Supplementary figure 1. Flow chart of studies selection process for polymorphisms in XRCC1

genes.

Supplementary figure 2. Flow chart of studies selection process for polymorphisms in XRCC2

genes.

Supplementary figure 3. Flow chart of studies selection process for polymorphisms in XRCC3

genes.

Supplementary figure 4. Flow chart of studies selection process for polymorphisms in XRCC4

genes.

Supplementary figure 5. Flow chart of studies selection process for polymorphisms in XRCC7

genes.

Supplementary figure 6. Sensitivity analysis for *XRCC1*-rs25487 polymorphism and the risk of urological neoplasms (allelic comparison B vs. A).

Supplementary figure 7. Sensitivity analysis for *XRCC1*-rs25489 polymorphism and the risk of urological neoplasms (allelic comparison B vs. A).

Supplementary figure 8. Sensitivity analysis for *XRCC1*-rs915927 polymorphism and the risk of urological neoplasms (allelic comparison B vs. A).

Supplementary figure 9. Sensitivity analysis for *XRCC1*-rs1799782 polymorphism and the risk of urological neoplasms (allelic comparison B vs. A).

Supplementary figure 10. Sensitivity analysis for *XRCC1*-rs3213245 polymorphism and the risk of urological neoplasms (allelic comparison B vs. A).

Supplementary figure 11. Sensitivity analysis for *XRCC2*-rs3218536 polymorphism and the risk of urological neoplasms (allelic comparison B vs. A).

Supplementary figure 12. Sensitivity analysis for *XRCC3*-rs861539 polymorphism and the risk of urological neoplasms (allelic comparison B vs. A).

Supplementary figure 13. Sensitivity analysis for *XRCC3*-rs1799796 polymorphism and the risk of urological neoplasms (allelic comparison B vs. A).

Supplementary figure 14. Sensitivity analysis for *XRCC4*-rs1805377 polymorphism and the risk of urological neoplasms (allelic comparison B vs. A).

Supplementary figure 15. Sensitivity analysis for *XRCC4*-rs6869366 polymorphism and the risk of urological neoplasms (allelic comparison B vs. A).

Supplementary figure 16. Sensitivity analysis for *XRCC4*-rs28360071 polymorphism and the risk of urological neoplasms (allelic comparison B vs. A).

Supplementary figure 17. Sensitivity analysis for *XRCC7*-rs7003908 polymorphism and the risk of urological neoplasms (allelic comparison B vs. A).

Supplementary figure 18. Begg's funnel plot for publication bias under *XRCC1*-rs25487 polymorphism (allelic comparison B vs. A). The x-axis log (OR) and the y-axis is natural logarithm of OR. The horizontal line in the figure represents the overall estimated log (OR). The two diagonal lines indicate the pseudo 95% confidence limits of the effect estimate. Log (OR) = log-transformed OR, OR = odds ratio.

Supplementary figure 19. Begg's funnel plot for publication bias under *XRCC1*-rs25489 polymorphism (allelic comparison B vs. A). The x-axis log (OR) and the y-axis is natural logarithm of OR. The horizontal line in the figure represents the overall estimated log (OR). The two diagonal lines indicate the pseudo 95% confidence limits of the effect estimate. Log (OR) = log-transformed OR, OR = odds ratio.

Supplementary figure 20. Begg's funnel plot for publication bias under *XRCC1*-rs915927 polymorphism (allelic comparison B vs. A). The x-axis log (OR) and the y-axis is natural logarithm of OR. The horizontal line in the figure represents the overall estimated log (OR). The two diagonal lines indicate the pseudo 95% confidence limits of the effect estimate. Log (OR) = log-transformed OR, OR = odds ratio.

Supplementary figure 21. Begg's funnel plot for publication bias under *XRCC1*-rs1799782 polymorphism (allelic comparison B vs. A). The x-axis log (OR) and the y-axis is natural logarithm of OR. The horizontal line in the figure represents the overall estimated log (OR). The two diagonal lines indicate the pseudo 95% confidence limits of the effect estimate. Log (OR) = log-transformed OR, OR = odds ratio.

Supplementary figure 22. Begg's funnel plot for publication bias under *XRCC1*-rs3213245 polymorphism (allelic comparison B vs. A). The x-axis log (OR) and the y-axis is natural logarithm of OR. The horizontal line in the figure represents the overall estimated log (OR). The two diagonal lines indicate the pseudo 95% confidence limits of the effect estimate. Log (OR) = log-transformed OR, OR = odds ratio.

Supplementary figure 23. Begg's funnel plot for publication bias under *XRCC2*-rs3218536 polymorphism (allelic comparison B vs. A). The x-axis log (OR) and the y-axis is natural logarithm of OR. The horizontal line in the figure represents the overall estimated log (OR). The two diagonal lines indicate the pseudo 95% confidence limits of the effect estimate. Log (OR) = log-transformed OR, OR = odds ratio.

Supplementary figure 24. Begg's funnel plot for publication bias under *XRCC3*-rs861539 (allelic comparison B vs. A). The x-axis log (OR) and the y-axis is natural logarithm of OR. The horizontal line in the figure represents the overall estimated log (OR). The two diagonal lines indicate the pseudo 95% confidence limits of the effect estimate. Log (OR) = log-transformed OR, OR = odds ratio.

Supplementary figure 25. Begg's funnel plot for publication bias under *XRCC3*-rs1799796 polymorphism (allelic comparison B vs. A). The x-axis log (OR) and the y-axis is natural logarithm of OR. The horizontal line in the figure represents the overall estimated log (OR). The two diagonal lines indicate the pseudo 95% confidence limits of the effect estimate. Log (OR) = log-transformed OR, OR = odds ratio.

Supplementary figure 26. Begg's funnel plot for publication bias under *XRCC4*-rs1805377 polymorphism (allelic comparison B vs. A). The x-axis log (OR) and the y-axis is natural logarithm of OR. The horizontal line in the figure represents the overall estimated log (OR). The two diagonal lines indicate the pseudo 95% confidence limits of the effect estimate. Log (OR) = log-transformed OR, OR = odds ratio.

Supplementary figure 27. Begg's funnel plot for publication bias under *XRCC4*-rs6869366 polymorphism (allelic comparison B vs. A). The x-axis log (OR) and the y-axis is natural logarithm of OR. The horizontal line in the figure represents the overall estimated log (OR). The two diagonal lines indicate the pseudo 95% confidence limits of the effect estimate. Log (OR) = log-transformed OR, OR = odds ratio.

