCRDC	190 2BT
qnrB con qnrE1	TCGACTG • <mark>T</mark> • • • • •	500 GCGRRCVGSF	510 CAAYKTHACRO	520 CAYTGYGAYY	530 F <mark>S</mark> ACHAAYTCF	540 RGARYTRGGBF	550 5 RYYTMGAYRYY GG	60 CG
qnrB con qnrE1	BVKNGTN	570 GATTTRCARG	580 G <mark>H</mark> GTYAARYI	590 IRGAYARCTA	600 YCAGGCNKYDY	610 TGMTSMYGGA <mark>A.T</mark>	620 6 ARCGDCTTGGYA	530 ATC
qnrB con qnrE1	GCKRTNA	640 TKGGHTRR .A						

FIG. S2. Comparison of qnr genes. (A) Paired comparisons of qnr families and qnrE1. Averages of the % of identity (upper triangle), or the % of nucleotide difference (lower triangle), are shown. The maximal % of identity and the minimal % of difference are indicated in red. (B) Sequence alignment of qnrE1 and a consensus (qnrBcon) of all the qnrB alleles previously known (accession numbers are indicated in Table S2). Dots indicate nucleotide identities. The consensus was done considering all the different nucleotides found in a given position for all the qnrB alleles and the variants found are indicated by the corresponding IUPAC codes for nucleotide mixtures (2, 3 and 4 nucleotides, blue, orange and fuchsia, respectively). The nucleotide changes of qnrE1 located in positions fully conserved among all the qnrB alleles previously described are highlighted with a green background.

Α

FIG. S3. Genetic context of *qnrE1*. A region of 3,619 bp of the Contig_5 of pKp1130 (see Fig. S1) is depicted. The horizontal square bracket indicates IS*Ecp1* (100% identical to GenBank accession number AJ242809). Genes are represented by arrow-shaped boxes. The black triangles indicate the inverted repeats of IS*Ecp1* (IRL and IRR), and the promoter located next to the IRR, which likely accounted for the expression of *qnrE1*, is marked. The numbered arrows indicate the binding sites of the primers ISEcp1-Fout and pQNR1130-comp-R (1 and 2, respectively, see Table S1), which were used to completely amplify *qnrE1*. The 965-bp-long amplicon obtained with these primers is depicted between vertical dashed lines, and the multiple cloning site of the vector pJET1.2/blunt, where this fragment was cloned to give pJET1.2-1130, is represented by horizontal empty boxes (not drawn to scale). The vector promoters, T7 and P_{lacUV5} , and their transcriptional senses are indicated by arrows.

FIG. S4. NJ tree generated from an alignment of *qnrE1* and all the *qnr* alleles currently known (accession numbers are indicated in Table S2). For simplicity, the taxa names of *qnr* alleles were excluded (see Table S3) and only the bootstrap percentages (over 1,000 replicates) for relevant nodes are shown. The clustering of the alleles for each *qnr* family is indicated with square brackets at the right. The branch lengths were drawn to the scale shown, which indicates number of substitutions/site..

TABLE S1. PCR primers used in this study. The primer pair used in each PCR assay (1) is indicated by a different background.

Target	Primer ^a	Sequence (5'−3')	Temp⁵	
Screening of <i>qnrVC</i> genes: ^c				
apr//C1_apr//C2_apd_apr//C6	qnrVC136-F	GTGAACTTCTCACATCAGGACT	55°C	
	qnrVC136-R	GCCACGAGCATATTTTTACACC		
and and and and	qnrVC457-F	CACATCAAGACATGAGTGGTCA	55%	
<i>qni</i> vC4, <i>qni</i> vC5 and <i>qni</i> vC7	qnrVC457-R	GCCACGAACAGATTTTTACACC	55%	
Complete amplification/Sanger sequencing of <i>qnrE1</i> :				
tnpA of ISEcp1C	ISEcp1-Fout	GGAAAACTATCCGTACAAGG	E290	
Region between <i>qnrE1</i> and <i>araJ</i>	pQNR1130-comp-R	GGCTGACAGGTTAATCCATT	52°C	
Amplification/Sanger sequencing of the vicinities of the <i>ahp</i> interruption point: ^d				
araJ	araJ-F	GACCTCGCTGTTGATGTATG		
Resolvase-encoding gene located upstream of $\triangle ahp$	R2	AAGTGTTTGCGCTCGATGTC	55°C	

^a F, forward; R, reverse.

