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S1 Text. Supplementary methods.
A. Software programs

We used several software programs in the model development (S2 Table). Although each
program has methods for data visualization, we wrote custom Python scripts using open source
software libraries such as Mayavi (docs.enthought.com/mayavi/mayavi), to combine all data into
a single visualization environment. Some of these scripts are available at the Mcintyre Lab GitHub

site (https://github.com/mcintyrelab).

B. Image scanning parameters

We scanned the subject using an actively shielded 7T magnet, using SC72 gradients
capable of 70 mT/m and a 200 T/m/s slew rate, driven by a Siemens console (Erlangen,
Germany). We acquired all 7T images with a 32-element head array coil (Nova Medical, Inc.,
Burlington, MA) and with the MRI vendor’'s 3D distortion correction, which compensates for
geometrical distortions originating from gradient nonlinearities. We acquired T2W and SW
images in both the coronal and axial orientations centered around the basal ganglia. We acquired
DW images with diffusion gradients applied along 50 uniformly distributed directions (b-value =
~1500 s/mm?). We also acquired four additional non-DW images (b-value = 5 s/mm?). We
repeated the diffusion acquisition with the same parameters and head position but with the

opposite phase encoding direction to allow for distortion correction.



C. Image pre-processing and co-registration

We corrected DW images for distortions from eddy currents using FSL’s eddy tool and
from magnetic field inhomogeneities using FSL’s topup tool. We registered all images to the
same coordinate system using Advanced Normalization Tools (ANTs) or FSL’s linear image
registration tool (f1irt). To facilitate the registration, we extracted non-brain structures from the
1.5T TAW, 7T TAW, 7T T2W, 7T SW, and 7T DW b, images using FSL’s brain extraction tool
(bet). Asthe T2W and SW images have in-plane resolutions of 0.39 mm, the common coordinate
system had an isotropic resolution of 0.4 mm.

We used a post-operative CT image to verify the final location of the implanted DBS
electrode. First, we registered the CT image to the pre-operative T1W image and then in Cicerone
we positioned a model Medtronic 3389 DBS electrode to match the electrode artifact in oblique
slices (Fig 2C) (Hemm et al., 2009). We exported the coordinates of the collinear contact centers

from Cicerone.

D. Imaging space

In Python, MATLAB, and COMSOL, we positioned all objects according to flipped, scaled
voxel space (x,y,z) (Equation S1). First, we scaled each coordinate in voxel space (i,j,k) by the
voxel dimensions (voxely,voxel,,voxel,), thereby converting the coordinates to millimeters. Next,
we obtained the x-axis orientation from the sign of the determinant of the T1W image gform matrix.
We used FSL's fslorient tool with the -getgform flag to obtain the gform matrix. This
process can be summarized as follows, where o is the Hadamard product:
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Although true anatomical space, as defined by the gform of the NIfTI header, can also be rotated,
translated, and sheared, we have elected to ignore those transforms since Python and MATLAB

do not handle those transformations easily.

E. Conductivity tensor field construction

Howell and Mclintyre (2017) showed that the heterogeneity in the soft tissues of the head
effect the voltage distribution generated by DBS. They defined conductivities for each region
outside of the brain instead of a lumped equivalent value for all regions, and compared the results.
However, specification of these regions on a patient-specific basis is difficult as it requires manual
segmentation of a MRI. Thus we have opted to transform the soft tissues from the multimodal
imaging-based detailed anatomical (MIDA) model of the human head and neck (lacono et al.,
2015). We used a variant of the MIDA model, specifically the MIDA, model as described by
Howell and Mclintyre (2017). The following is a list of steps for transforming the MIDA, regions
outside of the brain to the patient’s T1W space (Fig 3A): 1) Segmented the patient brain-extracted
1.5T T1W image into tissue types (grey matter, white matter, cerebrospinal fluid [CSF]) with FSL’s
fast tool. 2) Registered the MIDA+, brain (grey matter, white matter, and CSF) to the tissue-
type segmented patient brain from step 1 with FLIRT using 12 degrees of freedom. 3)
Transformed MIDA, head segmentations to the patient T1W space with nearest neighbor
interpolation using the transformation from step 2. The following steps will refer to the MIDA;
mask that is now in patient space. 4) Calculated overlap in the MIDA,; spinal cord/brainstem
regions and patient brain. Subtracted remaining spinal cord/brainstem regions from MIDA;
mask. 5) Subtracted the patient’s brain region from MIDA, mask, thereby leaving soft tissues,
skull, and residual brain regions from MIDA,. 6) Removed the residual brain regions from
MIDA,, specifically the dura, grey matter, white matter, and CSF. Reassigned this region to CSF.
7) Added back the remaining MIDA,, spinal cord/brainstem regions. 8) Added the tissue-type