Supplementary figure 28. Begg's funnel plot for publication bias under *XRCC4*-rs28360071 polymorphism (allelic comparison B vs. A). The x-axis log (OR) and the y-axis is natural logarithm of OR. The horizontal line in the figure represents the overall estimated log (OR). The two diagonal lines indicate the pseudo 95% confidence limits of the effect estimate. Log (OR) = log-transformed OR, OR = odds ratio.

Supplementary figure 29. Begg's funnel plot for publication bias under *XRCC7*-rs7003908 polymorphism (allelic comparison B vs. A). The x-axis log (OR) and the y-axis is natural logarithm of OR. The horizontal line in the figure represents the overall estimated log (OR). The two diagonal lines indicate the pseudo 95% confidence limits of the effect estimate. Log (OR) = log-transformed OR, OR = odds ratio.

Supplementary figure 30. Linkage disequilibrium analyses for *XRCC1* **polymorphisms in populations from 1000 genomes.** The number of each cell represents r² and white color cells shows no LD between polymorphisms. Population descriptors: CEU: Utah residents with Northern and Western European ancestry from the CEPH collection; CHB: Han Chinese in Beijing, China; JPT: Japanese in Tokyo, Japan; YRI: Yoruba in Ibadan, Nigeria. The rs numbers are SNP IDs taken from National Center for Biotechnology Information (NCBI).

XRCC1

Supplementary figure 31. Linkage disequilibrium analyses for XRCC3 and XRCC4

polymorphisms in populations from 1000 genomes. The number of each cell represents r² and white color cells shows no LD between polymorphisms. Population descriptors: CEU: Utah residents with Northern and Western European ancestry from the CEPH collection; CHB: Han Chinese in Beijing, China; JPT: Japanese in Tokyo, Japan; YRI: Yoruba in Ibadan, Nigeria. The rs numbers are SNP IDs taken from National Center for Biotechnology Information (NCBI).

Supplementary table 1. Search strategies for each gene and the finally eligible articles included.

Gene	Search Strategy	Eligible Publications	Eligible Studies
XRCCI	(X-Ray Repair Cross Complementing 1 OR <i>XRCC1</i>) AND (polymorphism OR variation) AND (carcinoma OR cancer OR neoplasm OR adenocarcinoma OR tumor OR tumour)	35	80
XRCC2	(X-Ray Repair Cross Complementing 2 OR <i>XRCC2</i>) AND (polymorphism OR variation) AND (carcinoma OR cancer OR neoplasm OR adenocarcinoma OR tumor OR tumour)	3	3
XRCC3	(X-Ray Repair Cross Complementing 3 OR <i>XRCC3</i>) AND (polymorphism OR variation) AND (carcinoma OR cancer OR neoplasm OR adenocarcinoma OR tumor OR tumour)	22	29
XRCC4	(X-Ray Repair Cross Complementing 4 OR <i>XRCC4</i>) AND (polymorphism OR variation) AND (carcinoma OR cancer OR neoplasm OR adenocarcinoma OR tumor OR tumour)	6	12
XRCC7	(X-Ray Repair Cross Complementing 7 OR <i>XRCC7</i>) AND (polymorphism OR variation) AND (carcinoma OR cancer OR neoplasm OR adenocarcinoma OR tumor OR tumour)	5	6

Polymorphism	Comparison	Study Omitted	Estimate	[95% Confident Interval]	Effect Model
XRCC1-rs915927	B vs. A	Sak <i>et al</i> .	1.015	0.926-1.113	Fixed
		Matullo <i>et al</i> .	1.001	0.919-1.090	
		Matullo <i>et al</i> .	0.968	0.888-1.055	
		Agalliu <i>et al.</i>	1.064	0.947-1.197	
		Agalliu <i>et al</i> .	1.006	0.927-1.093	
	BA vs. AA	Sak <i>et al</i> .	1.009	0.852-1.194	Fixed
		Matullo et al.	1.011	0.870-1.175	
		Matullo <i>et al</i> .	0.941	0.805-1.100	
		Agalliu <i>et al</i> .	1.078	0.888-1.309	
		Agalliu <i>et al</i> .	1.031	0.891-1.194	
	BA+BB vs. AA	Sak et al.	1.022	0.872-1.197	Fixed
		Matullo <i>et al</i> .	1.011	0.877-1.165	
		Matullo et al.	0.939	0.810-1.088	
		Agalliu <i>et al</i> .	1.094	0.912-1.312	
		Agalliu <i>et al</i> .	1.028	0.896-1.180	
	BB vs. AA	Sak et al.	1.008	0.837-1.214	Fixed
		Matullo <i>et al</i> .	0.981	0.825-1.166	
		Matullo <i>et al</i> .	0.923	0.774-1.100	
		Agalliu <i>et al</i> .	1.091	0.862-1.380	
		Agalliu <i>et al</i> .	1.000	0.846-1.183	
	BB vs. AA+AB	Sak et al.	1.019	0.885-1.172	Fixed
		Matullo et al.	0.993	0.867-1.136	
		Matullo <i>et al</i> .	0.975	0.852-1.115	
		Agalliu <i>et al</i> .	1.074	0.882-1.308	
		Agalliu et al.	0.991	0.869-1.130	
XRCC1-rs25489	B vs. A	Sak et al.	1.152	0.992-1.337	Random
		Stern et al.	1.173	1.012-1.360	
		Stern <i>et al</i> .	1.168	1.012-1.347	
		Figueroa et al.	1.178	1.004-1.383	

Supplementary table 2. Details of the sensitivity analyses for the polymorphisms in *XRCC* genes and the risk of urological neoplasms.

	Mittal <i>et al</i> .	1.194	1.023-1.394	
	Mittal et al.	1.204	1.041-1.393	
	Wang <i>et al</i> .	1.095	0.995-1.206	
	Xu <i>et al</i> .	1.175	1.009-1.368	
	vanGils <i>et al</i> .	1.166	1.007-1.350	
	Agalliu <i>et al.</i>	1.172	0.999-1.376	
	Againu et al. Mittal at al	1.181	1.023-1.303	
	Zhu <i>et al</i>	1.195	0 998-1 392	
BA vs. AA	Sak <i>et al</i> .	1.459	1.176-1.812	Random
	Stern <i>et al</i> .	1.481	1.205-1.821	
	Stern et al.	1.455	1.192-1.776	
	Figueroa et al.	1.510	1.214-1.879	
	Mittal <i>et al</i> .	1.430	1.161-1.761	
	Mittal et al.	1.425	1.162-1.747	
	Wang <i>et al</i> .	1.372	1.146-1.641	
	Xu et al.	1.488	1.203-1.840	
	vanGils et al.	1.465	1.192-1.802	
	Agalliu <i>et al</i> .	1.508	1.211-1.879	
	Agalliu <i>et al</i> .	1.492	1.224-1.819	
	Mittal <i>et al</i> .	1.375	1.149-1.645	
	Zhu <i>et al</i> .	1.523	1.234-1.879	
BA+BB vs. AA	Sak <i>et al</i> .	1.269	1.134-1.421	Fixed
	Stern et al.	1.286	1.152-1.436	
	Stern et al.	1.280	1.147-1.427	
	Figueroa et al.	1.310	1.163-1.475	
	Mittal <i>et al</i> .	1.285	1.146-1.440	
	Mittal et al.	1.290	1.153-1.444	