^b Annealing temperature used in the corresponding PCR assay.

^c Given the broad genetic difference among the *qnrVC* alleles, two PCR assays were implemented for the screening of all the members of this family.

^d An amplicon of 663 bp was generated.

References

1. Melano R, Corso A, Petroni A, Centrón D, Orman B, Pereyra A, Moreno N, Galas M. 2003. Multiple antibiotic-resistance mechanisms including a novel combination of extended-spectrum βlactamases in a *Klebsiella pneumoniae* clinical strain isolated in Argentina. J Antimicrob Chemother **52:**36–42..

qnr family	<i>qnr</i> sequence	Accession number
	qnrA1	AY070235
	qnrA2	AY675584
	qnrA3	DQ058661
qnrA	qnrA4	DQ058662
-	qnrA5	DQ058663
	qnrA6	DQ151889
	qnrA7	GQ463707
	qnrB1	DQ351241
	qnrB2	DQ351242
	qnrB3	DQ303920
	qnrB4	DQ303921
	qnrB5	DQ303919
	qnrB6	EF520349
	qnrB7	EU043311
	qnrB8	EU043312
	qnrB9	EF526508
	qnrB10	DQ631414
	qnrB11	EF653270
	qnrB12	AM774474
	qnrB13	EU273755
	qnrB14	EU2/3/5/
	qnrB15	EU302865
	qnrB16	EU136183
	qnrB17	AM919398
	qnrB18	AM919399
	qnrB19	EU432277
	qnrB20	AB379831
	qnrB21	FJ611948
	qnrB22	FJ981621
	qnrB23	FJ981622
	qnrB24	HM192542
	qnrB25	
	q111B20	
	qnrB29	
	qrii B20	
	qrii B29 aprB20	LM439650
	qnrB30	
	qnrB32	IN173054
	durB32	IN173055
	aprB34	IN173056
	aprB35	IN173057
	gnrB36	JN173058
	gnrB37	IN173059
	gnrB38	JN173060
	dur B30	
qnrB	aprR/0	
-		IN166600
		INI680742
	quiiD42 aprR/2	JINUOU/43 IO2/0151
	411040 aprR <i>11</i>	103/0153
	4111 D44 apr D 4 E	10240450
	Q111D45	JQ34910Z

TABLE S2. GenBank accession numbers of the known qnr sequences.

	aprB46	103/015/
	qrii B40 gprB47	10349154
	qrii D47 gor B49	10762640
	qrii D40 gprP40	
	qiiiB49	JQ562716
	qnrB50	JX440357
	qnrB51	JX440358
	qnrB52	EF488762
	durB23	HQ704413
	qnrB54	HE820727
	qnrB55	KF730650
	qnrB56	JX259317
	qnrB57	JX259318
	qnrB58	JX259319
	qnrB59	JX259320
	qnrB60	AB734055
	qnrB61	AB734053
	qnrB62	JX987101
	qnrB64	KC580653
	qnrB65	KC580654
	qnrB66	KC580655
	qnrB67	KC580656
	qnrB68	KC580657
	qnrB69	KC580658
	qnrB70	KC580659
	qnrB71	KC580660
	gnrB72	KC741443
	gnrB73	KF443075
	gnrB74	KJ415247
	gnrB75	KF207591
	anrB76	KM985469
	anrB77	KM985470
	anrB78 ^b	KM985471
	aprB80	KM085473
anrC	qnrD00	EU917444
91110		E 1228220
qnrD	qnrD2	FJ220229
-	qnrS1	N 033448
	qnrS2	DO485530
	qnrS2	EU077611
	gnrS4	E 1/18153
anrC	qui 64	FJ410133
yın s	quiss	
	qui So	
	quis?	KF730051
	qiiiSo	KF730052
	qnrS9	KF732714
	qnrvC1	
	qnrvC3	
anrVC	qnrVC4	GQ891/5/
	qnrVC5	JN408080
	qnrVC6	KC202804
	qnrVC7	KM555152

^a The record NZ_ABWL02000005 (http://www.lahey.org/qnrstudies/) was removed by RefSeq staff.