segmented patient brain from step 1.



The processing steps to transform the MIDA, segmentations to patient space preserve the
anatomy of the patient’s brain. However, the MIDA;, skull is partially removed to ensure
preservation of the patient’s brain. Another limitation with this method is that the outer boundary
of the patient’s head is not preserved. Furthermore, anatomical variability exists from patient to
patient and thus using the MIDA,, segmentations to define regions outside of the brain is only an
approximation.

Once this classification mask was created (Fig 3A), we then constructed conductivity
tensors, S, that were anisotropic within the brain and isotropic in the encapsulation layer
surrounding the electrode and outside of the brain (S3 Table). We constructed the anisotropic
and inhomogeneous conductivity tensors within the brain by first using FSL's dtifit tool to
estimate the diffusion tensors, D, from the DW images. We used FSL’s vecreg tool to transform
the diffusion tensors from DW to T1W space. We then used vecreg to down sample this image
by a factor of 2. Using eigen decomposition, we decomposed these diffusion tensors to diffusion
eigenvalues and diffusion eigenvectors. Using the preservation of tensor electrical load approach,
we scaled the diffusion eigenvalues at each voxel to create conductivity eigenvalues (Howell and
Mclintyre, 2016). This scalar mapping was dependent on whether the tensor was within grey
matter, white matter, or CSF. Finally, using the eigenvalues of S, we reconstructed S by assuming
that D and S have the same eigenvectors (Basser et al., 1994). We saved a text file with the
tensor values at each voxel, resulting in a matrix with a size of M x 9. The first three columns are
the x, y, and z coordinates, and the last six columns are the upper triangular portion of S. We
imported this text file into COMSOL and the conductivity tensors at each voxel location were
interpolated onto the mesh nodes. We visualized the conductivity tensors in Python (Mayavi) to
ensure correct registration with the T1W image and correct orientation of the tensors (Fig 3B/C/D).
For this visualization, we used the conductivity eigenvalues to calculate the fractional anisotropy

of each tensor.



We used the isotropic conductivity of the encapsulation layer to match the implanted DBS
system model impedance to the clinically-measured impedance using the following steps (S2 Fig)
(Butson et al., 2006): 1) We used the Medtronic programming device to measure the electrode
impedance for contact 2 (-0.7 V, 80 us, 100 Hz). 2) We solved the FEM, with contact 2 set as the
working electrode, for a range of encapsulation layer conductivities (0.05 — 0.2 S/m) (Grill and
Mortimer, 1994; Butson et al., 2006). For each encapsulation layer conductivity, we calculated
the FEM impedance using Ohm’s law (i.e. divided the electrode voltage applied by the total current
produced at the electrode surface). 3) For contact 2, to replicate the impedance measurements
of the Medtronic programming device, we calculated the implanted DBS system model impedance
using Ohm’s law by setting Rrissue €qual to the FEM impedance, applying a -0.7 V 80 us stimulus
to the circuit in S1 Fig, and measuring the current through Rrissue at 70 us. 4) We selected the
encapsulation layer conductivity that minimized the absolute difference between the implanted
DBS system model impedance calculated in Step 3 and the clinical impedance measured with
the Medtronic programming device in Step 1, for contact 2 (i.e. 0.07 S/m) (S2 Fig). With the
encapsulation layer conductivity set to 0.07 S/m, the implanted DBS system model impedance
calculated in Step 3 with contact 2 set as the working electrode was 1493 Q. It should be noted
that impedance is a misnomer. Loads from the IPG are not measured at steady state with
sinusoidal stimuli and thereby are not impedances. Nonetheless, dynamic loads measured with