	Wang et al.	1.210	1.080-1.355	
	Xu et al.	1.289	1.152-1.442	
	vanGils et al.	1.281	1.147-1.429	
	Agalliu <i>et al</i> .	1.304	1.158-1.469	
	Agalliu <i>et al</i> .	1.291	1.157-1.440	
	Mittal et al.	1.263	1.127-1.415	
	Zhu et al.	1.323	1.172-1.494	
BB vs. AA	Sak <i>et al</i> .	0.994	0.802-1.232	Fixed
	Stern et al.	0.996	0.806-1.232	
	Stern et al.	0.996	0.806-1.232	
	Figueroa et al.	0.997	0.804-1.237	
	Mittal et al.	1.034	0.814-1.314	
	Mittal et al.	1.053	0.836-1.328	
	Wang <i>et al</i> .	0.955	0.770-1.184	
	Xu et al.	1.000	0.807-1.239	
	vanGils et al.	0.996	0.806-1.232	
	Agalliu <i>et al</i> .	0.990	0.799-1.226	
	Agalliu <i>et al</i> .	0.996	0.806-1.232	
	Mittal et al.	1.045	0.824-1.324	
	Zhu <i>et al</i> .	0.899	0.692-1.168	
BB vs. AA+AB	Sak et al.	0.841	0.685-1.033	Fixed
	Stern et al.	0.844	0.689-1.035	
	Stern et al.	0.844	0.689-1.035	
	Figueroa et al.	0.842	0.686-1.035	
	Mittal et al.	0.878	0.697-1.104	
	Mittal et al.	0.899	0.720-1.124	
	Wang <i>et al</i> .	0.813	0.662-0.999	

		Xu et al.	0.846	0.689-1.038	
		vanGils et al.	0.844	0.689-1.035	
		Agalliu <i>et al</i> .	0.838	0.682-1.029	
		Agalliu <i>et al</i> .	0.844	0.689-1.035	
		Mittal et al.	0.934	0.743-1.176	
		Zhu et al.	0.714	0.557-0.916	
XRCC1-rs3213245	B vs. A	Wang <i>et al</i> .	0.966	0.831-1.124	Fixed
		Sak et al.	0.899	0.706-1.144	
		Zhi et al.	0.962	0.825-1.123	
	BA vs. AA	Wang <i>et al</i> .	0.909	0.706-1.169	Fixed
		Sak et al.	0.788	0.596-1.042	
		Zhi et al.	0.911	0.704-1.180	
	BA+BB vs. AA	Wang <i>et al</i> .	0.926	0.728-1.177	Fixed
		Sak et al.	0.831	0.634-1.089	
		Zhi et al.	0.922	0.719-1.181	
	BB vs. AA	Wang <i>et al</i> .	1.015	0.726-1.421	Fixed
		Sak et al.	1.621	0.664-3.957	
		Zhi et al.	1.004	0.710-1.421	
	BB vs. AA+AB	Wang <i>et al</i> .	0.991	0.775-1.266	Fixed
		Sak et al.	1.715	0.704-4.174	
		Zhi et al.	0.982	0.765-1.261	
XRCC1-rs25487	B vs. A	Figueroa et al.	1.025	0.985-1.066	Fixed
		Matullo et al.	1.033	0.994-1.072	
		Stern et al.	1.030	0.992-1.069	
		Stern et al.	1.032	0.994-1.072	
		Mittal et al.	1.026	0.988-1.065	
		Arizono et al.	1.033	0.995-1.073	

Mittal et al.	1.027	0.989-1.067
Sak <i>et al</i> .	1.034	0.995-1.074
Sanyal <i>et al</i> .	1.027	0.989-1.067
Matullo <i>et al</i> .	1.036	0.997-1.076
Fontana <i>et al</i> .	1.032	0.994-1.071
Broberg et al.	1.029	0.992-1.069
Matullo <i>et al</i> .	1.030	0.992-1.069
Shen et al.	1.033	0.994-1.072
Ramaniuk et al.	1.033	0.995-1.073
Zhi <i>et al</i> .	1.025	0.987-1.064
Wang et al.	1.034	0.996-1.074
Andrew et al.	1.037	0.997-1.078
Kelsey et al.	1.032	0.994-1.072
Huang et al.	1.030	0.991-1.070
Gao <i>et al</i> .	1.027	0.989-1.067
Hamano et al.	1.031	0.993-1.070
Berhane et al.	1.026	0.988-1.065
Mittal et al.	1.028	0.990-1.068
Abe et al.	1.031	0.993-1.072
vanGils et al.	1.033	0.995-1.072
Xu et al.	1.024	0.987-1.064
Ritchey et al.	1.029	0.991-1.068
Hirata et al	1.030	0.992-1.070
Dhillon <i>et al</i> .	1.032	0.994-1.072
Kuasne et al.	1.030	0.992-1.070
Zhu <i>et al</i> .	1.022	0.983-1.062
Chen et al.	1.031	0.993-1.070

	Chen et al.	1.026	0.988-1.066
	Rybicki et al.	1.034	0.995-1.074
	Rybicki et al.	1.033	0.994-1.073
	Agalliu <i>et al</i> .	1.044	1.003-1.086
	Agalliu <i>et al</i> .	1.032	0.994-1.071
	Hirata et al	1.029	0.991-1.068
BA vs. AA	Figueroa et al.	1.027	0.971-1.086
	Matullo <i>et al</i> .	1.034	0.980-1.091
	Stern et al.	1.031	0.977-1.088
	Stern et al.	1.032	0.977-1.089
	Mittal et al.	1.025	0.971-1.083
	Arizono et al.	1.030	0.975-1.087
	Mittal et al.	1.025	0.971-1.082
	Sak et al.	1.034	0.979-1.092
	Sanyal et al.	1.027	0.972-1.084
	Matullo et al.	1.038	0.983-1.096
	Fontana et al.	1.032	0.977-1.089
	Broberg et al.	1.029	0.975-1.086
	Matullo <i>et al</i> .	1.033	0.978-1.091
	Shen et al.	1.035	0.980-1.093
	Ramaniuk et al.	1.033	0.978-1.091
	Zhi et al.	1.026	0.971-1.083
	Wang <i>et al</i> .	1.039	0.984-1.097
	Andrew et al.	1.026	0.969-1.085
	Kelsey et al.	1.021	0.966-1.078
	Huang et al.	1.031	0.976-1.090
	Gao <i>et al</i> .	1.031	0.977-1.089