^b The *qnrB79* allele (KM985472) is 100% identical to *qnrB78* and was not considered.

Number Maximum Likelihood tree **Neighbor-Joining tree** 1 gnrB43 qnrB43 2 qnrB57 qnrB57 3 qnrB76 gnrB76 4 qnrB13 qnrB13 5 qnrB24 qnrB24 6 qnrB29 qnrB29 7 qnrB48 qnrB48 8 anrB23 gnrB23 9 qnrB45 qnrB45 10 qnrB54 qnrB54 11 qnrB49 qnrB49 12 qnrB20 qnrB20 13 qnrB2 qnrB2 14 qnrB52 qnrB52 15 qnrB9 qnrB9 16 qnrB32 qnrB32 17 qnrB78 qnrB78 qnrB7 18 qnrB7 19 qnrB44 qnrB44 20 qnrB64 qnrB64 21 qnrB41 qnrB41 22 qnrB15 qnrB15 23 qnrB14 gnrB14 24 qnrB58 qnrB58 25 qnrB18 qnrB18 26 qnrB30 qnrB30 27 qnrB16 qnrB16 28 qnrB80 qnrB80 29 gnrB42 gnrB31 30 qnrB1 qnrB53 31 qnrB74 qnrB42 32 gnrB6 gnrB1 33 qnrB3 qnrB74 34 qnrB75 qnrB6 35 qnrB26 qnrB3 36 qnrB77 qnrB75 37 gnrB17 gnrB26 38 qnrB66 qnrB77 39 qnrB31 qnrB17 40 qnrB53 qnrB66 41 qnrB5 qnrB5 42 qnrB19 qnrB19 43 gnrB10 gnrB10 44 qnrB56 qnrB56 45 qnrB59 qnrB59 46 gnrB62 gnrB62 47 qnrB46 qnrB46 48 qnrB47 qnrB47 49 qnrB50 qnrB50

Table S3. The taxa names of the trees depicted in Fig. 2 (Maximum Likelihood) and Fig. S3 (Neighbor-Joining) are indicated from top (number 1) to bottom (number 104) of the corresponding tree. The *qnr* families are indicated with different background colors and *qnrE1* is shown in red.

50	qnrB40	qnrB40
51	qnrB51	qnrB51
52	qnrB36	qnrB61
53	qnrB71	qnrB71
54	qnrB61	qnrB36
55	qnrB67	gnrB67
56	qnrB70	gnrB68
57	qnrB68	gnrB70
58	gnrB72	gnrB72
59	qnrB28	gnrB28
60	gnrB33	gnrB33
61	gnrB27	gnrB27
62	anrB73	anrB73
63	anrB8	anrB8
64	anrB21	anrB21
65	anrB25	anrB25
66	anrB35	anrB38
67	anrB38	anrB35
68	gni 200 gnrB60	gnrB60
69	anrB30	gnrB30
70	gnrB4	anrB4
70	qnrB55	gril D4 aprR55
71	qnibbb aprP22	qnrB22
72	q111D22 aprP65	q111D22 aprP65
73	qrii boo anr Boo	QIIIDOD anrD27
74	qriiB37	qiiib37
75	qnrB69	qnrB69
76	qnrB12	qnrB12
//	qnrB11	qnrB11
78	qnrB34	qnrB34
79	qnrE1	qnrE1
80	qnrD1	qnrD1
81	qnrD2	qnrD2
82	qnrA4	qnrS3
83	qnrA5	qnrS8
84	qnrA3	qnrS1
85	qnrA6	qnrS9
86	qnrA7	qnrS4
87	qnrA1	qnrS7
88	qnrA2	qnrS5
89	qnrS8	qnrS2
90	qnrS1	qnrS6
91	qnrS3	qnrA1
92	qnrS9	qnrA2
93	qnrS4	qnrA6
94	qnrS7	qnrA7
95	qnrS5	qnrA5
96	qnrS2	qnrA4
97	qnrS6	qnrA3
98	qnrC1	qnrC1
99	qnrVC1	qnrVC6
100	qnrVC3	qnrVC1
101	qnrVC6	qnrVC3
102	gnrVC7	gnrVC5
103	gnrVC4	gnrVC7
104	qnrVC5	qnrVC4