IPGs are referred to as impedances, so we chose to use the same terminology.

F. Surface mesh processing

To define the brain and head volumes, we used bet to extract the patient-specific inner
skull surface mesh from the 1.5T T1W image (Fig 2A/B), and used Seg3D to extract the outer
head surface mesh from the MIDA 1, volume (Section E in S1 Text). We ran bet with the fractional

intensity threshold that yielded the best qualitative extraction of the inner skull surface. For the



patient presented in this manuscript, we used a fractional intensity value of 0.4. This tessellated
surface mesh typically results in a high number of faces, which would cause COMSOL to take a
long time to solve. Therefore, we imported this surface mesh into MeshLab and decimated to
reduce the number of faces to less than 1000. Specifically, we applied the ‘Quadratic Edge
Collapse Decimation’ filter three times with the percentage reduction set to 0.5. After each
decimation step, we applied the ‘Laplacian smooth (surface preserve) filter to maintain a uniform
distribution of faces. We registered the tissue-type segmented MIDA;, brain to the tissue-type
segmented patient brain with FLIRT using 12 degrees of freedom (Section E in S1 Text). We
used this transformation to transform the MIDA, outer head surface mesh to the patient T1W
space. In MeshLab, we converted these triangular meshes to quadratic meshes with the ‘Tri to
Quad by 4-8 subdivision’ filter and exported it as an *.off file. To ensure there was no overlap, we
imported the two meshes into MeshLab. Because COMSOL cannot import quadratic meshes,
we converted these meshes to a non-uniform rational basis spline (NURBS) file format in
MATLAB using the ‘NURBS Toolbox by D.M. Spink’. We then imported these meshes into

COMSOL to ensure there was no overlap.

G. Finite element model — Other details

We defined floating potential boundary conditions of 0 A net current through the inactive
contacts, and Neumann boundary conditions of 0 A/mm? along the electrode shaft (except for the
contacts) and head surface (except for the neck region).

We created a cube centered around the electrode contacts with a side length of 30 mm
that was meshed at a higher resolution. We aligned the electrode, encapsulation layer, and cube
to the contact coordinates using Rodrigues’ rotation formula. The entire mesh contained
1,429,416 tetrahedral elements (head outside brain — 293,054; brain outside 30 mm cube —
834,778; brain inside 30 mm cube — 229,580; encapsulation layer — 72,004). We generated a

second mesh with increased resolution to ensure solution convergence (total — 2,347,048; head



outside brain — 293,863; brain outside 30 mm cube — 1,177,452; brain inside 30 mm cube —

440,303; encapsulation layer — 435,430).

H. Nuclei segmentation

We performed manual segmentation of subcortical structures (i.e. putamen, globus
pallidus externus, globus pallidus internus, subthalamic nucleus, substantia nigra, and red
nucleus) using Seg3D, on the image that provided the best contrast for the nuclei of interest in
the common coordinate system (Fig 4A and S3 Table). Because Seg3D doesn’t permit exporting
the files in the NIfTI file format, we exported the files in the nearly raw raster data (NRRD) file
format, and converted to NIfTl in 3DSlicer. The resulting NIfTI file had an incorrect orientation,
so we implemented the fslorient -forceradiological and fslreorient2std
commands to correct this error. Tools are currently under development to automate these
subcortical segmentations (Kim et al., 2014).