Fixed

	Hamano et al.	1.033	0.979-1.091
	Berhane et al.	1.031	0.976-1.088
	Mittal <i>et al</i> .	1.037	0.982-1.095
	Abe et al.	1.035	0.980-1.093
	vanGils et al.	1.034	0.980-1.092
	Xu et al.	1.023	0.969-1.080
	Ritchey et al.	1.036	0.981-1.093
	Hirata <i>et al</i>	1.034	0.979-1.092
	Dhillon <i>et al</i> .	1.034	0.980-1.092
	Kuasne et al.	1.038	0.984-1.096
	Zhu <i>et al</i> .	1.028	0.973-1.086
	Chen et al.	1.032	0.978-1.090
	Chen et al.	1.027	0.972-1.084
	Rybicki et al.	1.037	0.981-1.095
	Rybicki et al.	1.035	0.979-1.093
	Agalliu <i>et al</i> .	1.048	0.990-1.110
	Agalliu <i>et al</i> .	1.035	0.981-1.093
	Hirata <i>et al</i>	1.036	0.981-1.093
BA+BB vs. AA	Figueroa et al.	1.033	0.979-1.089
	Matullo <i>et al</i> .	1.042	0.990-1.096
	Stern et al.	1.038	0.986-1.092
	Stern et al.	1.040	0.988-1.095
	Mittal <i>et al</i> .	1.032	0.981-1.087
	Arizono et al.	1.040	0.988-1.095
	Mittal et al.	1.033	0.981-1.087
	Sak <i>et al</i> .	1.042	0.989-1.098
	Sanyal <i>et al</i> .	1.034	0.982-1.089
	Matullo <i>et al</i> .	1.046	0.994-1.102

Fixed

Fontana <i>et al</i> .	1.040	0.988-1.094
Broberg et al.	1.037	0.985-1.091
Matullo <i>et al</i> .	1.039	0.987-1.094
Shen et al.	1.042	0.990-1.097
Ramaniuk et al.	1.042	0.989-1.097
Zhi et al.	1.032	0.980-1.087
Wang <i>et al</i> .	1.046	0.994-1.101
Andrew et al.	1.039	0.985-1.096
Kelsey et al.	1.033	0.981-1.088
Huang <i>et al</i> .	1.038	0.985-1.094
Gao <i>et al</i> .	1.037	0.985-1.091
Hamano et al.	1.040	0.989-1.095
Berhane et al.	1.035	0.984-1.090
Mittal. et al.	1.041	0.989-1.096
Abe et al.	1.042	0.989-1.097
vanGils et al.	1.042	0.990-1.097
Xu et al.	1.030	0.978-1.084
Ritchey et al.	1.040	0.988-1.095
Hirata et al	1.040	0.988-1.095
Dhillon et al.	1.042	0.990-1.096
Kuasne et al.	1.043	0.990-1.097
Zhu <i>et al</i> .	1.031	0.979-1.087
Chen et al.	1.040	0.988-1.094
Chen et al.	1.033	0.981-1.088
Rybicki et al.	1.044	0.991-1.100
Rybicki et al.	1.042	0.990-1.098
Agalliu <i>et al</i> .	1.057	1.002-1.116

	Agalliu <i>et al</i> .	1.042	0.990-1.097	
	Hirata et al	1.040	0.988-1.095	
BB vs. AA	Figueroa et al.	1.040	0.954-1.132	Fixed
	Matullo et al.	1.057	0.973-1.147	
	Stern et al.	1.052	0.970-1.142	
	Stern et al.	1.059	0.975-1.150	
	Mittal et al.	1.043	0.960-1.133	
	Arizono et al.	1.062	0.978-1.153	
	Mittal et al.	1.046	0.963-1.136	
	Sak <i>et al</i> .	1.060	0.974-1.152	
	Sanyal et al.	1.048	0.965-1.139	
	Matullo et al.	1.063	0.978-1.155	
	Fontana et al.	1.056	0.973-1.146	
	Broberg et al.	1.053	0.970-1.143	
	Matullo et al.	1.050	0.966-1.140	
	Shen et al.	1.056	0.972-1.146	
	Ramaniuk et al.	1.060	0.975-1.152	
	Zhi et al.	1.042	0.959-1.131	
	Wang <i>et al</i> .	1.057	0.973-1.148	
	Andrew et al.	1.076	0.987-1.173	
	Kelsey et al.	1.067	0.981-1.160	
	Huang <i>et al</i> .	1.050	0.966-1.142	
	Gao et al.	1.044	0.961-1.134	
	Hamano et al.	1.054	0.971-1.145	
	Berhane et al.	1.040	0.957-1.129	
	Mittal et al.	1.044	0.960-1.134	
	Abe <i>et al</i> .	1.052	0.968-1.144	

	vanGils <i>et al</i> .	1.057	0.973-1.147
	Xu et al.	1.046	0.963-1.136
	Ritchey et al.	1.044	0.961-1.133
	Hirata et al	1.049	0.966-1.139
	Dhillon <i>et al</i> .	1.056	0.973-1.147
	Kuasne et al.	1.049	0.965-1.139
	Zhu <i>et al</i> .	1.031	0.948-1.121
	Chen et al.	1.053	0.970-1.143
	Chen et al.	1.045	0.962-1.135
	Rybicki et al.	1.058	0.973-1.150
	Rybicki et al.	1.057	0.972-1.149
	Agalliu <i>et al</i> .	1.077	0.988-1.175
	Agalliu <i>et al</i> .	1.052	0.970-1.142
	Hirata <i>et al</i>	1.043	0.961-1.133
BB vs. AA+AB	Figueroa et al.	1.030	0.951-1.115
	Matullo <i>et al</i> .	1.043	0.966-1.125
	Stern et al.	1.039	0.963-1.121
	Stern et al.	1.045	0.968-1.129
	Mittal <i>et al</i> .	1.035	0.958-1.118
	Arizono et al.	1.048	0.971-1.132
	Mittal <i>et al</i> .	1.040	0.963-1.123
	Sak <i>et al</i> .	1.046	0.967-1.130
	Sanyal <i>et al</i> .	1.038	0.961-1.121
	Matullo et al.	1.046	0.968-1.130
	Fontana <i>et al</i> .	1.043	0.967-1.126
	Broberg et al.	1.041	0.964-1.123
	Matullo <i>et al</i> .	1.036	0.960-1.119

Fixed

Shen et al.	1.041	0.964-1.124
Ramaniuk et al.	1.046	0.968-1.130
Zhi et al.	1.031	0.955-1.114
Wang <i>et al</i> .	1.041	0.964-1.124
Andrew et al.	1.067	0.984-1.156
Kelsey et al.	1.061	0.982-1.146
Huang et al.	1.038	0.960-1.122
Gao et al.	1.031	0.955-1.114
Hamano et al.	1.038	0.961-1.121
Berhane et al.	1.027	0.951-1.109
Mittal. et al.	1.026	0.950-1.109
Abe et al.	1.038	0.960-1.122
vanGils et al.	1.042	0.965-1.125
Xu et al.	1.035	0.959-1.117
Ritchey et al.	1.031	0.955-1.113
Hirata <i>et al</i>	1.036	0.959-1.118
Dhillon et al.	1.041	0.964-1.124
Kuasne et al.	1.030	0.954-1.112
Zhu et al.	1.021	0.944-1.103
Chen et al.	1.039	0.963-1.122
Chen et al.	1.035	0.958-1.117
Rybicki et al.	1.042	0.964-1.126
Rybicki et al.	1.043	0.965-1.127
Agalliu <i>et al</i> .	1.055	0.973-1.143
Agalliu <i>et al</i> .	1.039	0.963-1.121
Hirata <i>et al.</i> .	1.030	0.954-1.112
Huang et al.	1.048	0.927-1.185

Random

XRCC1-rs1799782 B vs. A

L]

35

Andrew et al.	1.056	0.935-1.194
Figueroa et al.	1.040	0.917-1.178
Matullo <i>et al</i> .	1.045	0.927-1.178
Stern <i>et al</i> .	1.047	0.935-1.174
Stern <i>et al</i> .	1.062	0.948-1.189
Mittal et al.	1.033	0.917-1.163
Mittal et al.	1.038	0.920-1.172
Fontana <i>et al</i> .	1.040	0.925-1.170
Wang <i>et al</i> .	1.016	0.908-1.136
Sak et al.	1.047	0.927-1.183
Matullo et al.	1.059	0.943-1.191
Agalliu <i>et al</i> .	1.045	0.928-1.176
Hamano et al.	1.022	0.912-1.144
Hirata <i>et al</i>	1.029	0.912-1.160
Zhu et al.	1.020	0.907-1.148
vanGils et al.	1.050	0.934-1.180
Xu et al.	1.071	0.956-1.199
Agalliu <i>et al</i> .	1.059	0.938-1.196
Mittal et al.	1.035	0.918-1.168
Huang <i>et al</i> .	0.989	0.869-1.126
Andrew et al.	0.994	0.872-1.134
Figueroa et al.	0.985	0.863-1.124
Matullo <i>et al</i> .	0.987	0.870-1.119
Stern <i>et al</i> .	0.984	0.880-1.116
Stern <i>et al</i> .	1.004	0.892-1.131
Mittal et al.	0.978	0.864-1.107
Mittal et al.	0.983	0.866-1.115

BA vs. AA

Random

	Fontana et al.	0.987	0.875-1.114
	Wang <i>et al</i> .	0.969	0.857-1.095
	Sak <i>et al</i> .	0.989	0.870-1.125
	Matullo <i>et al</i> .	1.002	0.886-1.134
	Agalliu <i>et al</i> .	0.989	0.873-1.119
	Hamano et al.	0.961	0.869-1.062
	Hirata <i>et al</i>	0.969	0.859-1.092
	Zhu et al.	0.974	0.855-1.109
	vanGils et al.	0.993	0.878-1.124
	Xu et al.	1.013	0.903-1.137
	Agalliu <i>et al</i> .	0.999	0.876-1.139
	Mittal et al.	0.993	0.875-1.126
BA+BB vs. AA	Huang <i>et al</i> .	1.021	0.890-1.171
	Andrew et al.	1.027	0.894-1.180
	Figueroa et al.	1.014	0.882-1.167
	Matullo <i>et al</i> .	1.018	0.891-1.164
	Stern <i>et al</i> .	1.022	0.900-1.160
	Stern et al.	1.037	0.914-1.177
	Mittal <i>et al</i> .	1.006	0.882-1.148
	Mittal <i>et al</i> .	1.012	0.885-1.158
	Fontana <i>et al</i> .	1.017	0.895-1.156
	Wang <i>et al</i> .	0.992	0.873-1.127
	Sak <i>et al</i> .	1.020	0.890-1.169
	Matullo <i>et al</i> .	1.034	0.907-1.179
	Agalliu <i>et al</i> .	1.019	0.893-1.162
	Hamano et al.	0.989	0.880-1.111
	Hirata <i>et al</i>	0.998	0.876-1.136

Random

	Zhu <i>et al</i> .	0.997	0.872-1.141	
	vanGils et al.	1.024	0.899-1.167	
	Xu et al.	1.047	0.926-1.185	
	Agalliu <i>et al</i> .	1.031	0.898-1.183	
	Mittal <i>et al</i> .	1.015	0.887-1.162	
BB vs. AA	Huang <i>et al</i> .	1.537	1.195-1.976	Fixed
	Andrew et al.	1.603	1.237-2.076	
	Figueroa et al.	1.493	1.160-1.920	
	Matullo <i>et al</i> .	1.524	1.187-1.958	
	Stern et al.	1.525	1.188-1.958	
	Stern et al.	1.525	1.188-1.958	
	Mittal <i>et al</i> .	1.514	1.178-1.946	
	Mittal <i>et al</i> .	1.520	1.182-1.956	
	Fontana et al.	1.525	1.188-1.958	
	Wang <i>et al</i> .	1.392	1.069-1.813	
	Sak <i>et al</i> .	1.540	1.196-1.982	
	Matullo <i>et al</i> .	1.525	1.188-1.958	
	Agalliu <i>et al</i> .	1.525	1.188-1.958	
	Hamano <i>et al</i> .	1.533	1.185-1.985	
	Hirata <i>et al</i>	1.541	1.180-2.013	
	Zhu <i>et al</i> .	1.359	1.180-2.013	
	vanGils et al.	1.525	1.188-1.958	
	Xu et al.	1.762	1.341-2.316	
	Agalliu <i>et al</i> .	1.571	1.216-2.028	
	Mittal et al.	1.477	1.1441.908	
BB vs. AA+AB	Huang <i>et al</i> .	1.483	1.164-1.890	Fixed
	Andrew et al.	1.539	1.200-1.973	