Due to a lack of contrast in the 1.5T and 7T T1W images, thalamic segmentation was
difficult. Therefore, to define the thalamus, we used the Harvard-Oxford subcortical structural
atlas distributed within FSL. Specifically, we used Cicerone to fit the thalamus to the 1.5T T1W
image with 9 degrees of freedom (Miocinovic et al., 2007).

In the axial view, we used Seg3D to segment the seed and target masks used in the
tractography algorithm (S3 Fig). We defined the seed mask as the white matter between the
thalamus and lenticular nucleus, 1.2 mm superior to the STN. We defined two target masks, one
superior to the seed mask and one inferior to the seed mask. We defined the superior target
mask as the white matter between the thalamus and lenticular nucleus, 10.8 mm superior to the
seed mask. We defined the inferior target mask as the cerebral peduncle of the midbrain, 17.2
mm inferior to the seed mask.

For tractography, we used an exclusion mask that included the ipsilateral thalamus, globus

pallidus, putamen, CSF, and contralateral hemisphere. We used Freesurfer's recon-all tool



to segment the ipsilateral CSF and contralateral hemisphere masks from the 1.5T T1W image.
First, we converted the output file from recon-all (aparc+aseg.mgz) to a NIfTI file format with
Freesurfer's mri convert tool. Next, we used FSL’s £slmaths tool to extract the regions of
interest from the output file with the threshold flags (-thr, —uthr) and subsequently binarized
with the -bin flag. We then used mri convert -rl to reslice this image to the original T1W

image dimensions.

I. Probabilistic tractography

After we segmented the patient-specific subcortical masks, the next step was to
reconstruct streamlines that would be used to define the axon trajectories. We reconstructed two
sets of streamlines that represented corticofugal axons of the hyperdirect pathway and internal
capsule fibers of passage. We used FSL’s bedpostx tool to estimate the parameters for a
diffusion model in each voxel (Behrens et al., 2007). Next, we used FSL’s probtrackx tool to
perform probabilistic tractography from the seed mask, with 100 streamlines generated from each
seed voxel. We saved the coordinates of each streamline by passing the -v 2 option when
running probtrackx. One constraint was that the streamline files were generically named (i.e.
particleO, particle1, etc.) for each seed voxel. Therefore, when more than one seed voxel was
run with the same probtrackx instance, the files were overwritten with the results for each
subsequent seed voxel. To save the streamlines for all voxels within the seed mask, for each
voxel we ran a separate instance of probtrackx and concatenated the streamline files into a
single file. We ran each instance of probtrackx, followed by the streamline processing
described below, on a computational cluster to decrease the computation time.

We processed the streamlines exported from probtrackx to identify the streamlines that
originated from the seed mask, intersected both target masks, and avoided exclusion masks and

the electrode (Fig 4B). First, the streamline coordinates exported from probtrackx were in DW



space, so we used FSL’s img2imgcoord tool and the DW-to-T1W transformation matrix to
calculate the streamline coordinates in T1W space. We manipulated the streamline so that it
formed a continuous path from the superior end of the streamline, through the seed voxel, and to
the inferior end. As the streamlines were now in T1W space, we scaled the streamlines by the
voxel dimensions to convert the streamlines from voxel space to millimeter space (Section D in
S1 Text). Furthermore, we obtained the x-axis orientation from the sign of the determinant of the
T1W image gform matrix. In our example, we multiplied the x values by -1.

Next, we checked to determine if a streamline intersected with both target masks. If so,
we cropped the streamline between the target masks and if not, we excluded it from further
analysis. If the cropped streamline took a trajectory above or below the superior or inferior target
masks, respectively, we excluded it from further analysis. Additionally, if the cropped streamline
intersected the electrode or the exclusion mask, we also excluded it from further analysis.
Subsequently, we concatenated the processed streamline files for all seed voxels into the same
file. In our example, 13,219 streamlines originated from the seed mask, terminated in the target

masks, and avoided the electrode and exclusion mask.
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