		Figueroa et al.	1.444	1.133-1.842	
		Matullo <i>et al</i> .	1.473	1.157-1.875	
		Stern et al.	1.474	1.159-1.875	
		Stern et al.	1.474	1.159-1.875	
		Mittal <i>et al</i> .	1.465	1.150-1.865	
		Mittal <i>et al</i> .	1.469	1.153-1.873	
		Fontana <i>et al</i> .	1.474	1.155-1.882	
		Wang <i>et al</i> .	1.362	1.057-1.755	
		Sak <i>et al</i> .	1.486	1.165-1.895	
		Matullo <i>et al</i> .	1.474	1.159-1.875	
		Agalliu <i>et al</i> .	1.474	1.159-1.875	
		Hamano <i>et al</i> .	1.508	1.176-1.933	
		Hirata et al	1.521	1.176-1.968	
		Zhu <i>et al</i> .	1.326	1.000-1.757	
		vanGils <i>et al</i> .	1.474	1.159-1.875	
		Xu et al.	1.627	1.251-2.117	
		Agalliu <i>et al</i> .	1.512	1.182-1.933	
		Mittal <i>et al</i> .	1.427	1.116-1.825	
XRCC2-rs3218536	B vs. A	Nowacka-Zawisza et al.	0.930	0.772-1.120	Fixed
		Matullo <i>et al</i> .	0.939	0.778-1.133	
		Figueroa et al.	1.064	0.649-1.744	
	BA vs. AA	Nowacka-Zawisza et al.	0.997	0.813-1.224	Fixed
		Matullo <i>et al</i> .	0.996	0.811-1.223	
		Figueroa et al.	1.196	0.701-2.041	
	BA+BB vs. AA	Nowacka-Zawisza et al.	0.961	0.787-1.175	Fixed
		Matullo <i>et al</i> .	0.966	0.789-1.182	
		Figueroa et al.	1.132	0.672-10.909	

	BB vs. AA	Nowacka-Zawisza et al.	0.438	0.177-1.080	Fixed
		Matullo <i>et al</i> .	0.453	0.171-1.198	
		Figueroa et al.	0.353	0.031-3.954	
	BB vs. AA+AB	Nowacka-Zawisza et al.	0.438	0.177-1.079	Fixed
		Matullo <i>et al</i> .	0.455	0.172-1.201	
		Figueroa et al.	0.345	0.030-3.854	
C3-rs861539	B vs. A	Narter et al.	1.043	0.945-1.151	Random
		Fontana et al.	1.018	0.910-1.140	
		Matullo <i>et al</i> .	0.990	0.885-1.106	
		Zhu <i>et al</i> .	0.997	0.889-1.118	
		Andrew et al.	1.000	0.882-1.133	
		Gangwar et al.	1.008	0.897-1.133	
		Figueroa et al.	0.998	0.881-1.130	
		Mittle et al.	1.009	0.898-1.133	
		Matullo <i>et al</i> .	0.996	0.886-1.120	
		Sanyal. et al.	1.000	0.889-1.125	
		Shen et al.	1.023	0.913-1.146	
		Narter et al.	1.043	0.945-1.151	
		Wu et al.	0.999	0.885-1.127	
		Broberg et al.	1.011	0.902-1.134	
		Stern et al.	0.997	0.888-1.120	
		Matullo et al.	1.012	0.901-1.137	
		Hao <i>et al</i> .	0.993	0.888-1.111	
		Nowacka-Zawisza et al.	1.023	0.914-1.146	
		Ritchey et al.	1.007	0.898-1.130	
		Dhillon et al.	1.013	0.903-1.137	
		Mandal. et al.	0.995	0.887-1.117	

XRCC

	Hamano <i>et al</i> .	1.013	0.904-1.135	
	Dhillon <i>et al</i> .	1.013	0.903-1.137	
BA vs. AA	Narter et al.	1.034	0.909-1.176	Random
	Fontana et al.	1.036	0.911-1.178	
	Matullo et al.	1.005	0.897-1.126	
	Zhu <i>et al</i> .	1.034	0.906-1.181	
	Andrew et al.	1.039	0.904-1.194	
	Gangwar et al.	1.032	0.903-1.180	
	Figueroa et al.	1.022	0.889-1.175	
	Mittle et al.	1.033	0.904-1.181	
	Matullo <i>et al</i> .	1.019	0.892-1.165	
	Sanyal. et al.	1.035	0.905-1.183	
	Shen et al.	1.061	0.938-1.199	
	Narter et al.	1.034	0.909-1.176	
	Wu et al.	1.018	0.889-1.166	
	Broberg et al.	1.026	0.900-1.170	
	Stern et al.	1.020	0.893-1.164	
	Matullo <i>et al</i> .	1.036	0.907-1.184	
	Hao et al.	1.012	0.892-1.148	
	Nowacka-Zawisza et al.	1.032	0.904-1.178	
	Ritchey et al.	1.037	0.910-1.182	
	Dhillon <i>et al</i> .	1.056	0.934-1.195	
	Mandal. et al.	1.018	0.892-1.161	
	Hamano et al.	1.041	0.914-1.185	
	Dhillon <i>et al</i> .	1.056	0.934-1.195	
BA+BB vs. AA	Narter et al.	1.044	0.918-1.187	Random
	Fontana <i>et al</i> .	1.026	0.894-1.177	

Matullo <i>et al</i> .	0.993	0.873-1.129
Zhu <i>et al</i> .	1.012	0.878-1.166
Andrew et al.	1.016	0.873-1.182
Gangwar et al.	1.019	0.883-1.175
Figueroa et al.	1.006	0.866-1.169
Mittle et al.	1.019	0.883-1.176
Matullo <i>et al</i> .	1.004	0.871-1.158
Sanyal. et al.	1.015	0.879-1.172
Shen et al.	1.047	0.915-1.198
Narter et al.	1.044	0.918-1.187
Wu et al.	1.005	0.868-1.163
Broberg et al.	1.016	0.883-1.170
Stern et al.	1.005	0.872-1.158
Matullo <i>et al</i> .	1.023	0.888-1.180
Hao <i>et al</i> .	0.999	0.871-1.146
Nowacka-Zawisza et al.	1.028	0.893-1.183
Ritchey et al.	1.021	0.887-1.175
Dhillon <i>et al</i> .	1.039	0.905-1.191
Mandal. et al.	1.003	0.871-1.155
Hamano et al.	1.027	0.894-1.181
Dhillon <i>et al</i> .	1.039	0.905-1.191
Narter et al.	1.141	0.954-1.365
Fontana <i>et al</i> .	1.103	0.901-1.350
Matullo <i>et al</i> .	1.051	0.857-1.290
Zhu <i>et al</i> .	1.053	0.863-1.286
Andrew et al.	1.067	0.848-1.342
Gangwar et al.	1.086	0.881-1.339

BB vs. AA

Random

	Figueroa et al.	1.068	0.850-1.342
	Mittle et al.	1.087	0.882-1.340
	Matullo <i>et al</i> .	1.058	0.853-1.311
	Sanyal. et al.	1.062	0.858-1.316
	Shen et al.	1.107	0.899-1.364
	Narter et al.	1.141	0.954-1.365
	Wu et al.	1.071	0.857-1.337
	Broberg et al.	1.099	0.895-1.350
	Stern et al.	1.063	0.860-1.314
	Matullo <i>et al</i> .	1.098	0.889-1.357
	Hao et al.	1.077	0.877-1.322
	Nowacka-Zawisza et al.	1.124	0.920-1.375
	Ritchey et al.	1.073	0.874-1.317
	Dhillon <i>et al</i> .	1.066	0.867-1.312
	Mandal. et al.	1.063	0.864-1.308
	Hamano et al.	1.081	0.879-1.328
	Dhillon <i>et al</i> .	1.066	0.867-1.312
BB vs. AA+AB	Narter et al.	1.103	0.936-1.300
	Fontana et al.	1.071	0.886-1.295
	Matullo <i>et al</i> .	1.044	0.859-1.268
	Zhu et al.	1.024	0.853-1.230
	Andrew et al.	1.032	0.837-1.272
	Gangwar et al.	1.053	0.868-1.278
	Figueroa et al.	1.043	0.844-1.288
	Mittle et al.	1.054	0.869-1.278
	Matullo <i>et al</i> .	1.034	0.847-1.264
	Sanyal. et al.	1.029	0.846-1.252

Random

		Shen et al.	1.054	0.866-1.283	
		Narter et al.	1.103	0.936-1.300	
		Wu et al.	1.047	0.853-1.286	
		Broberg et al.	1.069	0.885-1.291	
		Stern et al.	1.038	0.853-1.264	
		Matullo <i>et al</i> .	1.062	0.873-1.292	
		Hao et al.	1.047	0.866-1.265	
		Nowacka-Zawisza et al.	1.087	0.903-1.309	
		Ritchey et al.	1.042	0.863-1.259	
		Dhillon <i>et al</i> .	1.029	0.853-1.241	
		Mandal. et al.	1.036	0.855-1.255	
		Hamano et al.	1.049	0.867-1.268	
		Dhillon <i>et al</i> .	1.029	0.853-1.241	
XRCC3-rs1799796	B vs. A	Matullo <i>et al</i> .	0.979	0.862-1.113	Fixed
		Mittle et al.	0.941	0.833-1.063	
		Wu et al.	1.059	0.908-1.234	
		Broberg et al.	0.997	0.886-1.121	
		Matullo <i>et al</i> .	0.939	0.830-1.064	
	BA vs. AA	Matullo <i>et al</i> .	1.007	0.845-1.200	Fixed
		Mittle et al.	0.917	0.775-1.086	
		Wu et al.	1.039	0.849-1.272	
		Broberg et al.	0.986	0.841-1.157	
		Matullo <i>et al</i> .	0.985	0.832-1.165	
	BA+BB vs. AA	Matullo <i>et al</i> .	0.995	0.842-1.175	Fixed
		Mittle et al.	0.920	0.784-1.079	
		Wu et al.	1.059	0.873-1.285	
		Broberg et al.	0.991	0.852-1.154	

		Matullo et al.	0.958	0.816-1.125	
	BB vs. AA	Matullo <i>et al</i> .	0.934	0.515-1.692	Random
		Mittle et al.	0.949	0.564-1.595	
		Wu et al.	1.077	0.608-1.910	
		Broberg et al.	1.075	0.715-1.614	
		Matullo <i>et al</i> .	0.811	0.598-1.100	
	BB vs. AA+AB	Matullo <i>et al</i> .	0.940	0.528-1.673	Random
		Mittle et al.	0.983	0.591-1.633	
		Wu et al.	1.070	0.602-1.904	
		Broberg et al.	1.096	0.739-1.625	
		Matullo et al.	0.836	0.625-1.120	
XRCC4-rs6869366	B vs. A	Chang et al.	0.853	0.701-1.038	Fixed
		Mandal. et al.	1.085	0.857-1.374	
		Mittal. et al.	1.038	0.812-1.327	
		Chang et al.	0.794	0.645-0.979	
	BA vs. AA	Chang et al.	0.936	0.736-1.190	Fixed
		Mandal. et al.	1.260	0.951-1.670	
		Mittal. et al.	1.196	0.897-1.595	
		Chang et al.	0.856	0.661-1.109	
	BA+BB vs. AA	Chang et al.	0.884	0.699-1.118	Fixed
		Mandal. et al.	1.200	0.911-1.582	
		Mittal. et al.	1.137	0.857-1.508	
		Chang <i>et al</i> .	0.806	0.626-1.037	
	BB vs. AA	Chang <i>et al</i> .	0.413	0.210-0.809	Fixed
		Mandal. et al.	0.474	0.197-1.141	
		Mittal. et al.	0.341	0.119-0.980	
		Chang et al.	0.413	0.210-0.809	

	BB vs. AA+AB	Chang et al.	0.469	0.242-0.910	Fixed
		Mandal. et al.	0.526	0.222-1.245	
		Mittal. et al.	0.401	0.141-1.134	
		Chang et al.	0.469	0.242-0.910	
XRCC4-rs28360071	B vs. A	Mandal. et al.	1.188	0.909-1.553	Fixed
		Mittal. et al.	1.382	1.064-1.795	
		Chang et al.	1.544	1.195-1.997	
	BA vs. AA	Mandal. et al.	1.129	0.818-1.558	Fixed
		Mittal. et al.	1.234	0.892-1.708	
		Chang et al.	1.261	0.913-1.741	
	BA+BB vs. AA	Mandal. et al.	1.179	0.865-1.608	Fixed
		Mittal. et al.	1.353	0.994-1.841	
		Chang et al.	1.447	1.073-1.952	
	BB vs. AA	Mandal. et al.	1.690	0.712-4.010	Fixed
		Mittal. et al.	2.417	1.141-5.116	
		Chang et al.	2.781	1.445-5.351	
	BB vs. AA+AB	Mandal. et al.	1.635	0.692-3.863	Fixed
		Mittal. et al.	2.255	1.071-4.747	
		Chang et al.	2.618	1.367-5.014	
XRCC4-rs1805377	B vs. A	Mandal. et al.	0.815	0.707-0.940	Random
		Luedeke et al.	0.808	0.695-0.939	
		Broberg et al.	0.820	0.717-0.938	
		Mittal. et al.	0.826	0.716-0.954	
		Figueroa et al.	0.884	0.740-1.056	
	BA vs. AA	Mandal. et al.	1.033	0.757-1.411	Random
		Luedeke et al.	0.997	0.768-1.293	
		Broberg et al.	1.018	0.781-1.325	

		Mittal. et al.	1.023	0.737-1.420	
		Figueroa et al.	0.983	0.754-1.282	
	BA+BB vs. AA	Mandal. et al.	0.934	0.689-1.266	Random
		Luedeke et al.	0.923	0.717-1.188	
		Broberg et al.	0.926	0.717-1.197	
		Mittal. et al.	0.952	0.694-1.306	
		Figueroa et al.	0.926	0.716-1.198	
	BB vs. AA	Mandal. et al.	0.750	0.432-1.304	Fixed
		Luedeke et al.	0.660	0.375-1.160	
		Broberg et al.	0.709	0.432-1.165	
		Mittal. et al.	0.902	0.536-1.516	
		Figueroa et al.	0.645	0.345-1.204	
	BB vs. AA+AB	Mandal. et al.	0.755	0.635-0.898	Fixed
		Luedeke et al.	0.705	0.572-0.867	
		Broberg et al.	0.750	0.632-0.890	
		Mittal. et al.	0.770	0.648-0.915	
		Figueroa et al.	0.804	0.606-1.066	
XRCC7-rs7003908	B vs. A	Hirata <i>et al</i>	1.122	0.670-1.876	Random
		Mandal. et al.	1.066	0.638-1.781	
		Wang <i>et al</i> .	1.257	0.791-1.997	
		Gangwar et al.	0.973	0.682-1.388	
		Zhi et al.	1.273	0.831-1.950	
		Hirata <i>et al</i>	1.136	0.683-1.887	
	BA vs. AA	Hirata <i>et al</i>	0.935	0.654-1.335	Random
		Mandal. et al.	0.960	0.658-1.398	
		Wang <i>et al</i> .	1.074	0.735-1.569	
		Gangwar et al.	0.893	0.661-1.206	

	Zhi et al.	1.101	0.790-1.533	
	Hirata <i>et al</i>	1.033	0.703-1.517	
BA+BB vs. AA	Hirata et al	1.075	0.630-1.834	Random
	Mandal. et al.	1.048	0.624-1.762	
	Wang <i>et al</i> .	1.241	0.742-2.078	
	Gangwar <i>et al</i> .	0.934	0.643-1.359	
	Zhi et al.	1.267	0.794-2.021	
	Hirata et al	1.146	0.668-1.966	
BB vs. AA	Hirata et al	1.190	0.443-3.191	Random
	Mandal. et al.	1.028	0.346-3.050	
	Wang <i>et al</i> .	1.546	0.680-3.517	
	Gangwar et al.	0.900	0.402-2.014	
	Zhi et al.	1.540	0.707-3.355	
	Hirata et al	1.102	0.402-3.019	
BB vs. AA+AB	Hirata et al	1.206	0.560-2.600	Random
	Mandal. et al.	1.021	0.413-2.526	
	Wang <i>et al</i> .	1.461	0.771-2.768	
	Gangwar et al.	0.939	0.466-1.892	
	Zhi et al.	1.473	0.794-2.729	
	Hirata <i>et al</i>	1.067	0.480-2.367	

B: mutated allele; A: wild allele

Polymorphism	Subgroun	Egger'test P>
r orymor pinom	Subgroup	
XRCC1-rs915927	Overall	0.397
	Caucasian	0.297
	H-B	0.513
	BC	0.611
	PCa	/
XRCC1-rs25489	Overall	0.292
	Asian	0.607
	Caucasian	0.518
	H-B	0.211
	P-B	0.647
	Ν	0.121
	Y	0.830
	BC	0.297
	PCa	0853
XRCC1-rs3213245	Overall	0.075
	Asian	/
	Y	0.069
	BC	0.069
XRCC1-rs25487	Overall	0.235
	Asian	0.864
	Caucasian	0.988
	African	/
	Mixed	0.999
	H-B	0.211
	P-B	0.667
	N	0.350
	Y	0.247
	BC	0.652
	PCa	0.196
<i>XRCC1</i> -rs1799782	Overall	0.412
	H-B	0.717
	P-B	0.716
	Ν	/
	Y	0.948
	BC	0.693
	PCa	0.902
XRCC2-rs3218536	Overall	0.315
	Caucasian	0.331
	H-B	0.315
	Y	0.331
	BC	/
XRCC3-rs1799796	Overall	0.681
	H-B	0.248
	P-B	/
	Y	0.612
	BC	0.612

Supplementary table 3. *P* values of the Egger's test for the polymorphisms in *XRCC* genes.

XRCC3-rs861539	Overall	0.065
	Asian	0.624
	Caucasian	0.059
	Mixed	0.308
	H-B	0.294
	P-B	0.274
	Ν	0.302
	Y	0.967
	BC	0.588
	PCa	0.536
XRCC4-rs28360071	Overall	0.043
	Asian	0.090
	H-B	0.090
	Y	0.090
	BC	/
XRCC4-rs1805377	Overall	0.094
	Asian	/
	Caucasian	0.370
	H-B	0.082
	Y	0.082
	BC	0.009
	РСа	/
XRCC4-rs6869366	Overall	0.107
	Asian	0.174
	H-B	0.174
	Y	0.174
	BC	/
	PCa	/
XRCC7-rs7003908	Overall	0.820
	Asian	0.648
	H-B	0.648
	Y	0.648
	BC	0.809
	PCa	/

PCa: prostate cancer; BC: bladder cancer; H-B: hospital-based; P-B: population-based; Y:

study conformed to HWE; N: study did not conform to HWE.

Supplementary table 4. The PRISMA 2009 checklist for current meta-analysis and systematic review.

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	2-3
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	3
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	4-5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	4-5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5

Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5		
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6		
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6		
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6-7		
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6		
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	6-7		
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7		
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	6-7		
RESULTS					
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	7-8		
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8		
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	10-11		
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each	9-10		

		intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.		
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	9-10	
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	10-11	
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	11-12	
DISCUSSION				
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	13-14	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	15-16	
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	12-14	
FUNDING				
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	16	

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: <u>www.prisma-statement.org</u>.